organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-3-[5-(4-nitro­phen­yl)-1,3,4-thia­diazol-2-yl]-1,3-thia­zolidin-4-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 22 May 2010; accepted 16 June 2010; online 23 June 2010)

In the title compound, C17H11FN4O3S2, the five-membered thia­zolidinone and thia­diazole rings are almost planar, with r.m.s. deviations of 0.017 and 0.0019 Å, respectively. The 4-fluoro­phenyl ring is almost perpendicular to the thia­diazole ring, making a dihedral angle of 89.5 (3)°. The 4-nitro­phenyl ring is nearly coplanar with the thia­diazole ring, the dihedral angle being 7.9 (3)°. The crystal structure is stabilized by two inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the chemical and pharmaceutical properties of thia­diazole derivatives, see: Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.]); Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.]). For a related structure, see: Wan et al. (2008[Wan, R., Yin, L., Han, F., Wang, B. & Wang, J. (2008). Acta Cryst. E64, o260.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11FN4O3S2

  • Mr = 402.44

  • Triclinic, [P \overline 1]

  • a = 7.2360 (14) Å

  • b = 9.1340 (18) Å

  • c = 14.464 (3) Å

  • α = 71.67 (2)°

  • β = 87.16 (3)°

  • γ = 75.69 (2)°

  • V = 878.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.905, Tmax = 0.983

  • 3470 measured reflections

  • 3195 independent reflections

  • 1330 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.086

  • S = 0.96

  • 3195 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.93 2.56 3.411 (7) 152
C14—H14A⋯O1ii 0.93 2.52 3.198 (6) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives containing thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). Some thiadiazole derivatives show insecticidal activities (Arun et al., 1999; Wasfy et al.,1996). We report here the crystal structure of the titled compound,(I).

The molecular strucutre of (I) is shown in Fig. 1. The bond distances and bond angles in (I) are normal (Allen et al., 1987). In the title structure, unlike the structure of a related compound reported previously (Wan et al., 2008), ring A (C7/S1/C8/C9/N1) is a planar five-mermbered ring and the mean deviation from the plane is 0.0170 Å. Rings B (C1—C6), C (S2/C10/N2/N3/C11) and D (C12—C17) are also individually planar. The dihedral angles between the mean-planes of the rings are: A/B = 85.2 (2) °, A/C = 7.3 (3) °, A/D = 1.1 (1) °, B/C = 89.5 (2) °, B/D = 85.6 (3)° and C/D = 7.9 (3) °. The intramolecular C—H···S hydrogen bond (Tab. 1) results in the formation of a planar five-membered ring (S2/C11/C12/C13/H13A). In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules to form a dimeric unit (Tab. 1 & Fig. 2), which may be effective in the stabilization of the structure.

Related literature top

For the chemical and pharmaceutical properties of thiadiazole derivatives, see: Arun et al. (1999); Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998); Wasfy et al. (1996). For a related structure, see: Wan et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

N-(4-Fluorobenzylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water produced in the reaction was collected in a Dean-Stark water separator. The reaction mixture was left to cool to room temperature, filtered, and the filterate was crystallized from acetone to give pure compound (I) (m.p. 468–469 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···S hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate intramolecular C—H···S hydrogen bond, and intermolecular C—H···O hydrogen bonds.
2-(4-Fluorophenyl)-3-[5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl]- 1,3-thiazolidin-4-one top
Crystal data top
C17H11FN4O3S2Z = 2
Mr = 402.44F(000) = 412
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Melting point = 468–469 K
a = 7.2360 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1340 (18) ÅCell parameters from 25 reflections
c = 14.464 (3) Åθ = 8–12°
α = 71.67 (2)°µ = 0.34 mm1
β = 87.16 (3)°T = 293 K
γ = 75.69 (2)°Plate, colorless
V = 878.9 (3) Å30.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.905, Tmax = 0.983l = 1717
3470 measured reflections3 standard reflections every 200 reflections
3195 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
3195 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H11FN4O3S2γ = 75.69 (2)°
Mr = 402.44V = 878.9 (3) Å3
Triclinic, P1Z = 2
a = 7.2360 (14) ÅMo Kα radiation
b = 9.1340 (18) ŵ = 0.34 mm1
c = 14.464 (3) ÅT = 293 K
α = 71.67 (2)°0.30 × 0.10 × 0.05 mm
β = 87.16 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1330 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.905, Tmax = 0.9833 standard reflections every 200 reflections
3470 measured reflections intensity decay: 1%
3195 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.96Δρmax = 0.24 e Å3
3195 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38553 (16)0.40768 (16)0.33761 (10)0.1076 (5)
S20.04152 (14)0.21307 (12)0.06830 (8)0.0692 (3)
F0.4006 (4)0.1694 (3)0.5770 (2)0.1367 (11)
O10.2824 (4)0.1676 (4)0.1585 (2)0.0930 (11)
O20.9132 (6)0.1639 (5)0.2536 (3)0.1480 (18)
O30.7277 (6)0.0551 (5)0.2946 (3)0.1517 (18)
N10.1477 (4)0.3266 (4)0.2108 (2)0.0661 (9)
N20.1157 (5)0.4161 (3)0.1383 (2)0.0683 (10)
N30.2535 (5)0.3935 (4)0.0692 (2)0.0762 (11)
N40.7610 (8)0.1341 (6)0.2506 (4)0.1108 (18)
C10.0664 (6)0.1986 (6)0.3988 (3)0.0880 (15)
H1A0.01170.12880.38130.106*
C20.2070 (8)0.1378 (7)0.4716 (4)0.1105 (19)
H2B0.25810.02900.49850.133*
C30.2620 (7)0.2377 (9)0.4996 (4)0.105 (2)
C40.2190 (8)0.4000 (8)0.4583 (4)0.1027 (19)
H4A0.27630.46640.47800.123*
C50.0798 (7)0.4547 (6)0.3836 (4)0.0941 (16)
H5A0.03560.56370.35380.113*
C60.0073 (6)0.3531 (6)0.3532 (3)0.0699 (12)
C70.1554 (5)0.4201 (4)0.2769 (3)0.0673 (12)
H7A0.15820.53080.23980.081*
C80.4389 (6)0.2787 (5)0.2801 (3)0.0997 (14)
H8A0.44800.17990.32890.120*
H8B0.56120.32700.24540.120*
C90.2846 (7)0.2443 (6)0.2088 (4)0.0880 (16)
C100.0012 (5)0.3287 (4)0.1446 (3)0.0618 (11)
C110.2339 (6)0.2965 (5)0.0283 (3)0.0618 (12)
C120.3617 (6)0.2569 (5)0.0445 (3)0.0707 (12)
C130.3348 (6)0.1556 (5)0.0957 (3)0.0773 (13)
H13A0.23040.11070.08280.093*
C140.4619 (7)0.1221 (5)0.1651 (3)0.0899 (15)
H14A0.43810.06280.20290.108*
C150.6262 (7)0.1787 (5)0.1773 (3)0.0748 (13)
C160.6601 (6)0.2724 (6)0.1301 (3)0.0924 (15)
H16A0.76800.31270.14230.111*
C170.5285 (6)0.3094 (5)0.0611 (3)0.0749 (13)
H17A0.55400.37120.02540.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0478 (7)0.1601 (13)0.1320 (12)0.0182 (8)0.0108 (8)0.0759 (11)
S20.0633 (7)0.0719 (8)0.0791 (8)0.0314 (6)0.0064 (6)0.0202 (6)
F0.130 (3)0.152 (3)0.127 (2)0.024 (2)0.024 (2)0.047 (2)
O10.080 (2)0.109 (3)0.109 (3)0.049 (2)0.001 (2)0.040 (2)
O20.150 (4)0.155 (4)0.172 (4)0.060 (3)0.080 (4)0.090 (3)
O30.139 (4)0.198 (4)0.144 (4)0.012 (3)0.007 (3)0.113 (3)
N10.051 (2)0.087 (3)0.063 (2)0.024 (2)0.0025 (19)0.021 (2)
N20.069 (2)0.061 (2)0.078 (3)0.015 (2)0.004 (2)0.027 (2)
N30.074 (3)0.089 (3)0.072 (3)0.035 (2)0.010 (2)0.025 (2)
N40.112 (4)0.113 (4)0.083 (4)0.012 (4)0.017 (4)0.029 (3)
C10.069 (3)0.091 (4)0.076 (4)0.004 (3)0.002 (3)0.002 (3)
C20.099 (5)0.114 (5)0.092 (5)0.009 (4)0.001 (3)0.008 (4)
C30.066 (4)0.160 (7)0.091 (5)0.011 (5)0.013 (3)0.054 (5)
C40.077 (4)0.151 (5)0.119 (5)0.045 (4)0.019 (4)0.085 (5)
C50.066 (3)0.126 (5)0.111 (4)0.028 (3)0.027 (3)0.065 (4)
C60.047 (3)0.106 (4)0.058 (3)0.020 (3)0.004 (2)0.028 (3)
C70.063 (3)0.079 (3)0.068 (3)0.023 (3)0.004 (2)0.029 (3)
C80.076 (3)0.146 (4)0.084 (4)0.051 (3)0.008 (3)0.027 (3)
C90.070 (3)0.110 (5)0.080 (4)0.037 (3)0.004 (3)0.011 (3)
C100.046 (3)0.068 (3)0.073 (3)0.013 (2)0.013 (2)0.024 (3)
C110.072 (3)0.066 (3)0.061 (3)0.043 (2)0.004 (2)0.020 (2)
C120.076 (3)0.067 (3)0.066 (3)0.025 (3)0.006 (3)0.009 (3)
C130.081 (3)0.064 (3)0.093 (4)0.017 (3)0.003 (3)0.032 (3)
C140.120 (5)0.079 (3)0.082 (4)0.030 (3)0.020 (3)0.032 (3)
C150.079 (4)0.066 (3)0.071 (4)0.027 (3)0.001 (3)0.002 (3)
C160.073 (4)0.111 (4)0.096 (4)0.024 (3)0.008 (3)0.033 (3)
C170.066 (3)0.081 (3)0.087 (4)0.036 (3)0.002 (3)0.025 (3)
Geometric parameters (Å, º) top
S1—C81.761 (4)C4—C51.397 (6)
S1—C71.855 (3)C4—H4A0.9300
S2—C101.723 (4)C5—C61.360 (5)
S2—C111.738 (3)C5—H5A0.9300
F—C31.418 (5)C6—C71.526 (5)
O1—C91.155 (5)C7—H7A0.9800
O2—N41.194 (5)C8—C91.525 (5)
O3—N41.172 (5)C8—H8A0.9700
N1—C91.390 (5)C8—H8B0.9700
N1—C101.392 (4)C11—C121.439 (5)
N1—C71.460 (4)C12—C171.389 (5)
N2—C101.281 (4)C12—C131.406 (4)
N2—N31.401 (4)C13—C141.381 (5)
N3—C111.248 (4)C13—H13A0.9300
N4—C151.489 (6)C14—C151.391 (5)
C1—C61.324 (5)C14—H14A0.9300
C1—C21.382 (6)C15—C161.321 (5)
C1—H1A0.9300C16—C171.405 (5)
C2—C31.257 (6)C16—H16A0.9300
C2—H2B0.9300C17—H17A0.9300
C3—C41.373 (6)
C8—S1—C795.25 (18)C9—C8—S1110.5 (3)
C10—S2—C1186.21 (19)C9—C8—H8A109.6
C9—N1—C10120.0 (4)S1—C8—H8A109.6
C9—N1—C7122.6 (4)C9—C8—H8B109.6
C10—N1—C7117.3 (3)S1—C8—H8B109.6
C10—N2—N3110.6 (3)H8A—C8—H8B108.1
C11—N3—N2114.2 (3)O1—C9—N1124.8 (5)
O3—N4—O2121.2 (6)O1—C9—C8126.7 (5)
O3—N4—C15120.6 (6)N1—C9—C8108.5 (4)
O2—N4—C15117.5 (6)N2—C10—N1121.3 (4)
C6—C1—C2122.1 (5)N2—C10—S2115.0 (3)
C6—C1—H1A118.9N1—C10—S2123.6 (3)
C2—C1—H1A118.9N3—C11—C12122.5 (4)
C3—C2—C1116.3 (6)N3—C11—S2113.9 (3)
C3—C2—H2B121.8C12—C11—S2123.6 (3)
C1—C2—H2B121.8C17—C12—C13116.9 (4)
C2—C3—C4128.0 (6)C17—C12—C11119.8 (4)
C2—C3—F114.2 (7)C13—C12—C11123.2 (4)
C4—C3—F117.4 (6)C14—C13—C12120.7 (4)
C3—C4—C5112.7 (5)C14—C13—H13A119.7
C3—C4—H4A123.7C12—C13—H13A119.7
C5—C4—H4A123.7C13—C14—C15118.8 (4)
C6—C5—C4121.9 (5)C13—C14—H14A120.6
C6—C5—H5A119.1C15—C14—H14A120.6
C4—C5—H5A119.1C16—C15—C14122.9 (5)
C1—C6—C5118.4 (5)C16—C15—N4120.7 (5)
C1—C6—C7121.8 (5)C14—C15—N4116.4 (5)
C5—C6—C7119.4 (5)C15—C16—C17118.2 (5)
N1—C7—C6113.5 (3)C15—C16—H16A120.9
N1—C7—S1102.9 (2)C17—C16—H16A120.9
C6—C7—S1109.6 (3)C12—C17—C16122.3 (4)
N1—C7—H7A110.2C12—C17—H17A118.9
C6—C7—H7A110.2C16—C17—H17A118.9
S1—C7—H7A110.2
C10—N2—N3—C110.7 (5)N3—N2—C10—S20.5 (4)
C6—C1—C2—C37.2 (8)C9—N1—C10—N2173.0 (4)
C1—C2—C3—C49.5 (9)C7—N1—C10—N23.8 (5)
C1—C2—C3—F177.5 (4)C9—N1—C10—S28.7 (5)
C2—C3—C4—C57.9 (9)C7—N1—C10—S2174.5 (3)
F—C3—C4—C5179.4 (4)C11—S2—C10—N20.2 (3)
C3—C4—C5—C63.8 (7)C11—S2—C10—N1178.2 (3)
C2—C1—C6—C54.0 (7)N2—N3—C11—C12179.7 (3)
C2—C1—C6—C7176.6 (4)N2—N3—C11—S20.6 (5)
C4—C5—C6—C12.5 (6)C10—S2—C11—N30.2 (3)
C4—C5—C6—C7175.2 (4)C10—S2—C11—C12179.4 (4)
C9—N1—C7—C6113.8 (4)N3—C11—C12—C179.3 (6)
C10—N1—C7—C669.5 (4)S2—C11—C12—C17169.8 (3)
C9—N1—C7—S14.6 (4)N3—C11—C12—C13175.9 (4)
C10—N1—C7—S1172.1 (3)S2—C11—C12—C135.0 (6)
C1—C6—C7—N141.7 (5)C17—C12—C13—C145.3 (6)
C5—C6—C7—N1145.9 (4)C11—C12—C13—C14179.8 (4)
C1—C6—C7—S172.8 (5)C12—C13—C14—C155.7 (7)
C5—C6—C7—S199.7 (4)C13—C14—C15—C164.8 (7)
C8—S1—C7—N13.4 (3)C13—C14—C15—N4177.9 (4)
C8—S1—C7—C6117.7 (3)O3—N4—C15—C16177.6 (5)
C7—S1—C8—C92.0 (3)O2—N4—C15—C1611.9 (8)
C10—N1—C9—O14.3 (7)O3—N4—C15—C140.2 (7)
C7—N1—C9—O1179.1 (5)O2—N4—C15—C14170.8 (5)
C10—N1—C9—C8173.2 (3)C14—C15—C16—C173.3 (7)
C7—N1—C9—C83.4 (5)N4—C15—C16—C17179.5 (4)
S1—C8—C9—O1177.7 (5)C13—C12—C17—C163.9 (6)
S1—C8—C9—N10.2 (5)C11—C12—C17—C16179.0 (4)
N3—N2—C10—N1177.9 (3)C15—C16—C17—C122.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.563.411 (7)152
C13—H13A···S20.932.813.184 (5)106
C14—H14A···O1ii0.932.523.198 (6)130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H11FN4O3S2
Mr402.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2360 (14), 9.1340 (18), 14.464 (3)
α, β, γ (°)71.67 (2), 87.16 (3), 75.69 (2)
V3)878.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.905, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3470, 3195, 1330
Rint0.036
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.086, 0.96
No. of reflections3195
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.563.411 (7)152
C13—H13A···S20.932.813.184 (5)106
C14—H14A···O1ii0.932.523.198 (6)130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
 

Acknowledgements

The authors would like to thank Professor Hua-qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationWan, R., Yin, L., Han, F., Wang, B. & Wang, J. (2008). Acta Cryst. E64, o260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds