metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1S,2S)-2-(1-{[2-(2-Oxido­benzyl­­idene­amino)­cyclo­hex­yl]imino}­eth­yl)phenolato-κ4O,N,N′,O′]copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 29 May 2010; accepted 14 June 2010; online 18 June 2010)

In the title compound, [Cu(C21H22N2O2)], the cyclo­hexyl ring adopts a chair conformation with the two imine groups linked at equatorial positions. The CuII ion is coordinated by two N atoms and two O atoms from the bis-Schiff base ligand in a slightly distorted square-planar geometry. The dihedral angle between the two benzene rings is 45.89 (9)°. The crystal structure is devoid of any classical hydrogen bonds. However, inter­molecular C—H⋯O inter­actions are present and stabilize the structure.

Related literature

For the crystal structures of a similar symmetrical compound see: Yao et al. (1997[Yao, H. H., Huang, W. T., Lo, J. M., Liao, F. L. & Wang, S. L. (1997). Eur. J. Solid State Inorg. Chem. 34, 355-366.]). For metal complexes of unsymmetrical bis-Schiff bases, see: Lashanizadegan & Boghaei (2002[Lashanizadegan, M. & Boghaei, D. M. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 345-355.]); Rabie et al. (2008[Rabie, U. M., Assran, A. S. A. & Abou-El-Wafa, M. H. M. (2008). J. Mol. Struct. 872, 113-122.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C21H22N2O2)]

  • Mr = 397.95

  • Monoclinic, P 21

  • a = 9.6699 (3) Å

  • b = 7.7324 (2) Å

  • c = 12.1847 (4) Å

  • β = 111.649 (2)°

  • V = 846.80 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.962

  • 9232 measured reflections

  • 4573 independent reflections

  • 3542 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.091

  • S = 0.97

  • 4573 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2036 Friedel pairs

  • Flack parameter: 0.050 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 1.00 2.47 3.403 (6) 155
C10—H10B⋯O2ii 0.99 2.45 3.366 (4) 154
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The structure of the title complex is shown in Fig. 1. The crystal structures of a similar symmetrical compound (Yao et al., 1997) as well as metal complexes of unsymmetrical bis-schiff bases (Lashanizadegan et al., 2002; Rabie et al., 2008) have been reported.

There are no classical hydrogen bonds observed in this structure. However, there are two C—H···O type inter-molecular interactions, C9–H9..O1 and C10–H10B..O2, observed (Tab. 1) which stabilize the crystal structure.

Related literature top

For the crystal structures of a similar symmetrical compound see: Yao et al. (1997). For metal complexes of unsymmetrical bis-Schiff bases see: Lashanizadegan & Boghaei (2002); Rabie et al. (2008).

Experimental top

To an ethanolic solution (10 ml) of 1,2-diaminohexane (0.224 g, 2 mmol) was added a solution of 2-hydroxyacetophenone (0.28 g, 2 mmol) in the same solvent (10 ml). The mixture was stirred at room temperature for 15 minutes, followed by addition of 2-hydroxybenzaldehyde (0.252 g, 2 mmol) in ethanol (10 ml). The resulting yellow solution was stirred for 3 h. Then a solution of copper (II) acetate monohydrate (0.4 g, 2 mmol) in a minimum amount of ethanol was added and the solution was set aside for one day whereupon the green crystals of the title compound were obtained.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–1.00 Å), and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5Ueq(C). An absolute structure was determined using the Flack (1983) method.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level.
[(1S,2S)-2-(1-{[2-(2- Oxidobenzylideneamino)cyclohexyl]imino}ethyl)phenolato- κ4O,N,N',O']copper(II) top
Crystal data top
[Cu(C21H22N2O2)]F(000) = 414
Mr = 397.95Dx = 1.561 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1422 reflections
a = 9.6699 (3) Åθ = 3.2–23.5°
b = 7.7324 (2) ŵ = 1.31 mm1
c = 12.1847 (4) ÅT = 100 K
β = 111.649 (2)°Block, green
V = 846.80 (4) Å30.20 × 0.10 × 0.03 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4573 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.780, Tmax = 0.962k = 1010
9232 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4573 reflectionsΔρmax = 0.39 e Å3
236 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 2036 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.050 (15)
Crystal data top
[Cu(C21H22N2O2)]V = 846.80 (4) Å3
Mr = 397.95Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6699 (3) ŵ = 1.31 mm1
b = 7.7324 (2) ÅT = 100 K
c = 12.1847 (4) Å0.20 × 0.10 × 0.03 mm
β = 111.649 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4573 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3542 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.962Rint = 0.053
9232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.39 e Å3
S = 0.97Δρmin = 0.37 e Å3
4573 reflectionsAbsolute structure: Flack (1983), 2036 Friedel pairs
236 parametersAbsolute structure parameter: 0.050 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09681 (4)0.25280 (6)0.05446 (3)0.01389 (10)
O10.1603 (3)0.2029 (3)0.0696 (2)0.0199 (7)
O20.2941 (3)0.3130 (3)0.1540 (2)0.0179 (6)
N10.1155 (3)0.2570 (8)0.0484 (2)0.0158 (5)
N20.0262 (3)0.2546 (7)0.1826 (2)0.0148 (5)
C10.0826 (4)0.2231 (4)0.1822 (3)0.0146 (8)
C20.1533 (4)0.1917 (5)0.2626 (4)0.0210 (9)
H20.25280.15010.23300.025*
C30.0850 (4)0.2184 (5)0.3815 (3)0.0239 (10)
H30.13550.19140.43310.029*
C40.0588 (4)0.2855 (5)0.4267 (3)0.0250 (11)
H40.10560.30990.50850.030*
C50.1319 (4)0.3158 (5)0.3509 (3)0.0206 (8)
H50.23060.35950.38250.025*
C60.0671 (4)0.2850 (4)0.2290 (3)0.0142 (9)
C70.1594 (4)0.3112 (4)0.1567 (3)0.0143 (7)
C80.3037 (4)0.4067 (5)0.2152 (4)0.0250 (10)
H8A0.37880.32720.26640.038*
H8B0.28860.50210.26250.038*
H8C0.33780.45310.15460.038*
C90.2129 (3)0.2699 (6)0.0225 (3)0.0135 (7)
H90.22980.39430.03630.016*
C100.3627 (4)0.1763 (5)0.0305 (3)0.0185 (8)
H10A0.42220.22860.10780.022*
H10B0.34570.05310.04380.022*
C110.4481 (4)0.1894 (5)0.0520 (3)0.0198 (8)
H11A0.46790.31250.06310.024*
H11B0.54500.12960.01620.024*
C120.3605 (4)0.1086 (5)0.1712 (4)0.0223 (9)
H12A0.35040.01720.16110.027*
H12B0.41560.12500.22470.027*
C130.2067 (4)0.1891 (5)0.2264 (3)0.0189 (8)
H13A0.14870.12610.29980.023*
H13B0.21630.31100.24740.023*
C140.1252 (4)0.1816 (5)0.1409 (3)0.0164 (8)
H140.11620.05660.12340.020*
C150.0955 (4)0.3110 (4)0.2870 (3)0.0174 (8)
H150.04410.30940.34010.021*
C160.2456 (4)0.3770 (4)0.3309 (3)0.0155 (8)
C170.3008 (4)0.4505 (5)0.4447 (3)0.0206 (9)
H170.24030.44920.49080.025*
C180.4390 (4)0.5235 (5)0.4905 (4)0.0221 (9)
H180.47360.57390.56700.026*
C190.5288 (4)0.5227 (5)0.4230 (4)0.0222 (9)
H190.62500.57340.45390.027*
C200.4793 (4)0.4495 (5)0.3123 (3)0.0187 (8)
H200.54370.44740.26940.022*
C210.3353 (4)0.3770 (5)0.2605 (3)0.0174 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01095 (17)0.01506 (18)0.0154 (2)0.0002 (3)0.00449 (14)0.0004 (3)
O10.0160 (13)0.0234 (17)0.0211 (15)0.0011 (10)0.0077 (12)0.0015 (10)
O20.0134 (12)0.0244 (14)0.0159 (14)0.0023 (11)0.0054 (11)0.0004 (10)
N10.0127 (13)0.0195 (13)0.0160 (13)0.000 (2)0.0061 (11)0.002 (2)
N20.0099 (12)0.0176 (12)0.0156 (13)0.002 (2)0.0033 (10)0.000 (2)
C10.0217 (17)0.004 (2)0.0186 (18)0.0023 (14)0.0084 (15)0.0016 (13)
C20.0205 (19)0.0154 (18)0.030 (2)0.0004 (15)0.0132 (18)0.0034 (16)
C30.033 (2)0.020 (3)0.025 (2)0.0004 (17)0.0173 (18)0.0067 (16)
C40.033 (2)0.024 (3)0.0184 (19)0.0016 (18)0.0100 (17)0.0004 (16)
C50.0200 (19)0.0220 (18)0.019 (2)0.0013 (16)0.0060 (16)0.0010 (15)
C60.0173 (17)0.007 (2)0.0190 (18)0.0004 (14)0.0078 (14)0.0013 (13)
C70.0124 (17)0.0111 (16)0.0185 (19)0.0032 (13)0.0045 (15)0.0039 (14)
C80.019 (2)0.028 (2)0.024 (2)0.0011 (18)0.0031 (18)0.0012 (17)
C90.0119 (14)0.0145 (19)0.0157 (16)0.0038 (18)0.0071 (12)0.0025 (18)
C100.0129 (18)0.0211 (19)0.021 (2)0.0027 (16)0.0060 (16)0.0062 (16)
C110.0145 (18)0.0249 (19)0.021 (2)0.0025 (15)0.0072 (17)0.0032 (15)
C120.017 (2)0.021 (2)0.032 (3)0.0038 (17)0.0125 (19)0.0007 (17)
C130.0188 (19)0.0209 (18)0.019 (2)0.0016 (15)0.0094 (16)0.0028 (15)
C140.0138 (18)0.0137 (17)0.022 (2)0.0013 (15)0.0071 (16)0.0000 (15)
C150.0136 (18)0.0157 (18)0.023 (2)0.0034 (14)0.0070 (16)0.0025 (15)
C160.0151 (19)0.0120 (17)0.016 (2)0.0011 (15)0.0023 (15)0.0047 (14)
C170.019 (2)0.0207 (19)0.018 (2)0.0039 (16)0.0023 (17)0.0016 (16)
C180.021 (2)0.021 (2)0.019 (2)0.0014 (17)0.0010 (17)0.0038 (17)
C190.013 (2)0.017 (2)0.028 (2)0.0020 (16)0.0015 (17)0.0030 (17)
C200.0131 (19)0.0179 (19)0.024 (2)0.0001 (15)0.0049 (17)0.0045 (16)
C210.0160 (19)0.0141 (18)0.020 (2)0.0014 (15)0.0049 (16)0.0050 (15)
Geometric parameters (Å, º) top
Cu1—O11.870 (2)C9—H91.0000
Cu1—O21.903 (2)C10—C111.522 (5)
Cu1—N21.921 (2)C10—H10A0.9900
Cu1—N11.972 (3)C10—H10B0.9900
O1—C11.307 (4)C11—C121.519 (5)
O2—C211.306 (4)C11—H11A0.9900
N1—C71.298 (5)C11—H11B0.9900
N1—C91.498 (4)C12—C131.521 (5)
N2—C151.277 (4)C12—H12A0.9900
N2—C141.474 (4)C12—H12B0.9900
C1—C21.407 (5)C13—C141.522 (5)
C1—C61.429 (5)C13—H13A0.9900
C2—C31.368 (5)C13—H13B0.9900
C2—H20.9500C14—H141.0000
C3—C41.394 (5)C15—C161.443 (5)
C3—H30.9500C15—H150.9500
C4—C51.374 (5)C16—C171.409 (5)
C4—H40.9500C16—C211.427 (5)
C5—C61.403 (5)C17—C181.366 (5)
C5—H50.9500C17—H170.9500
C6—C71.481 (5)C18—C191.400 (6)
C7—C81.506 (5)C18—H180.9500
C8—H8A0.9800C19—C201.376 (5)
C8—H8B0.9800C19—H190.9500
C8—H8C0.9800C20—C211.415 (5)
C9—C101.533 (5)C20—H200.9500
C9—C141.538 (5)
O1—Cu1—O290.86 (11)C9—C10—H10A109.6
O1—Cu1—N2168.46 (17)C11—C10—H10B109.6
O2—Cu1—N293.06 (11)C9—C10—H10B109.6
O1—Cu1—N193.73 (11)H10A—C10—H10B108.1
O2—Cu1—N1164.81 (18)C12—C11—C10111.0 (3)
N2—Cu1—N185.27 (10)C12—C11—H11A109.4
C1—O1—Cu1126.2 (2)C10—C11—H11A109.4
C21—O2—Cu1126.4 (2)C12—C11—H11B109.4
C7—N1—C9121.7 (3)C10—C11—H11B109.4
C7—N1—Cu1121.6 (2)H11A—C11—H11B108.0
C9—N1—Cu1111.31 (19)C11—C12—C13111.4 (3)
C15—N2—C14124.3 (3)C11—C12—H12A109.4
C15—N2—Cu1126.9 (3)C13—C12—H12A109.4
C14—N2—Cu1108.9 (2)C11—C12—H12B109.4
O1—C1—C2118.1 (3)C13—C12—H12B109.4
O1—C1—C6124.3 (3)H12A—C12—H12B108.0
C2—C1—C6117.4 (3)C12—C13—C14110.5 (3)
C3—C2—C1122.9 (4)C12—C13—H13A109.6
C3—C2—H2118.6C14—C13—H13A109.6
C1—C2—H2118.6C12—C13—H13B109.6
C2—C3—C4119.7 (3)C14—C13—H13B109.6
C2—C3—H3120.1H13A—C13—H13B108.1
C4—C3—H3120.1N2—C14—C13116.7 (3)
C5—C4—C3118.9 (4)N2—C14—C9106.7 (3)
C5—C4—H4120.5C13—C14—C9112.3 (3)
C3—C4—H4120.5N2—C14—H14106.9
C4—C5—C6122.9 (4)C13—C14—H14106.9
C4—C5—H5118.5C9—C14—H14106.9
C6—C5—H5118.5N2—C15—C16125.2 (3)
C5—C6—C1118.0 (3)N2—C15—H15117.4
C5—C6—C7118.4 (3)C16—C15—H15117.4
C1—C6—C7123.5 (3)C17—C16—C21119.9 (3)
N1—C7—C6121.2 (3)C17—C16—C15118.1 (4)
N1—C7—C8122.5 (3)C21—C16—C15122.0 (3)
C6—C7—C8116.3 (3)C18—C17—C16121.9 (4)
C7—C8—H8A109.5C18—C17—H17119.1
C7—C8—H8B109.5C16—C17—H17119.1
H8A—C8—H8B109.5C17—C18—C19118.9 (4)
C7—C8—H8C109.5C17—C18—H18120.6
H8A—C8—H8C109.5C19—C18—H18120.6
H8B—C8—H8C109.5C20—C19—C18120.7 (4)
N1—C9—C10115.0 (3)C20—C19—H19119.6
N1—C9—C14105.4 (3)C18—C19—H19119.6
C10—C9—C14107.1 (3)C19—C20—C21122.0 (4)
N1—C9—H9109.7C19—C20—H20119.0
C10—C9—H9109.7C21—C20—H20119.0
C14—C9—H9109.7O2—C21—C20118.9 (4)
C11—C10—C9110.4 (3)O2—C21—C16124.5 (3)
C11—C10—H10A109.6C20—C21—C16116.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i1.002.473.403 (6)155
C10—H10B···O2ii0.992.453.366 (4)154
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C21H22N2O2)]
Mr397.95
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.6699 (3), 7.7324 (2), 12.1847 (4)
β (°) 111.649 (2)
V3)846.80 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.20 × 0.10 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.780, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
9232, 4573, 3542
Rint0.053
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.091, 0.97
No. of reflections4573
No. of parameters236
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37
Absolute structureFlack (1983), 2036 Friedel pairs
Absolute structure parameter0.050 (15)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i1.002.473.403 (6)155
C10—H10B···O2ii0.992.453.366 (4)154
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLashanizadegan, M. & Boghaei, D. M. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 345–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationRabie, U. M., Assran, A. S. A. & Abou-El-Wafa, M. H. M. (2008). J. Mol. Struct. 872, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationYao, H. H., Huang, W. T., Lo, J. M., Liao, F. L. & Wang, S. L. (1997). Eur. J. Solid State Inorg. Chem. 34, 355–366.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds