metal-organic compounds
(Acetylacetonato-κ2O,O′)chloridotrimethanolatoniobium(V)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: leandra9herbst@yahoo.com
In the title compound, [Nb(CH3O)3(C5H7O2)Cl], the NbV atom is coordinated by two O atoms from the chelating acetylacetonate ligand, three O atoms from the methanolate groups and one chloride ligand. The octahedral environment around niobium is slightly distorted with Nb—O distances in the range 1.8603 (15)–2.1083 (15) Å and an Nb—Cl distance of 2.4693 (9) Å. The O—Nb—O angles vary between 80.74 (6) and 100.82 (7)°, while the trans Cl—Nb—O angle is 167.60 (5)°. There are no hydrogen bonds observed, only an intermolecular C—H⋯O interaction.
Related literature
For synthetic background, see: Davies et al. (1999). For applications of acetylacetone in industry, see: Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a,b, 2010); Steyn et al. (2008). For related niobium complexes, see: Sokolov et al. (1999, 2005); Antinolo et al. (2000); Dahan et al. (1976).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810021719/pv2289sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021719/pv2289Isup2.hkl
The reaction was performed under modified Schlenk conditions under an argon atmosphere. NbCl5 (0.3134 g, 1.16 mmol) was carefully dissolved in absolute methanol (5 ml) (Care: exothermic reaction). Acetylacetone (0.119 ml, 1.16 mmol) was added to the solution. The colourless solution was stirred for 1 h at room temperature and the solution was left to stand at 252 K for a few days after which pale-yellow crystals, suitable for X-ray diffraction were obtained.
The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The highest residual electron-density peak is 0.93 Å from Cl1.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. |
[Nb(CH3O)3(C5H7O2)Cl] | F(000) = 1296 |
Mr = 320.57 | Dx = 1.733 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9878 reflections |
a = 12.296 (5) Å | θ = 2.6–28.4° |
b = 12.915 (4) Å | µ = 1.20 mm−1 |
c = 15.470 (5) Å | T = 100 K |
V = 2456.7 (16) Å3 | Cuboid, pale-yellow |
Z = 8 | 0.36 × 0.3 × 0.19 mm |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 3083 independent reflections |
Radiation source: fine-focus sealed tube | 2757 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω and ϕ scans | θmax = 28.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→16 |
Tmin = 0.673, Tmax = 0.805 | k = −14→17 |
28601 measured reflections | l = −18→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0273P)2 + 3.5334P] where P = (Fo2 + 2Fc2)/3 |
3083 reflections | (Δ/σ)max = 0.001 |
141 parameters | Δρmax = 1.06 e Å−3 |
0 restraints | Δρmin = −0.87 e Å−3 |
0 constraints |
[Nb(CH3O)3(C5H7O2)Cl] | V = 2456.7 (16) Å3 |
Mr = 320.57 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.296 (5) Å | µ = 1.20 mm−1 |
b = 12.915 (4) Å | T = 100 K |
c = 15.470 (5) Å | 0.36 × 0.3 × 0.19 mm |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 3083 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2757 reflections with I > 2σ(I) |
Tmin = 0.673, Tmax = 0.805 | Rint = 0.030 |
28601 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.16 | Δρmax = 1.06 e Å−3 |
3083 reflections | Δρmin = −0.87 e Å−3 |
141 parameters |
Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.00363 (19) | 0.09540 (17) | 0.76165 (14) | 0.0195 (4) | |
H1A | −0.0385 | 0.1594 | 0.7676 | 0.029* | |
H1B | 0.0228 | 0.0692 | 0.8191 | 0.029* | |
H1C | −0.04 | 0.0435 | 0.7311 | 0.029* | |
C2 | 0.3610 (2) | 0.07674 (19) | 0.54112 (15) | 0.0217 (5) | |
H2A | 0.3222 | 0.0834 | 0.4861 | 0.033* | |
H2B | 0.3847 | 0.0049 | 0.5488 | 0.033* | |
H2C | 0.4247 | 0.1224 | 0.5409 | 0.033* | |
C3 | 0.26952 (19) | 0.38799 (16) | 0.74055 (15) | 0.0195 (4) | |
H3A | 0.2855 | 0.43 | 0.6894 | 0.029* | |
H3B | 0.3309 | 0.3915 | 0.7809 | 0.029* | |
H3C | 0.2039 | 0.4145 | 0.7689 | 0.029* | |
C4 | 0.2957 (2) | 0.37805 (19) | 0.41139 (16) | 0.0231 (5) | |
H4A | 0.3083 | 0.44 | 0.4466 | 0.035* | |
H4B | 0.2605 | 0.3978 | 0.357 | 0.035* | |
H4C | 0.3654 | 0.3443 | 0.399 | 0.035* | |
C5 | 0.22378 (18) | 0.30466 (16) | 0.45973 (14) | 0.0158 (4) | |
C6 | 0.14339 (18) | 0.24919 (17) | 0.41581 (14) | 0.0174 (4) | |
H6 | 0.1304 | 0.2657 | 0.3569 | 0.021* | |
C7 | 0.08152 (17) | 0.17147 (16) | 0.45334 (13) | 0.0148 (4) | |
O1 | 0.09963 (13) | 0.11572 (11) | 0.71426 (9) | 0.0162 (3) | |
O2 | 0.29097 (12) | 0.10497 (12) | 0.60982 (10) | 0.0161 (3) | |
O3 | 0.25251 (13) | 0.28363 (11) | 0.71528 (9) | 0.0158 (3) | |
O4 | 0.24286 (13) | 0.29502 (11) | 0.54083 (10) | 0.0155 (3) | |
O5 | 0.09160 (13) | 0.14211 (11) | 0.53257 (9) | 0.0158 (3) | |
Cl1 | 0.02912 (4) | 0.32547 (4) | 0.64105 (3) | 0.01788 (11) | |
Nb1 | 0.178955 (15) | 0.198214 (14) | 0.638103 (11) | 0.01144 (7) | |
C8 | −0.00329 (19) | 0.11656 (18) | 0.40125 (14) | 0.0200 (4) | |
H8A | −0.0015 | 0.0424 | 0.4147 | 0.03* | |
H8B | 0.0113 | 0.1268 | 0.3396 | 0.03* | |
H8C | −0.0752 | 0.1445 | 0.4154 | 0.03* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0207 (11) | 0.0218 (10) | 0.0160 (10) | −0.0056 (9) | 0.0046 (8) | −0.0002 (8) |
C2 | 0.0221 (11) | 0.0254 (11) | 0.0175 (10) | 0.0029 (9) | 0.0043 (9) | −0.0018 (8) |
C3 | 0.0185 (11) | 0.0155 (9) | 0.0245 (11) | −0.0016 (8) | −0.0015 (9) | −0.0023 (8) |
C4 | 0.0237 (12) | 0.0247 (12) | 0.0209 (11) | −0.0011 (9) | 0.0053 (9) | 0.0094 (9) |
C5 | 0.0175 (10) | 0.0160 (10) | 0.0139 (10) | 0.0040 (8) | 0.0042 (8) | 0.0037 (7) |
C6 | 0.0192 (10) | 0.0226 (10) | 0.0105 (9) | 0.0033 (9) | 0.0009 (8) | 0.0023 (8) |
C7 | 0.0155 (10) | 0.0178 (9) | 0.0112 (9) | 0.0054 (8) | −0.0003 (8) | −0.0029 (7) |
O1 | 0.0187 (8) | 0.0174 (7) | 0.0125 (7) | −0.0016 (6) | 0.0030 (6) | 0.0022 (6) |
O2 | 0.0161 (7) | 0.0180 (7) | 0.0140 (7) | 0.0021 (6) | 0.0020 (6) | 0.0010 (6) |
O3 | 0.0194 (8) | 0.0148 (7) | 0.0132 (7) | −0.0018 (6) | −0.0011 (6) | −0.0007 (5) |
O4 | 0.0173 (7) | 0.0170 (7) | 0.0123 (7) | −0.0024 (6) | 0.0009 (6) | 0.0025 (5) |
O5 | 0.0198 (8) | 0.0165 (7) | 0.0112 (7) | −0.0032 (6) | −0.0013 (6) | −0.0006 (5) |
Cl1 | 0.0170 (2) | 0.0169 (2) | 0.0198 (3) | 0.00236 (19) | 0.00092 (19) | 0.00026 (18) |
Nb1 | 0.01376 (11) | 0.01214 (10) | 0.00841 (10) | −0.00081 (6) | 0.00045 (6) | 0.00115 (6) |
C8 | 0.0199 (11) | 0.0250 (11) | 0.0150 (10) | 0.0007 (9) | −0.0035 (8) | −0.0043 (8) |
C1—O1 | 1.414 (3) | C5—O4 | 1.282 (3) |
C1—H1A | 0.98 | C5—C6 | 1.397 (3) |
C1—H1B | 0.98 | C6—C7 | 1.387 (3) |
C1—H1C | 0.98 | C6—H6 | 0.95 |
C2—O2 | 1.416 (3) | C7—O5 | 1.289 (3) |
C2—H2A | 0.98 | C7—C8 | 1.497 (3) |
C2—H2B | 0.98 | O1—Nb1 | 1.8640 (15) |
C2—H2C | 0.98 | O2—Nb1 | 1.8811 (16) |
C3—O3 | 1.419 (2) | O3—Nb1 | 1.8603 (15) |
C3—H3A | 0.98 | O4—Nb1 | 2.1083 (15) |
C3—H3B | 0.98 | O5—Nb1 | 2.0842 (15) |
C3—H3C | 0.98 | Cl1—Nb1 | 2.4693 (9) |
C4—C5 | 1.497 (3) | C8—H8A | 0.98 |
C4—H4A | 0.98 | C8—H8B | 0.98 |
C4—H4B | 0.98 | C8—H8C | 0.98 |
C4—H4C | 0.98 | ||
O1—C1—H1A | 109.5 | O5—C7—C6 | 123.9 (2) |
O1—C1—H1B | 109.5 | O5—C7—C8 | 116.1 (2) |
H1A—C1—H1B | 109.5 | C6—C7—C8 | 120.0 (2) |
O1—C1—H1C | 109.5 | C1—O1—Nb1 | 150.52 (14) |
H1A—C1—H1C | 109.5 | C2—O2—Nb1 | 141.71 (14) |
H1B—C1—H1C | 109.5 | C3—O3—Nb1 | 144.27 (14) |
O2—C2—H2A | 109.5 | C5—O4—Nb1 | 133.45 (14) |
O2—C2—H2B | 109.5 | C7—O5—Nb1 | 133.79 (14) |
H2A—C2—H2B | 109.5 | O3—Nb1—O1 | 100.82 (7) |
O2—C2—H2C | 109.5 | O3—Nb1—O2 | 99.96 (7) |
H2A—C2—H2C | 109.5 | O1—Nb1—O2 | 99.45 (7) |
H2B—C2—H2C | 109.5 | O3—Nb1—O5 | 163.63 (6) |
O3—C3—H3A | 109.5 | O1—Nb1—O5 | 91.53 (7) |
O3—C3—H3B | 109.5 | O2—Nb1—O5 | 88.43 (7) |
H3A—C3—H3B | 109.5 | O3—Nb1—O4 | 85.71 (7) |
O3—C3—H3C | 109.5 | O1—Nb1—O4 | 170.09 (6) |
H3A—C3—H3C | 109.5 | O2—Nb1—O4 | 86.60 (7) |
H3B—C3—H3C | 109.5 | O5—Nb1—O4 | 80.74 (6) |
C5—C4—H4A | 109.5 | O3—Nb1—Cl1 | 87.49 (6) |
C5—C4—H4B | 109.5 | O1—Nb1—Cl1 | 88.76 (5) |
H4A—C4—H4B | 109.5 | O2—Nb1—Cl1 | 167.60 (5) |
C5—C4—H4C | 109.5 | O5—Nb1—Cl1 | 82.03 (5) |
H4A—C4—H4C | 109.5 | O4—Nb1—Cl1 | 84.06 (5) |
H4B—C4—H4C | 109.5 | C7—C8—H8A | 109.5 |
O4—C5—C6 | 123.7 (2) | C7—C8—H8B | 109.5 |
O4—C5—C4 | 116.2 (2) | H8A—C8—H8B | 109.5 |
C6—C5—C4 | 120.0 (2) | C7—C8—H8C | 109.5 |
C7—C6—C5 | 123.8 (2) | H8A—C8—H8C | 109.5 |
C7—C6—H6 | 118.1 | H8B—C8—H8C | 109.5 |
C5—C6—H6 | 118.1 | ||
O4—C5—C6—C7 | −5.6 (3) | C1—O1—Nb1—Cl1 | 5.1 (3) |
C4—C5—C6—C7 | 172.5 (2) | C2—O2—Nb1—O3 | −109.4 (2) |
C5—C6—C7—O5 | 0.0 (3) | C2—O2—Nb1—O1 | 147.7 (2) |
C5—C6—C7—C8 | 179.7 (2) | C2—O2—Nb1—O5 | 56.4 (2) |
C6—C5—O4—Nb1 | 3.5 (3) | C2—O2—Nb1—O4 | −24.4 (2) |
C4—C5—O4—Nb1 | −174.66 (15) | C2—O2—Nb1—Cl1 | 16.8 (4) |
C6—C7—O5—Nb1 | 8.1 (3) | C7—O5—Nb1—O3 | 26.9 (3) |
C8—C7—O5—Nb1 | −171.59 (14) | C7—O5—Nb1—O1 | 166.10 (19) |
C3—O3—Nb1—O1 | −120.8 (2) | C7—O5—Nb1—O2 | −94.49 (19) |
C3—O3—Nb1—O2 | 137.5 (2) | C7—O5—Nb1—O4 | −7.67 (19) |
C3—O3—Nb1—O5 | 17.5 (4) | C7—O5—Nb1—Cl1 | 77.56 (19) |
C3—O3—Nb1—O4 | 51.7 (2) | C5—O4—Nb1—O3 | −169.00 (19) |
C3—O3—Nb1—Cl1 | −32.5 (2) | C5—O4—Nb1—O2 | 90.7 (2) |
C1—O1—Nb1—O3 | 92.3 (3) | C5—O4—Nb1—O5 | 1.77 (19) |
C1—O1—Nb1—O2 | −165.5 (3) | C5—O4—Nb1—Cl1 | −81.08 (19) |
C1—O1—Nb1—O5 | −76.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···O4i | 0.98 | 2.46 | 3.442 (3) | 176 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Nb(CH3O)3(C5H7O2)Cl] |
Mr | 320.57 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 12.296 (5), 12.915 (4), 15.470 (5) |
V (Å3) | 2456.7 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.20 |
Crystal size (mm) | 0.36 × 0.3 × 0.19 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K Kappa CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.673, 0.805 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28601, 3083, 2757 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.068, 1.16 |
No. of reflections | 3083 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.06, −0.87 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
O1—Nb1 | 1.8640 (15) | O4—Nb1 | 2.1083 (15) |
O2—Nb1 | 1.8811 (16) | O5—Nb1 | 2.0842 (15) |
O3—Nb1 | 1.8603 (15) | Cl1—Nb1 | 2.4693 (9) |
O3—Nb1—O1 | 100.82 (7) | O1—Nb1—O5 | 91.53 (7) |
O3—Nb1—O2 | 99.96 (7) | O2—Nb1—O5 | 88.43 (7) |
O1—Nb1—O2 | 99.45 (7) | O3—Nb1—O4 | 85.71 (7) |
O3—Nb1—O5 | 163.63 (6) | O2—Nb1—Cl1 | 167.60 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···O4i | 0.98 | 2.46 | 3.442 (3) | 176 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Acknowledgements
Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.
References
Antinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem. 603, 194–198. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572–5578. Web of Science CSD CrossRef Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202–2209. CSD CrossRef Web of Science Google Scholar
Davies, H. O., Leedham, T. J., Jones, A. C., O'Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165–3172. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453. Web of Science CSD CrossRef CAS Google Scholar
Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). Inorg. Chim. Acta, 358, 2371–2376. Web of Science CSD CrossRef CAS Google Scholar
Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–92. Web of Science CSD CrossRef Google Scholar
Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481. CSD CrossRef CAS Web of Science Google Scholar
Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem., 536–537, 197–205. CSD CrossRef Web of Science Google Scholar
Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetylacetone and its analogues find applications in homogenous catalysis and the separations industry (Steyn et al., 1992; 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of O,O'- and N,O -bidentate ligands with transition metals used in the nuclear industry, specifically hafnium, zirconium, niobium and tantalum (Viljoen et al., 2008; 2009a,b; 2010; Steyn et al., 2008).
Pale-yellow cubic crystals of the title complex crystallize from a methanol reaction solution containing niobium(V) chloride and acetylacetone after several days (Davies et al., 1999). The asymmetric unit consists of a niobium(V) atom surrounded by three methanolate groups, a chloride ligand and a O,O'- bonded acetylacetonato ligand (Figure 1). The octahedral environment around niobium is slightly distorted with Nb–O distances varying between 1.8603 (15) and 2.1083 (15) Å, while the Nb–Cl distance is 2.4693 (9) Å. The O–Nb–O angles vary between 80.74 (6) and 100.82 (7) ° while the trans Cl–Nb–O angle is 167.60 (5) °. All the bond distances and angles are similar to other relevant niobium(V) structures (Sokolov et al., 1999; 2005; Antinolo et al., 2000 and Dahan et al., 1976). The niobium compounds pack in a head-to-tail fashion along the bc plain.
There are no classical hydrogen bonds observed in this structure. However, the structure is stabilized by C8–H8C..O4* (* = -1/2+x,1/2-y,1-z) intermolecular interactions with C—H = 0.98, H···O = 2.46 and C···O = 3.442 (3) Å and C—H···O angle = 176°.