organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-O-tert-Butyl­di­methyl­silyl-4,6-O-ethyl­­idene-myo-insitol 1,3,5-orthoformate

aThe Department of Physics-Chemistry, Henan Polytechnic University, Jiao Zuo 454000, People's Republic of China, and bThe Department of Medicine, Hebi College of Vocation and Technology, He Bi 458030, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 7 June 2010; accepted 16 June 2010; online 23 June 2010)

In the title compound, C15H26O6Si, the dioxa six-membered ring bonded to the myo-inositol skeleton is in a boat conformation while the rest of the six-membered rings adopt chair conformations.

Related literature

myo-Inositol orthoesters have been used extensively for the synthesis of phospho­inositols and their derivatives, see: Das & Shashidhar (1997[Das, T. & Shashidhar, M. S. (1997). Carbohydr. Res. 297, 243-249.]); Sureshan et al. (2003[Sureshan, K. M., Shashidhar, M. S., Praveen, T. & Das, T. (2003). Chem. Rev. 103, 4477-4503.]); Potter & Lampe (1995[Potter, B. V. L. & Lampe, D. (1995). Angew. Chem. Int. Ed. Engl. 34, 1933-1972.]). For the synthesis of the title compound, see: Li & Vasella (1993[Li, C. & Vasella, A. (1993). Helv. Chim. Acta, 76, 211-221.]). For a related structure, see: Angyal (2000[Angyal, S. J. (2000). Carbohydr. Res. 325, 313-320.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26O6Si

  • Mr = 330.45

  • Orthorhombic, P b c a

  • a = 12.0170 (4) Å

  • b = 11.2808 (3) Å

  • c = 25.6942 (8) Å

  • V = 3483.14 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 297 K

  • 0.22 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.973

  • 55999 measured reflections

  • 4060 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.00

  • 4060 reflections

  • 205 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

myo-inositol orthoesters have been used extensivedly for the synthesis of phosphoinositols (Das & Shashidhar, 1997; Sureshan et al., 2003), their derivatives and other compounds with interesting properties (Potter & Lampe, 1995). We present here the crystal structure of the title compound, which is a key intermediate for the synthesis of phosphorylated myo-inositol derivatives (Angyal, 2000).

The bond lengths and angles in the title compound (Fig. 1) are in normal range and agree well with the corresponding bond lengths and angles reported for a related structure (Angyal, 2000). In the title molecule, the six-membered ring containing O1 and O2 is in a boat conformation, the other six-membered rings are in chair conformations. The crystal packing is stabilized by van der Waals forces.

Related literature top

myo-Inositol orthoesters have been used extensivedly for the synthesis of phosphoinositols and their derivatives, see: Das & Shashidhar (1997); Sureshan et al. (2003); Potter & Lampe (1995). For the synthesis of the title compound, see: Li & Vasella (1993). For a related structure, see: Angyal (2000).

Experimental top

The title compound was prepared according to the literature (Li & Vasella, 1993). Single crystals suitable for X-ray diffraction were prepared by slow evaperation from a solution of ethyl acetate and petroleum ether (1:4).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.98 and 0.96 Å for methyne and methyl H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(methyne C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the b-axis.
2-O-tert-Butyldimethylsilyl-4,6-O-ethylidene-myo- insitol 1,3,5-orthoformate top
Crystal data top
C15H26O6SiF(000) = 1424
Mr = 330.45Dx = 1.260 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3612 reflections
a = 12.0170 (4) Åθ = 2.3–18.5°
b = 11.2808 (3) ŵ = 0.16 mm1
c = 25.6942 (8) ÅT = 297 K
V = 3483.14 (18) Å3Block, colorless
Z = 80.22 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4060 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ϕ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.966, Tmax = 0.973k = 1414
55999 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.0231P]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.24 e Å3
18 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H26O6SiV = 3483.14 (18) Å3
Mr = 330.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0170 (4) ŵ = 0.16 mm1
b = 11.2808 (3) ÅT = 297 K
c = 25.6942 (8) Å0.22 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4060 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2035 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.973Rint = 0.102
55999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05218 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
4060 reflectionsΔρmin = 0.23 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0701 (3)0.6537 (3)0.59939 (13)0.0839 (10)
H1A1.13520.69000.58480.126*
H1B1.01120.71100.60130.126*
H1C1.04730.58860.57780.126*
C21.0960 (2)0.6094 (2)0.65278 (12)0.0623 (8)
H21.12260.67460.67470.075*
C31.2002 (2)0.4541 (3)0.69423 (11)0.0606 (8)
H31.27940.45780.70320.073*
C41.0113 (2)0.4980 (2)0.72188 (10)0.0525 (6)
H40.96410.53270.74900.063*
C51.1318 (2)0.4988 (3)0.73907 (11)0.0615 (7)
H51.15450.57970.74810.074*
C61.1663 (2)0.3251 (2)0.68424 (10)0.0565 (7)
H61.21340.29130.65690.068*
C70.9784 (2)0.3686 (2)0.71229 (10)0.0475 (6)
H70.89890.36410.70410.057*
C81.0450 (2)0.3186 (2)0.66778 (10)0.0477 (6)
H81.03330.36680.63650.057*
C91.1140 (3)0.3057 (3)0.77096 (12)0.0663 (8)
H91.12550.25700.80210.080*
C101.0905 (3)0.2103 (4)0.55151 (14)0.1063 (13)
H10A1.08590.29520.55340.160*
H10B1.07100.18470.51710.160*
H10C1.16510.18560.55930.160*
C111.0206 (3)0.0159 (3)0.60583 (12)0.0748 (9)
H11A1.09880.02860.61110.112*
H11B0.99730.05610.57480.112*
H11C0.98000.04650.63510.112*
C120.8465 (3)0.1719 (3)0.57919 (11)0.0673 (8)
C130.8201 (3)0.1084 (3)0.52793 (12)0.0919 (11)
H13A0.74290.11900.51960.138*
H13B0.83590.02540.53150.138*
H13C0.86510.14110.50060.138*
C140.7693 (3)0.1210 (4)0.62207 (15)0.1046 (12)
H14A0.78340.16120.65430.157*
H14B0.78370.03780.62620.157*
H14C0.69300.13240.61220.157*
C150.8231 (4)0.3032 (3)0.57262 (19)0.141 (2)
H15A0.74740.31410.56180.212*
H15B0.87220.33540.54680.212*
H15C0.83510.34310.60520.212*
O10.99714 (14)0.56100 (14)0.67385 (7)0.0554 (5)
O21.18006 (14)0.52151 (17)0.64779 (7)0.0621 (5)
O31.14699 (17)0.42203 (18)0.78300 (7)0.0728 (6)
O41.00096 (16)0.30181 (15)0.75876 (7)0.0584 (5)
O51.18069 (15)0.25908 (18)0.73137 (8)0.0689 (6)
O61.01461 (16)0.19916 (15)0.65769 (7)0.0610 (5)
Si10.99324 (6)0.14381 (6)0.59918 (3)0.0530 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.081 (2)0.074 (2)0.096 (3)0.0003 (17)0.0099 (19)0.032 (2)
C20.0583 (17)0.0506 (16)0.078 (2)0.0097 (14)0.0084 (15)0.0002 (15)
C30.0401 (15)0.077 (2)0.0650 (18)0.0088 (14)0.0059 (13)0.0029 (16)
C40.0549 (16)0.0477 (14)0.0550 (17)0.0024 (12)0.0088 (13)0.0084 (13)
C50.0650 (18)0.0632 (18)0.0563 (18)0.0168 (15)0.0026 (14)0.0060 (15)
C60.0492 (15)0.0673 (18)0.0531 (17)0.0093 (14)0.0019 (13)0.0007 (14)
C70.0458 (15)0.0451 (14)0.0515 (16)0.0045 (11)0.0005 (12)0.0021 (12)
C80.0507 (15)0.0432 (14)0.0491 (16)0.0002 (11)0.0029 (12)0.0048 (12)
C90.072 (2)0.070 (2)0.0565 (18)0.0023 (16)0.0084 (16)0.0069 (16)
C100.121 (3)0.112 (3)0.086 (3)0.040 (2)0.038 (2)0.020 (2)
C110.093 (2)0.0545 (17)0.077 (2)0.0151 (16)0.0045 (17)0.0142 (15)
C120.0784 (19)0.0668 (17)0.0567 (17)0.0118 (15)0.0106 (15)0.0052 (14)
C130.104 (2)0.096 (2)0.076 (2)0.0068 (19)0.0219 (18)0.0122 (18)
C140.072 (2)0.142 (3)0.100 (2)0.008 (2)0.0024 (19)0.005 (2)
C150.178 (5)0.084 (3)0.162 (4)0.060 (3)0.091 (4)0.026 (3)
O10.0522 (10)0.0465 (10)0.0677 (12)0.0015 (8)0.0059 (9)0.0021 (9)
O20.0495 (11)0.0730 (12)0.0639 (12)0.0066 (9)0.0089 (9)0.0042 (11)
O30.0812 (14)0.0844 (15)0.0527 (12)0.0182 (11)0.0141 (10)0.0024 (11)
O40.0626 (12)0.0582 (11)0.0544 (12)0.0061 (9)0.0037 (9)0.0049 (9)
O50.0637 (12)0.0759 (13)0.0671 (14)0.0167 (10)0.0079 (10)0.0074 (11)
O60.0870 (14)0.0419 (10)0.0543 (11)0.0050 (9)0.0042 (10)0.0059 (8)
Si10.0636 (5)0.0452 (4)0.0502 (5)0.0004 (4)0.0056 (4)0.0067 (3)
Geometric parameters (Å, º) top
C1—C21.493 (4)C9—O51.397 (3)
C1—H1A0.9600C9—O31.406 (3)
C1—H1B0.9600C9—H90.9800
C1—H1C0.9600C10—Si11.852 (3)
C2—O11.415 (3)C10—H10A0.9600
C2—O21.421 (3)C10—H10B0.9600
C2—H20.9800C10—H10C0.9600
C3—O21.436 (3)C11—Si11.840 (3)
C3—C51.502 (4)C11—H11A0.9600
C3—C61.533 (4)C11—H11B0.9600
C3—H30.9800C11—H11C0.9600
C4—O11.434 (3)C12—C151.516 (4)
C4—C51.513 (4)C12—C131.532 (4)
C4—C71.533 (3)C12—C141.550 (5)
C4—H40.9800C12—Si11.864 (3)
C5—O31.434 (3)C13—H13A0.9600
C5—H50.9800C13—H13B0.9600
C6—O51.432 (3)C13—H13C0.9600
C6—C81.520 (3)C14—H14A0.9600
C6—H60.9800C14—H14B0.9600
C7—O41.437 (3)C14—H14C0.9600
C7—C81.505 (3)C15—H15A0.9600
C7—H70.9800C15—H15B0.9600
C8—O61.420 (3)C15—H15C0.9600
C8—H80.9800O6—Si11.6480 (18)
C9—O41.395 (3)
C2—C1—H1A109.5O4—C9—H9107.7
C2—C1—H1B109.5O5—C9—H9107.7
H1A—C1—H1B109.5O3—C9—H9107.7
C2—C1—H1C109.5Si1—C10—H10A109.5
H1A—C1—H1C109.5Si1—C10—H10B109.5
H1B—C1—H1C109.5H10A—C10—H10B109.5
O1—C2—O2111.3 (2)Si1—C10—H10C109.5
O1—C2—C1107.8 (2)H10A—C10—H10C109.5
O2—C2—C1107.4 (2)H10B—C10—H10C109.5
O1—C2—H2110.1Si1—C11—H11A109.5
O2—C2—H2110.1Si1—C11—H11B109.5
C1—C2—H2110.1H11A—C11—H11B109.5
O2—C3—C5111.6 (2)Si1—C11—H11C109.5
O2—C3—C6108.6 (2)H11A—C11—H11C109.5
C5—C3—C6107.5 (2)H11B—C11—H11C109.5
O2—C3—H3109.7C15—C12—C13108.8 (3)
C5—C3—H3109.7C15—C12—C14109.3 (3)
C6—C3—H3109.7C13—C12—C14108.3 (3)
O1—C4—C5111.2 (2)C15—C12—Si1111.8 (3)
O1—C4—C7107.6 (2)C13—C12—Si1110.7 (2)
C5—C4—C7107.4 (2)C14—C12—Si1107.9 (2)
O1—C4—H4110.2C12—C13—H13A109.5
C5—C4—H4110.2C12—C13—H13B109.5
C7—C4—H4110.2H13A—C13—H13B109.5
O3—C5—C3109.3 (2)C12—C13—H13C109.5
O3—C5—C4110.4 (2)H13A—C13—H13C109.5
C3—C5—C4107.3 (2)H13B—C13—H13C109.5
O3—C5—H5109.9C12—C14—H14A109.5
C3—C5—H5109.9C12—C14—H14B109.5
C4—C5—H5109.9H14A—C14—H14B109.5
O5—C6—C8109.0 (2)C12—C14—H14C109.5
O5—C6—C3108.7 (2)H14A—C14—H14C109.5
C8—C6—C3110.3 (2)H14B—C14—H14C109.5
O5—C6—H6109.6C12—C15—H15A109.5
C8—C6—H6109.6C12—C15—H15B109.5
C3—C6—H6109.6H15A—C15—H15B109.5
O4—C7—C8109.6 (2)C12—C15—H15C109.5
O4—C7—C4108.5 (2)H15A—C15—H15C109.5
C8—C7—C4109.9 (2)H15B—C15—H15C109.5
O4—C7—H7109.6C2—O1—C4114.9 (2)
C8—C7—H7109.6C2—O2—C3114.5 (2)
C4—C7—H7109.6C9—O3—C5110.8 (2)
O6—C8—C7110.9 (2)C9—O4—C7110.8 (2)
O6—C8—C6110.0 (2)C9—O5—C6110.5 (2)
C7—C8—C6106.3 (2)C8—O6—Si1124.48 (16)
O6—C8—H8109.8O6—Si1—C11104.99 (12)
C7—C8—H8109.8O6—Si1—C10110.57 (14)
C6—C8—H8109.8C11—Si1—C10110.20 (17)
O4—C9—O5112.5 (2)O6—Si1—C12109.54 (12)
O4—C9—O3110.7 (2)C11—Si1—C12111.17 (15)
O5—C9—O3110.5 (2)C10—Si1—C12110.25 (17)
O2—C3—C5—O3174.7 (2)C1—C2—O2—C3169.0 (2)
C6—C3—C5—O355.7 (3)C5—C3—O2—C24.0 (3)
O2—C3—C5—C454.9 (3)C6—C3—O2—C2114.4 (2)
C6—C3—C5—C464.1 (3)O4—C9—O3—C562.2 (3)
O1—C4—C5—O3172.03 (19)O5—C9—O3—C563.1 (3)
C7—C4—C5—O354.5 (3)C3—C5—O3—C959.7 (3)
O1—C4—C5—C352.9 (3)C4—C5—O3—C958.1 (3)
C7—C4—C5—C364.6 (3)O5—C9—O4—C759.7 (3)
O2—C3—C6—O5176.93 (19)O3—C9—O4—C764.4 (3)
C5—C3—C6—O556.1 (3)C8—C7—O4—C959.0 (3)
O2—C3—C6—C857.5 (3)C4—C7—O4—C961.0 (3)
C5—C3—C6—C863.4 (3)O4—C9—O5—C660.5 (3)
O1—C4—C7—O4175.20 (18)O3—C9—O5—C663.7 (3)
C5—C4—C7—O455.3 (3)C8—C6—O5—C959.9 (3)
O1—C4—C7—C855.4 (3)C3—C6—O5—C960.3 (3)
C5—C4—C7—C864.5 (3)C7—C8—O6—Si1135.56 (19)
O4—C7—C8—O661.8 (3)C6—C8—O6—Si1107.1 (2)
C4—C7—C8—O6179.1 (2)C8—O6—Si1—C11154.8 (2)
O4—C7—C8—C657.9 (3)C8—O6—Si1—C1035.9 (2)
C4—C7—C8—C661.2 (3)C8—O6—Si1—C1285.8 (2)
O5—C6—C8—O661.8 (3)C15—C12—Si1—O665.4 (3)
C3—C6—C8—O6179.0 (2)C13—C12—Si1—O6173.1 (2)
O5—C6—C8—C758.4 (3)C14—C12—Si1—O654.8 (2)
C3—C6—C8—C760.8 (3)C15—C12—Si1—C11179.0 (3)
O2—C2—O1—C453.3 (3)C13—C12—Si1—C1157.5 (3)
C1—C2—O1—C4170.8 (2)C14—C12—Si1—C1160.8 (3)
C5—C4—O1—C20.2 (3)C15—C12—Si1—C1056.5 (3)
C7—C4—O1—C2117.2 (2)C13—C12—Si1—C1065.0 (3)
O1—C2—O2—C351.2 (3)C14—C12—Si1—C10176.7 (2)

Experimental details

Crystal data
Chemical formulaC15H26O6Si
Mr330.45
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)297
a, b, c (Å)12.0170 (4), 11.2808 (3), 25.6942 (8)
V3)3483.14 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.22 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.966, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
55999, 4060, 2035
Rint0.102
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.00
No. of reflections4060
No. of parameters205
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Henan Polytechnic University Foundation for Doctor Teachers (B2010–65) and the Henan Polytechnic University Foundation for the Youth (P051102). The authors thank Drs L. Yang, D. Zhao and Z. Z. Zhang for their assistance with the data collection and analysis.

References

First citationAngyal, S. J. (2000). Carbohydr. Res. 325, 313–320.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, T. & Shashidhar, M. S. (1997). Carbohydr. Res. 297, 243–249.  CrossRef CAS Web of Science Google Scholar
First citationLi, C. & Vasella, A. (1993). Helv. Chim. Acta, 76, 211–221.  CrossRef CAS Web of Science Google Scholar
First citationPotter, B. V. L. & Lampe, D. (1995). Angew. Chem. Int. Ed. Engl. 34, 1933–1972.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSureshan, K. M., Shashidhar, M. S., Praveen, T. & Das, T. (2003). Chem. Rev. 103, 4477–4503.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds