metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetato­aqua­{4,4′,6,6′-tetra-tert-butyl-2,2′-[(2-pyridyl­meth­yl)imino­di­methyl­ene]diphenolato}manganese(III) ethanol solvate

aDepartment of Chemistry, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X7, and bC-CART X-Ray Diffraction Laboratory, Department of Chemistry, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X7
*Correspondence e-mail: ckozak@mun.ca

(Received 19 May 2010; accepted 3 June 2010; online 16 June 2010)

In the title complex, [Mn(C36H50N2O2)(CH3COO)(H2O)]·CH3CH2OH, the MnIII atom is in an octa­hedral environment and is coordinated by the tetra­dentate amine–bis­(phenolate) ligand, a monodentate acetate anion and a water mol­ecule. An ethanol solvent mol­ecule is also found in the asymmetric unit. The structure displays O—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For a related structure, see: van Gorkum et al. (2008[Gorkum, R. van, Berding, J., Mills, A. M., Kooijman, H., Tooke, D. M., Spek, A. L., Mutikainen, I., Turpeinen, U., Reedijk, J. & Bouwman, E. (2008). Eur. J. Inorg. Chem. pp. 1487-1496.]). For the structure of the unmetallated ligand, see: Chmura et al. (2006[Chmura, A. J., Davidson, M. G., Jones, M. D., Lunn, M. D., Mahon, M. F., Johnson, A. F., Khunkamchoo, P., Roberts, S. L. & Wong, S. S. F. (2006). Macromolecules, 39, 7250-7257.]). For synthetic procedures, see: Kerton et al. (2008[Kerton, F. M., Holloway, S., Power, A., Soper, R. G., Sheridan, K., Lynam, J. M., Whitwood, A. C. & Willans, C. E. (2008). Can. J. Chem. 86, 435-443.]); Shimazaki et al. (2000[Shimazaki, Y., Huth, S., Odani, A. & Yamauchi, O. (2000). Angew. Chem. Int. Ed. 39, 1666-1669.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6O

  • Mr = 720.87

  • Monoclinic, P 21 /c

  • a = 16.505 (3) Å

  • b = 10.8310 (16) Å

  • c = 26.512 (5) Å

  • β = 118.798 (3)°

  • V = 4153.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 153 K

  • 0.40 × 0.30 × 0.24 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 2000[Higashi, T. (2000). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.906, Tmax = 0.948

  • 44205 measured reflections

  • 8589 independent reflections

  • 8248 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.10

  • 8589 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H41A⋯O6i 0.92 1.91 2.799 (2) 160
O6—H42⋯O4ii 0.91 1.81 2.723 (3) 171
O5—H41B⋯O4 0.93 1.79 2.677 (2) 160
C4—H4B⋯O1 0.98 2.36 2.991 (4) 122
C5—H5C⋯O1 0.98 2.28 2.929 (3) 123
C15—H15B⋯O5 0.99 2.54 3.202 (3) 124
C34—H34C⋯O2 0.98 2.45 3.102 (3) 123
C35—H35A⋯O2 0.98 2.32 3.010 (3) 126
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the complex acetato[2-pyridylamino-N,N-bis(2-methylene-4,6-tert-butylphenolato)]aquamanganese(III) (1), the manganese(III) ion resides in a distorted octahedral geometry. Its coordination sphere is occupied by two phenolate oxygen atoms, a tertiary amine and a pyridine nitrogen donor. The phenolate oxygens, O1 and O2, of the tetradentate ligand are trans orientated and exhibit Mn1—O1 and Mn1—O2 bond lengths of 1.8532 (14) and 1.8770 (14) Å, respectively. The O3 atom of the monodentate acetate group is trans to the amine nitrogen, N1, and the Mn1—O3 and Mn1—N1 bond distances are 1.9958 (15) and 2.1058 (16) Å, respectively. The water ligand, O5, is trans to the pyridine nitrogen donor, N2. The Mn ion is Jahn-Teller distorted along the Mn1—N2 and Mn1—O5 bonds, which are considerably elongated giving bond distances of 2.2543 (17) and 2.2434 (15) Å, respectively. This elongated axis is similar to that reported by Van Gorkum et al. (2008), except that the previously reported structure possesses a bidentate acetate and no water ligand. Bond angles of trans-orientated ligands around Mn are slightly bent and range between 170.77 (6)° for O3—Mn1—N1 and 177.70 (6)° for O1—Mn1—O2.

The complex exhibits both intra- and intermolecular hydrogen bonding. The water ligand acts as a hydrogen bond donor to the uncoordinated O4 of the acetate ligand. The O4···O5 interatomic distance is 2.677 (2) Å and within the typical range for hydrogen bonding between oxygen-containing hydrogen bond donor-acceptors. The uncoordinated O4 of the acetate group also displays intermolecular hydrogen bonding to an ethanol solvate molecule. The interatomic distance between O4 of the acetate and O6 [x, y-1, z] of the ethanol molecule is 2.723 (2) Å, which is within the sum of the van der Waals radii. The ethanol ligand is the hydrogen bond donor and the acetate O6 is the acceptor. Another intermolecular hydrogen bond exists between the coordinated water ligand and the ethanol oxygen atom of a second ethanol molecule (2.7989 (18) Å for O5···O6 [-x+1, y-1/2, -z+3/2]). In this interaction, the water ligand acts as hydrogen bond donor and the solvate ethanol O-atom is the acceptor. These multiple intermolecular hydrogen bonding interactions effectively result in chains where the six-coordinate Mn complexes are bridged by solvate ethanol molecules.

Related literature top

For a related structure, see: van Gorkum et al. (2008). For the structure of the unmetallated ligand, see: Chmura et al. (2006). For synthetic procedures, see: Kerton et al. (2008); Shimazaki et al. (2000).

Experimental top

The 2-pyridylamino-N,N-bis(2-methylene-4,6-tert-butylphenol) ligand (abbreviated H2(O2NN')) was prepared according to the published methods (Kerton et al., 2008; Shimazaki et al., 2000). Mn(OAc)2.4H2O (0.5033 g, 2.0 mmol) and H2(O2NN') (0.5619 g, 1.00 mmol) were dissolved in 95% ethanol (20 ml) and heated to reflux for one hour. The resulting dark purple solution was filtered through a glass frit while hot. Distilled H2O (10 ml) was added to the dark purple filtrate. As the solution cooled to room temperature, dark purple crystals suitable for X-ray diffraction precipitated out of the ethanol/water medium (580 mg, 86% yield). MS (MALDI-TOF) m/z, intensity (ion): 656.3305, 20% ([M—H2O]+); 596.3156, 42% ([M—H2O-OAc]+).

Refinement top

H(41 A, 41B) and H(42) were located in difference map positions, and refined on a riding model. All other hydrogen atoms were introduced in calculated positions with distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms and refined on a riding model. Isotropic thermal parameters 1.2 times that of their bonding partners were allowed for all H-atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1 with atom numbering scheme. Ellipsoids drawn at the 50% probability level. Only the H-atoms on the water ligand (H 41a and H41b) are shown. Ethanol solvate molecule removed for clarity.
[Figure 2] Fig. 2. Molecular structure of 1 showing intermolecular hydrogen-bonded linear chain. Ellipsoids drawn at the 50% probability level and t-butyl groups on phenolate rings removed for clarity.
Acetatoaqua{4,4',6,6'-tetra-tert-butyl-2,2'-[(2- pyridylmethyl)iminodimethylene]diphenolato}manganese(III) ethanol solvate top
Crystal data top
[Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6OF(000) = 1552
Mr = 720.87Dx = 1.153 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 15117 reflections
a = 16.505 (3) Åθ = 2.0–30.7°
b = 10.8310 (16) ŵ = 0.36 mm1
c = 26.512 (5) ÅT = 153 K
β = 118.798 (3)°Irregular, purple
V = 4153.2 (12) Å30.40 × 0.30 × 0.24 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
8589 independent reflections
Radiation source: fine-focus sealed tube8248 reflections with I > 2σ(I)
Graphite - Rigaku SHINE monochromatorRint = 0.032
Detector resolution: 14.63 pixels mm-1θmax = 26.5°, θmin = 2.7°
ω scansh = 2020
Absorption correction: numerical
(ABSCOR; Higashi, 2000)
k = 1313
Tmin = 0.906, Tmax = 0.948l = 3333
44205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.069P)2 + 2.8924P]
where P = (Fo2 + 2Fc2)/3
8589 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6OV = 4153.2 (12) Å3
Mr = 720.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.505 (3) ŵ = 0.36 mm1
b = 10.8310 (16) ÅT = 153 K
c = 26.512 (5) Å0.40 × 0.30 × 0.24 mm
β = 118.798 (3)°
Data collection top
Rigaku Saturn
diffractometer
8589 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 2000)
8248 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.948Rint = 0.032
44205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.10Δρmax = 0.59 e Å3
8589 reflectionsΔρmin = 0.50 e Å3
444 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.569186 (18)0.22108 (3)0.887302 (11)0.02241 (10)
O10.44186 (9)0.23550 (13)0.85424 (7)0.0321 (3)
O20.69749 (9)0.20020 (12)0.91944 (6)0.0268 (3)
O30.55745 (10)0.04484 (13)0.90481 (6)0.0328 (3)
O40.57756 (14)0.05365 (15)0.83781 (8)0.0495 (4)
O50.55651 (10)0.18014 (14)0.80084 (6)0.0334 (3)
H41A0.49740.17960.77010.041*
H41B0.56460.09560.80610.041*
O60.60773 (12)0.72486 (15)0.80117 (7)0.0424 (4)
H420.60160.80270.81230.051*
N10.57820 (10)0.41364 (14)0.88018 (6)0.0243 (3)
N20.58705 (12)0.28484 (16)0.97301 (7)0.0288 (4)
C10.38156 (13)0.32682 (18)0.82789 (8)0.0271 (4)
C20.28873 (14)0.31164 (19)0.81628 (9)0.0325 (4)
C30.25997 (16)0.1931 (2)0.83644 (12)0.0440 (6)
C40.3141 (2)0.1835 (3)0.90203 (13)0.0579 (7)
H4A0.30290.25740.91910.070*
H4B0.38020.17670.91450.070*
H4C0.29370.11020.91460.070*
C50.2776 (2)0.0777 (2)0.80967 (15)0.0582 (7)
H5A0.24290.08390.76760.070*
H5B0.25740.00420.82220.070*
H5C0.34380.07110.82210.070*
C60.15607 (19)0.1929 (3)0.81807 (17)0.0650 (9)
H6A0.14130.26560.83410.078*
H6B0.14090.11790.83250.078*
H6C0.12000.19490.77600.078*
C70.22611 (14)0.4063 (2)0.78625 (9)0.0342 (4)
H70.16360.39660.77780.041*
C80.25052 (14)0.5142 (2)0.76797 (8)0.0327 (4)
C90.18036 (15)0.6155 (2)0.73282 (9)0.0392 (5)
C100.08308 (18)0.5871 (3)0.72413 (12)0.0579 (7)
H10A0.06260.50650.70540.070*
H10B0.03990.65110.69990.070*
H10C0.08480.58560.76160.070*
C110.17281 (18)0.6194 (3)0.67266 (11)0.0511 (6)
H11A0.15270.53850.65420.061*
H11B0.23330.63970.67630.061*
H11C0.12760.68230.64920.061*
C120.2115 (2)0.7395 (3)0.76157 (14)0.0730 (11)
H12A0.27340.75780.76720.088*
H12B0.21300.73800.79900.088*
H12C0.16820.80340.73720.088*
C130.34281 (14)0.52737 (19)0.78144 (8)0.0299 (4)
H130.36170.60060.77030.036*
C140.40805 (13)0.43584 (18)0.81089 (8)0.0264 (4)
C150.50525 (12)0.45405 (18)0.82128 (8)0.0269 (4)
H15A0.51450.54260.81620.032*
H15B0.51320.40710.79190.032*
C160.56725 (14)0.48099 (18)0.92526 (8)0.0294 (4)
H16A0.50150.50400.90980.035*
H16B0.60380.55820.93480.035*
C170.59771 (13)0.40683 (19)0.97957 (8)0.0295 (4)
C180.62907 (16)0.4634 (2)1.03279 (9)0.0414 (5)
H180.63710.55041.03670.050*
C190.64830 (17)0.3901 (3)1.08012 (10)0.0478 (6)
H190.67020.42621.11710.057*
C200.63538 (17)0.2641 (3)1.07310 (10)0.0449 (6)
H200.64710.21251.10490.054*
C210.60499 (16)0.2145 (2)1.01892 (9)0.0367 (5)
H210.59650.12771.01400.044*
C220.67118 (13)0.44181 (19)0.88544 (9)0.0308 (4)
H22A0.67740.39700.85490.037*
H22B0.67510.53130.87940.037*
C230.74940 (13)0.40598 (19)0.94303 (8)0.0289 (4)
C240.80855 (14)0.4939 (2)0.98171 (9)0.0339 (4)
H240.79780.57910.97230.041*
C250.88294 (14)0.4583 (2)1.03370 (9)0.0345 (4)
C260.94866 (16)0.5507 (2)1.07875 (11)0.0437 (5)
C270.9188 (2)0.6838 (3)1.06142 (15)0.0642 (8)
H27A0.85580.69521.05540.077*
H27B0.92010.70251.02570.077*
H27C0.96100.73931.09200.077*
C281.04710 (18)0.5335 (3)1.08810 (15)0.0664 (9)
H28A1.06660.44781.09920.080*
H28B1.08920.58911.11870.080*
H28C1.04840.55271.05240.080*
C290.9485 (2)0.5255 (3)1.13607 (13)0.0650 (8)
H29A0.96770.44011.14810.078*
H29B0.88610.53841.13080.078*
H29C0.99160.58211.16570.078*
C300.89708 (13)0.3316 (2)1.04407 (9)0.0328 (4)
H300.94970.30611.07860.039*
C310.83970 (13)0.24007 (19)1.00753 (8)0.0283 (4)
C320.86199 (14)0.1024 (2)1.02091 (9)0.0322 (4)
C330.95429 (16)0.0820 (2)1.07562 (10)0.0445 (5)
H33A0.95210.12041.10840.053*
H33B1.00430.11931.07080.053*
H33C0.96560.00681.08260.053*
C340.78670 (16)0.0385 (2)1.02959 (11)0.0430 (5)
H34A0.78250.07781.06150.052*
H34B0.80240.04901.03840.052*
H34C0.72720.04570.99430.052*
C350.86841 (16)0.0416 (2)0.97090 (10)0.0406 (5)
H35A0.81000.05340.93520.049*
H35B0.88030.04700.97850.049*
H35C0.91900.07930.96690.049*
C360.76088 (13)0.27986 (18)0.95627 (8)0.0259 (4)
C370.56916 (15)0.0520 (2)0.88233 (10)0.0367 (5)
C380.5741 (3)0.1711 (2)0.91295 (15)0.0637 (8)
H38A0.52730.22850.88610.076*
H38B0.56280.15470.94540.076*
H38C0.63560.20770.92730.076*
C390.6996 (2)0.7183 (3)0.81098 (13)0.0624 (8)
H39A0.70330.76190.77930.075*
H39B0.71550.63070.80970.075*
C400.7703 (3)0.7727 (4)0.86721 (17)0.0810 (11)
H40A0.83190.76480.87070.097*
H40B0.76870.72870.89900.097*
H40C0.75630.86020.86860.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02138 (16)0.01881 (16)0.02466 (16)0.00141 (10)0.00919 (12)0.00055 (10)
O10.0238 (7)0.0230 (7)0.0456 (8)0.0015 (5)0.0137 (6)0.0040 (6)
O20.0223 (6)0.0251 (7)0.0287 (7)0.0014 (5)0.0087 (5)0.0004 (5)
O30.0329 (7)0.0229 (7)0.0430 (8)0.0018 (6)0.0186 (6)0.0032 (6)
O40.0725 (12)0.0277 (8)0.0485 (9)0.0103 (8)0.0294 (9)0.0003 (7)
O50.0375 (8)0.0311 (8)0.0272 (7)0.0049 (6)0.0122 (6)0.0005 (6)
O60.0423 (9)0.0312 (8)0.0453 (9)0.0011 (7)0.0145 (7)0.0087 (7)
N10.0218 (7)0.0212 (8)0.0254 (7)0.0026 (6)0.0079 (6)0.0025 (6)
N20.0298 (8)0.0310 (9)0.0271 (8)0.0025 (7)0.0148 (7)0.0013 (6)
C10.0238 (9)0.0236 (9)0.0285 (9)0.0016 (7)0.0084 (7)0.0038 (7)
C20.0254 (9)0.0281 (10)0.0402 (11)0.0011 (8)0.0128 (8)0.0081 (8)
C30.0305 (11)0.0302 (11)0.0725 (16)0.0047 (9)0.0257 (11)0.0028 (11)
C40.0577 (16)0.0526 (16)0.0736 (19)0.0074 (13)0.0397 (15)0.0136 (14)
C50.0496 (15)0.0335 (13)0.093 (2)0.0084 (11)0.0355 (15)0.0092 (13)
C60.0382 (14)0.0462 (15)0.116 (3)0.0040 (12)0.0415 (16)0.0043 (16)
C70.0236 (9)0.0340 (11)0.0388 (11)0.0027 (8)0.0099 (8)0.0072 (9)
C80.0282 (9)0.0357 (11)0.0250 (9)0.0094 (8)0.0056 (8)0.0043 (8)
C90.0305 (10)0.0400 (12)0.0339 (10)0.0135 (9)0.0049 (8)0.0011 (9)
C100.0385 (13)0.073 (2)0.0539 (15)0.0227 (13)0.0158 (11)0.0095 (14)
C110.0445 (13)0.0565 (16)0.0406 (12)0.0159 (12)0.0112 (11)0.0107 (11)
C120.0608 (18)0.0446 (16)0.0658 (19)0.0244 (14)0.0077 (15)0.0124 (14)
C130.0312 (10)0.0279 (10)0.0243 (8)0.0059 (8)0.0085 (8)0.0011 (7)
C140.0246 (9)0.0262 (9)0.0235 (8)0.0019 (7)0.0076 (7)0.0022 (7)
C150.0250 (9)0.0236 (9)0.0263 (9)0.0029 (7)0.0076 (7)0.0053 (7)
C160.0301 (9)0.0223 (9)0.0298 (9)0.0017 (7)0.0096 (8)0.0042 (7)
C170.0245 (9)0.0316 (10)0.0291 (9)0.0027 (8)0.0104 (7)0.0043 (8)
C180.0379 (11)0.0448 (13)0.0345 (11)0.0052 (10)0.0120 (9)0.0106 (10)
C190.0436 (13)0.0687 (18)0.0267 (10)0.0108 (12)0.0134 (9)0.0070 (10)
C200.0446 (13)0.0624 (16)0.0304 (11)0.0108 (11)0.0202 (10)0.0081 (10)
C210.0384 (11)0.0418 (12)0.0339 (11)0.0039 (9)0.0206 (9)0.0070 (9)
C220.0236 (9)0.0281 (10)0.0359 (10)0.0003 (7)0.0105 (8)0.0082 (8)
C230.0213 (8)0.0282 (10)0.0332 (10)0.0005 (7)0.0100 (8)0.0026 (8)
C240.0251 (9)0.0271 (10)0.0446 (11)0.0018 (8)0.0129 (9)0.0012 (9)
C250.0257 (9)0.0366 (11)0.0373 (10)0.0043 (8)0.0121 (8)0.0064 (9)
C260.0315 (11)0.0415 (13)0.0470 (13)0.0067 (9)0.0099 (10)0.0123 (10)
C270.0541 (16)0.0422 (15)0.0723 (19)0.0112 (13)0.0113 (14)0.0152 (14)
C280.0325 (12)0.070 (2)0.083 (2)0.0160 (13)0.0170 (13)0.0335 (17)
C290.0725 (19)0.0625 (19)0.0508 (15)0.0115 (16)0.0223 (14)0.0231 (14)
C300.0249 (9)0.0385 (11)0.0297 (9)0.0011 (8)0.0089 (8)0.0005 (8)
C310.0223 (9)0.0333 (10)0.0276 (9)0.0034 (8)0.0107 (8)0.0026 (8)
C320.0273 (9)0.0321 (11)0.0312 (10)0.0050 (8)0.0093 (8)0.0048 (8)
C330.0372 (12)0.0412 (13)0.0396 (12)0.0103 (10)0.0060 (10)0.0066 (10)
C340.0391 (12)0.0374 (12)0.0503 (13)0.0061 (10)0.0198 (10)0.0167 (10)
C350.0376 (11)0.0367 (12)0.0422 (12)0.0145 (9)0.0149 (10)0.0001 (9)
C360.0200 (8)0.0288 (10)0.0271 (9)0.0009 (7)0.0099 (7)0.0003 (7)
C370.0367 (11)0.0229 (10)0.0462 (12)0.0007 (8)0.0165 (10)0.0005 (8)
C380.094 (2)0.0286 (13)0.084 (2)0.0047 (14)0.0548 (19)0.0088 (13)
C390.0674 (19)0.070 (2)0.0544 (16)0.0051 (15)0.0331 (15)0.0131 (14)
C400.062 (2)0.079 (3)0.080 (2)0.0136 (18)0.0171 (18)0.0095 (19)
Geometric parameters (Å, º) top
Mn1—O11.8532 (14)C16—H16A0.9900
Mn1—O21.8770 (14)C16—H16B0.9900
Mn1—O31.9958 (15)C17—C181.389 (3)
Mn1—N12.1058 (16)C18—C191.387 (4)
Mn1—O52.2434 (15)C18—H180.9500
Mn1—N22.2543 (17)C19—C201.379 (4)
O1—C11.337 (2)C19—H190.9500
O2—C361.345 (2)C20—C211.382 (3)
O3—C371.266 (3)C20—H200.9500
O4—C371.253 (3)C21—H210.9500
O5—H41A0.9215C22—C231.500 (3)
O5—H41B0.9263C22—H22A0.9900
O6—C391.412 (4)C22—H22B0.9900
O6—H420.9153C23—C241.395 (3)
N1—C161.484 (2)C23—C361.400 (3)
N1—C221.504 (2)C24—C251.388 (3)
N1—C151.506 (2)C24—H240.9500
N2—C171.333 (3)C25—C301.397 (3)
N2—C211.342 (3)C25—C261.535 (3)
C1—C141.407 (3)C26—C271.521 (4)
C1—C21.420 (3)C26—C281.532 (3)
C2—C71.400 (3)C26—C291.545 (4)
C2—C31.550 (3)C27—H27A0.9800
C3—C41.528 (4)C27—H27B0.9800
C3—C51.533 (4)C27—H27C0.9800
C3—C61.541 (3)C28—H28A0.9800
C4—H4A0.9800C28—H28B0.9800
C4—H4B0.9800C28—H28C0.9800
C4—H4C0.9800C29—H29A0.9800
C5—H5A0.9800C29—H29B0.9800
C5—H5B0.9800C29—H29C0.9800
C5—H5C0.9800C30—C311.391 (3)
C6—H6A0.9800C30—H300.9500
C6—H6B0.9800C31—C361.422 (3)
C6—H6C0.9800C31—C321.536 (3)
C7—C81.396 (3)C32—C351.530 (3)
C7—H70.9500C32—C331.531 (3)
C8—C131.394 (3)C32—C341.534 (3)
C8—C91.541 (3)C33—H33A0.9800
C9—C121.507 (4)C33—H33B0.9800
C9—C111.539 (3)C33—H33C0.9800
C9—C101.539 (4)C34—H34A0.9800
C10—H10A0.9800C34—H34B0.9800
C10—H10B0.9800C34—H34C0.9800
C10—H10C0.9800C35—H35A0.9800
C11—H11A0.9800C35—H35B0.9800
C11—H11B0.9800C35—H35C0.9800
C11—H11C0.9800C37—C381.506 (3)
C12—H12A0.9800C38—H38A0.9800
C12—H12B0.9800C38—H38B0.9800
C12—H12C0.9800C38—H38C0.9800
C13—C141.394 (3)C39—C401.501 (5)
C13—H130.9500C39—H39A0.9900
C14—C151.504 (3)C39—H39B0.9900
C15—H15A0.9900C40—H40A0.9800
C15—H15B0.9900C40—H40B0.9800
C16—C171.508 (3)C40—H40C0.9800
O1—Mn1—O2177.70 (6)N2—C17—C18122.0 (2)
O1—Mn1—O388.60 (6)N2—C17—C16116.18 (17)
O2—Mn1—O389.65 (6)C18—C17—C16121.6 (2)
O1—Mn1—N189.26 (6)C19—C18—C17118.5 (2)
O2—Mn1—N192.70 (6)C19—C18—H18120.7
O3—Mn1—N1170.77 (6)C17—C18—H18120.7
O1—Mn1—O590.40 (6)C20—C19—C18119.4 (2)
O2—Mn1—O588.25 (6)C20—C19—H19120.3
O3—Mn1—O594.41 (6)C18—C19—H19120.3
N1—Mn1—O594.59 (6)C19—C20—C21118.7 (2)
O1—Mn1—N291.08 (7)C19—C20—H20120.7
O2—Mn1—N290.47 (6)C21—C20—H20120.7
O3—Mn1—N292.22 (6)N2—C21—C20122.2 (2)
N1—Mn1—N278.84 (6)N2—C21—H21118.9
O5—Mn1—N2173.24 (6)C20—C21—H21118.9
C1—O1—Mn1134.32 (13)C23—C22—N1112.42 (16)
C36—O2—Mn1124.42 (12)C23—C22—H22A109.1
C37—O3—Mn1128.95 (14)N1—C22—H22A109.1
Mn1—O5—H41A116.2C23—C22—H22B109.1
Mn1—O5—H41B96.1N1—C22—H22B109.1
H41A—O5—H41B98.1H22A—C22—H22B107.9
C39—O6—H42105.3C24—C23—C36121.28 (18)
C16—N1—C22109.90 (15)C24—C23—C22121.74 (19)
C16—N1—C15110.22 (14)C36—C23—C22116.98 (18)
C22—N1—C15107.91 (14)C25—C24—C23120.8 (2)
C16—N1—Mn1111.93 (12)C25—C24—H24119.6
C22—N1—Mn1107.80 (11)C23—C24—H24119.6
C15—N1—Mn1108.97 (11)C24—C25—C30116.91 (19)
C17—N2—C21119.11 (19)C24—C25—C26123.2 (2)
C17—N2—Mn1112.33 (13)C30—C25—C26119.9 (2)
C21—N2—Mn1127.22 (15)C27—C26—C28109.2 (2)
O1—C1—C14121.37 (17)C27—C26—C25112.2 (2)
O1—C1—C2118.80 (18)C28—C26—C25110.1 (2)
C14—C1—C2119.83 (18)C27—C26—C29108.1 (2)
C7—C2—C1117.6 (2)C28—C26—C29108.9 (2)
C7—C2—C3122.53 (19)C25—C26—C29108.4 (2)
C1—C2—C3119.92 (19)C26—C27—H27A109.5
C4—C3—C5109.5 (2)C26—C27—H27B109.5
C4—C3—C6108.1 (2)H27A—C27—H27B109.5
C5—C3—C6106.4 (2)C26—C27—H27C109.5
C4—C3—C2109.9 (2)H27A—C27—H27C109.5
C5—C3—C2111.0 (2)H27B—C27—H27C109.5
C6—C3—C2111.8 (2)C26—C28—H28A109.5
C3—C4—H4A109.5C26—C28—H28B109.5
C3—C4—H4B109.5H28A—C28—H28B109.5
H4A—C4—H4B109.5C26—C28—H28C109.5
C3—C4—H4C109.5H28A—C28—H28C109.5
H4A—C4—H4C109.5H28B—C28—H28C109.5
H4B—C4—H4C109.5C26—C29—H29A109.5
C3—C5—H5A109.5C26—C29—H29B109.5
C3—C5—H5B109.5H29A—C29—H29B109.5
H5A—C5—H5B109.5C26—C29—H29C109.5
C3—C5—H5C109.5H29A—C29—H29C109.5
H5A—C5—H5C109.5H29B—C29—H29C109.5
H5B—C5—H5C109.5C31—C30—C25124.75 (19)
C3—C6—H6A109.5C31—C30—H30117.6
C3—C6—H6B109.5C25—C30—H30117.6
H6A—C6—H6B109.5C30—C31—C36116.89 (19)
C3—C6—H6C109.5C30—C31—C32121.61 (17)
H6A—C6—H6C109.5C36—C31—C32121.48 (18)
H6B—C6—H6C109.5C35—C32—C33107.83 (18)
C8—C7—C2123.54 (19)C35—C32—C34109.6 (2)
C8—C7—H7118.2C33—C32—C34107.51 (19)
C2—C7—H7118.2C35—C32—C31109.09 (17)
C13—C8—C7117.34 (18)C33—C32—C31112.17 (18)
C13—C8—C9119.4 (2)C34—C32—C31110.61 (17)
C7—C8—C9123.19 (19)C32—C33—H33A109.5
C12—C9—C11109.7 (3)C32—C33—H33B109.5
C12—C9—C10109.3 (2)H33A—C33—H33B109.5
C11—C9—C10107.0 (2)C32—C33—H33C109.5
C12—C9—C8110.81 (18)H33A—C33—H33C109.5
C11—C9—C8107.95 (18)H33B—C33—H33C109.5
C10—C9—C8112.0 (2)C32—C34—H34A109.5
C9—C10—H10A109.5C32—C34—H34B109.5
C9—C10—H10B109.5H34A—C34—H34B109.5
H10A—C10—H10B109.5C32—C34—H34C109.5
C9—C10—H10C109.5H34A—C34—H34C109.5
H10A—C10—H10C109.5H34B—C34—H34C109.5
H10B—C10—H10C109.5C32—C35—H35A109.5
C9—C11—H11A109.5C32—C35—H35B109.5
C9—C11—H11B109.5H35A—C35—H35B109.5
H11A—C11—H11B109.5C32—C35—H35C109.5
C9—C11—H11C109.5H35A—C35—H35C109.5
H11A—C11—H11C109.5H35B—C35—H35C109.5
H11B—C11—H11C109.5O2—C36—C23118.68 (17)
C9—C12—H12A109.5O2—C36—C31122.21 (18)
C9—C12—H12B109.5C23—C36—C31119.10 (18)
H12A—C12—H12B109.5O4—C37—O3124.5 (2)
C9—C12—H12C109.5O4—C37—C38119.5 (2)
H12A—C12—H12C109.5O3—C37—C38115.9 (2)
H12B—C12—H12C109.5C37—C38—H38A109.5
C14—C13—C8121.6 (2)C37—C38—H38B109.5
C14—C13—H13119.2H38A—C38—H38B109.5
C8—C13—H13119.2C37—C38—H38C109.5
C13—C14—C1120.08 (18)H38A—C38—H38C109.5
C13—C14—C15118.51 (18)H38B—C38—H38C109.5
C1—C14—C15121.34 (17)O6—C39—C40114.5 (3)
C14—C15—N1113.64 (15)O6—C39—H39A108.6
C14—C15—H15A108.8C40—C39—H39A108.6
N1—C15—H15A108.8O6—C39—H39B108.6
C14—C15—H15B108.8C40—C39—H39B108.6
N1—C15—H15B108.8H39A—C39—H39B107.6
H15A—C15—H15B107.7C39—C40—H40A109.5
N1—C16—C17113.15 (16)C39—C40—H40B109.5
N1—C16—H16A108.9H40A—C40—H40B109.5
C17—C16—H16A108.9C39—C40—H40C109.5
N1—C16—H16B108.9H40A—C40—H40C109.5
C17—C16—H16B108.9H40B—C40—H40C109.5
H16A—C16—H16B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H41A···O6i0.921.912.799 (2)160
O6—H42···O4ii0.911.812.723 (3)171
O5—H41B···O40.931.792.677 (2)160
C4—H4B···O10.982.362.991 (4)122
C5—H5C···O10.982.282.929 (3)123
C15—H15B···O50.992.543.202 (3)124
C34—H34C···O20.982.453.102 (3)123
C35—H35A···O20.982.323.010 (3)126
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C36H50N2O2)(C2H3O2)(H2O)]·C2H6O
Mr720.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)16.505 (3), 10.8310 (16), 26.512 (5)
β (°) 118.798 (3)
V3)4153.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.30 × 0.24
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 2000)
Tmin, Tmax0.906, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
44205, 8589, 8248
Rint0.032
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.10
No. of reflections8589
No. of parameters444
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H41A···O6i0.921.912.799 (2)160
O6—H42···O4ii0.911.812.723 (3)171
O5—H41B···O40.931.792.677 (2)160
C4—H4B···O10.982.362.991 (4)122
C5—H5C···O10.982.282.929 (3)123
C15—H15B···O50.992.543.202 (3)124
C34—H34C···O20.982.453.102 (3)123
C35—H35A···O20.982.323.010 (3)126
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by Memorial University of Newfoundland, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation and the Provincial Government of Newfoundland and Labrador.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChmura, A. J., Davidson, M. G., Jones, M. D., Lunn, M. D., Mahon, M. F., Johnson, A. F., Khunkamchoo, P., Roberts, S. L. & Wong, S. S. F. (2006). Macromolecules, 39, 7250–7257.  Web of Science CSD CrossRef CAS Google Scholar
First citationGorkum, R. van, Berding, J., Mills, A. M., Kooijman, H., Tooke, D. M., Spek, A. L., Mutikainen, I., Turpeinen, U., Reedijk, J. & Bouwman, E. (2008). Eur. J. Inorg. Chem. pp. 1487–1496.  Google Scholar
First citationHigashi, T. (2000). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKerton, F. M., Holloway, S., Power, A., Soper, R. G., Sheridan, K., Lynam, J. M., Whitwood, A. C. & Willans, C. E. (2008). Can. J. Chem. 86, 435–443.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimazaki, Y., Huth, S., Odani, A. & Yamauchi, O. (2000). Angew. Chem. Int. Ed. 39, 1666–1669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds