organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(3-fluoro­phen­yl)-3-iso­propyl­piperidin-4-one

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 6 May 2010; accepted 23 June 2010; online 30 June 2010)

In the title compound, C20H21F2NO, the piperidine ring in each of the two independent mol­ecules in the asymmetric unit adopts a normal chair conformation with an equatorial orientation of the 3-fluoro­phenyl groups. The dihedral angles between the two 3-fluoro­phenyl rings are 49.89 (7) and 50.35 (7)° in the two mol­ecules.

Related literature

For background to piperidine-4-ones and related structures, see: Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]); Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.]); Ramachandran et al. (2007[Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.]); Pandiarajan et al. (1986[Pandiarajan, K., Sabapathy Mohan, R. T., Misbah Ul Hasan. (1986). Magn. Reson. Chem. 24, 312-316.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21F2NO

  • Mr = 329.38

  • Monoclinic, P 21 /c

  • a = 8.8217 (3) Å

  • b = 12.7612 (4) Å

  • c = 30.8613 (9) Å

  • β = 91.892 (2)°

  • V = 3472.33 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.982

  • 39632 measured reflections

  • 8517 independent reflections

  • 4760 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.178

  • S = 1.01

  • 8517 reflections

  • 445 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heteroatom containing six-membered cyclic compounds possess interesting stereochemistry such as conformation of the ring and orientation of the substituents. Several piperidin-4-ones were reported and analyzed their ring conformations by Noller & Baliah, 1948; Pandiarajan et al., 1986. The present investigation was undertaken to establish the structure, conformation of the heterocyclic ring and orientation of the 3-fluorophenyl groups by X-ray diffraction analysis.

In the molecular structure of title compound, six-membered heterocyclic ring (Fig.1) adopts normal chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q1 and q2 are 0.082 (2)Å and -0.577 (2)Å, respectively. The total puckering amplitude, QT=0.5823 (19)Å; θ=171.9 (2)°. The dihedral angle between the 3-fluorophenyl rings is 49.89 (7)° and 50.35 (7)° of molecule A and B respectively.

Related literature top

For background to piperidine-4-ones and related structures, see: Noller & Baliah (1948); Gayathri et al. (2008); Ramachandran et al. (2007); Pandiarajan et al. (1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was prepared by the condensation of 4-methylpentan-2-one, 3-fluorobenzaldehyde and ammonium acetate in 1:2:1 molar ratio as reported by Gayathri et al., 2008; Ramachandran et al., 2007. Diffraction quality crystals were obtained by recrystalization of the crude sample from ethanol.

Refinement top

The hydrogen atoms were positioned and refined using a riding model, with aromatic C—H = 0.93Å, methine C—H = 0.98Å, methylene C—H = 0.97Å and methyl C—H = 0.96Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2,6-Bis(3-fluorophenyl)-3-isopropylpiperidin-4-one top
Crystal data top
C20H21F2NOF(000) = 1392
Mr = 329.38Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6010 reflections
a = 8.8217 (3) Åθ = 2.4–28.1°
b = 12.7612 (4) ŵ = 0.09 mm1
c = 30.8613 (9) ÅT = 292 K
β = 91.892 (2)°Block, colourless
V = 3472.33 (19) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8517 independent reflections
Radiation source: fine-focus sealed tube4760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scansθmax = 28.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.893, Tmax = 0.982k = 1614
39632 measured reflectionsl = 4041
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.3074P]
where P = (Fo2 + 2Fc2)/3
8517 reflections(Δ/σ)max = 0.001
445 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H21F2NOV = 3472.33 (19) Å3
Mr = 329.38Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.8217 (3) ŵ = 0.09 mm1
b = 12.7612 (4) ÅT = 292 K
c = 30.8613 (9) Å0.30 × 0.25 × 0.20 mm
β = 91.892 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4760 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.982Rint = 0.051
39632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.36 e Å3
8517 reflectionsΔρmin = 0.26 e Å3
445 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.5616 (2)0.27192 (15)0.87176 (6)0.0366 (4)
H1A0.61500.33880.86880.044*
C1B0.9557 (2)0.30455 (15)1.11617 (6)0.0371 (4)
H1B0.90300.37221.11490.045*
C2A0.3926 (2)0.28694 (15)0.85761 (6)0.0364 (4)
H2A0.34140.22100.86430.044*
C2B1.1232 (2)0.32290 (15)1.13062 (6)0.0388 (5)
H2B1.17400.25501.12810.047*
C3A0.3289 (2)0.36851 (16)0.88737 (6)0.0412 (5)
C3B1.1915 (2)0.39359 (16)1.09703 (7)0.0427 (5)
C4A0.3518 (2)0.34547 (17)0.93482 (6)0.0451 (5)
H4A10.28920.28620.94240.054*
H4A20.31950.40550.95150.054*
C4B1.1707 (2)0.35693 (17)1.05111 (7)0.0475 (5)
H4B11.23370.29581.04680.057*
H4B21.20410.41151.03180.057*
C5A0.5175 (2)0.32094 (15)0.94670 (6)0.0395 (5)
H5A0.57880.38420.94300.047*
C5B1.0058 (2)0.32934 (16)1.03953 (6)0.0403 (5)
H5B0.94450.39341.03950.048*
C6A0.6404 (2)0.18931 (15)0.84562 (6)0.0377 (5)
C6B0.8732 (2)0.23227 (15)1.14601 (6)0.0377 (5)
C7A0.6125 (2)0.08430 (17)0.85276 (7)0.0485 (5)
H7A0.54210.06330.87280.058*
C7B0.8963 (2)0.12508 (17)1.14395 (7)0.0482 (5)
H7B0.96550.09701.12500.058*
C8A0.6905 (3)0.01198 (18)0.82973 (8)0.0595 (6)
C8B0.8156 (3)0.06144 (18)1.17018 (8)0.0571 (6)
C9A0.7939 (3)0.0373 (2)0.79971 (8)0.0613 (7)
H9A0.84450.01450.78470.074*
C9B0.7152 (3)0.0976 (2)1.19913 (7)0.0612 (7)
H9B0.66340.05191.21680.073*
C10A0.8211 (3)0.1411 (2)0.79231 (7)0.0575 (6)
H10A0.89090.16100.77190.069*
C10B0.6930 (3)0.2037 (2)1.20142 (7)0.0571 (6)
H10B0.62480.23081.22090.069*
C11A0.7448 (2)0.21651 (18)0.81522 (6)0.0465 (5)
H11A0.76410.28700.81010.056*
C11B0.7709 (2)0.27066 (18)1.17510 (6)0.0466 (5)
H11B0.75460.34251.17690.056*
C12A0.5327 (2)0.28483 (16)0.99315 (6)0.0408 (5)
C12B0.9932 (2)0.27947 (16)0.99536 (6)0.0425 (5)
C13A0.5026 (3)0.18218 (18)1.00394 (7)0.0600 (6)
H13A0.47920.13300.98250.072*
C13B1.0278 (3)0.17523 (18)0.98992 (7)0.0651 (7)
H13B1.05360.13321.01360.078*
C14A0.5078 (3)0.15399 (19)1.04681 (8)0.0669 (7)
C14B1.0231 (4)0.13474 (19)0.94869 (8)0.0729 (8)
C15A0.5410 (3)0.2215 (2)1.07965 (7)0.0580 (6)
H15A0.54380.19931.10840.070*
C15B0.9867 (3)0.1915 (2)0.91260 (7)0.0621 (7)
H15B0.98450.16100.88520.074*
C16A0.5700 (2)0.32323 (19)1.06900 (7)0.0532 (6)
H16A0.59140.37191.09080.064*
C16B0.9538 (3)0.2944 (2)0.91814 (7)0.0555 (6)
H16B0.93010.33590.89410.067*
C17A0.5677 (2)0.35430 (17)1.02624 (6)0.0457 (5)
H17A0.59010.42351.01950.055*
C17B0.9551 (2)0.33769 (18)0.95890 (7)0.0488 (5)
H17B0.92980.40800.96200.059*
C18A0.3643 (2)0.30560 (16)0.80898 (6)0.0449 (5)
H18A0.41350.24770.79400.054*
C18B1.1476 (2)0.35704 (17)1.17792 (6)0.0479 (5)
H18B1.09480.30551.19550.057*
C19A0.1956 (3)0.29873 (19)0.79675 (8)0.0609 (6)
H19A0.14280.35540.81010.091*
H19B0.15600.23320.80660.091*
H19C0.18180.30330.76580.091*
C19B1.3150 (3)0.3509 (2)1.19177 (8)0.0688 (7)
H19D1.35120.28081.18750.103*
H19E1.32700.36921.22190.103*
H19F1.37200.39871.17470.103*
C20A0.4336 (3)0.4060 (2)0.79204 (7)0.0645 (7)
H20A0.41770.40940.76120.097*
H20B0.54050.40660.79900.097*
H20C0.38660.46520.80520.097*
C20B1.0808 (3)0.46335 (18)1.18874 (8)0.0662 (7)
H20D1.08780.47421.21950.099*
H20E0.97640.46561.17910.099*
H20F1.13620.51731.17450.099*
N1A0.5684 (2)0.23981 (13)0.91734 (5)0.0394 (4)
N1B0.9526 (2)0.25835 (13)1.07272 (5)0.0403 (4)
O1A0.26770 (19)0.44834 (12)0.87504 (5)0.0625 (5)
O1B1.2548 (2)0.47534 (12)1.10547 (5)0.0654 (5)
F1A0.6646 (2)0.09068 (12)0.83741 (6)0.1012 (6)
F1B0.8356 (2)0.04357 (12)1.16716 (6)0.0985 (6)
F2A0.4787 (3)0.05316 (13)1.05680 (5)0.1244 (8)
F2B1.0578 (3)0.03231 (13)0.94412 (6)0.1389 (10)
H1D0.856 (3)0.2386 (16)1.0657 (7)0.052 (6)*
H1C0.669 (3)0.2223 (17)0.9257 (7)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0388 (11)0.0361 (11)0.0351 (10)0.0011 (8)0.0032 (8)0.0007 (8)
C1B0.0381 (11)0.0332 (11)0.0402 (10)0.0023 (8)0.0014 (8)0.0025 (8)
C2A0.0365 (11)0.0328 (10)0.0399 (10)0.0015 (8)0.0015 (8)0.0006 (8)
C2B0.0387 (11)0.0322 (11)0.0451 (11)0.0026 (8)0.0022 (9)0.0017 (8)
C3A0.0369 (11)0.0395 (12)0.0471 (11)0.0010 (9)0.0012 (9)0.0022 (9)
C3B0.0375 (11)0.0370 (12)0.0536 (12)0.0008 (9)0.0014 (9)0.0025 (9)
C4A0.0465 (13)0.0485 (13)0.0409 (11)0.0042 (10)0.0078 (9)0.0069 (9)
C4B0.0451 (13)0.0474 (13)0.0505 (12)0.0076 (10)0.0107 (10)0.0012 (10)
C5A0.0433 (12)0.0376 (11)0.0377 (10)0.0043 (9)0.0039 (8)0.0043 (8)
C5B0.0419 (12)0.0388 (11)0.0404 (11)0.0031 (9)0.0055 (9)0.0008 (8)
C6A0.0354 (11)0.0430 (12)0.0344 (10)0.0009 (9)0.0014 (8)0.0012 (8)
C6B0.0359 (11)0.0428 (12)0.0343 (10)0.0007 (9)0.0015 (8)0.0021 (8)
C7A0.0498 (13)0.0427 (13)0.0534 (13)0.0014 (10)0.0071 (10)0.0024 (10)
C7B0.0456 (13)0.0454 (13)0.0544 (13)0.0015 (10)0.0131 (10)0.0013 (10)
C8A0.0668 (17)0.0393 (14)0.0718 (16)0.0071 (12)0.0052 (13)0.0091 (11)
C8B0.0586 (15)0.0436 (14)0.0693 (15)0.0014 (11)0.0083 (12)0.0116 (11)
C9A0.0523 (15)0.0726 (18)0.0590 (15)0.0171 (13)0.0010 (12)0.0252 (13)
C9B0.0526 (15)0.0786 (19)0.0529 (14)0.0085 (13)0.0094 (11)0.0169 (12)
C10A0.0488 (14)0.0801 (19)0.0438 (12)0.0081 (12)0.0051 (10)0.0104 (12)
C10B0.0472 (14)0.0838 (19)0.0409 (12)0.0005 (12)0.0106 (10)0.0040 (12)
C11A0.0433 (12)0.0547 (14)0.0415 (11)0.0016 (10)0.0022 (9)0.0001 (10)
C11B0.0457 (13)0.0539 (14)0.0404 (11)0.0043 (10)0.0037 (9)0.0081 (9)
C12A0.0407 (11)0.0427 (12)0.0390 (10)0.0001 (9)0.0030 (8)0.0031 (9)
C12B0.0414 (12)0.0428 (12)0.0437 (11)0.0042 (9)0.0060 (9)0.0010 (9)
C13A0.0956 (19)0.0450 (14)0.0399 (12)0.0079 (13)0.0074 (12)0.0055 (10)
C13B0.106 (2)0.0470 (14)0.0424 (13)0.0049 (14)0.0072 (13)0.0029 (10)
C14A0.101 (2)0.0508 (16)0.0496 (14)0.0053 (14)0.0073 (13)0.0063 (11)
C14B0.122 (2)0.0415 (15)0.0561 (15)0.0038 (14)0.0135 (15)0.0087 (11)
C15A0.0604 (15)0.0767 (18)0.0368 (11)0.0055 (13)0.0013 (10)0.0026 (11)
C15B0.0673 (17)0.0756 (19)0.0434 (13)0.0119 (14)0.0030 (11)0.0074 (12)
C16A0.0474 (13)0.0684 (17)0.0433 (12)0.0056 (11)0.0069 (10)0.0156 (11)
C16B0.0502 (14)0.0731 (17)0.0429 (12)0.0033 (12)0.0043 (10)0.0073 (11)
C17A0.0414 (12)0.0494 (13)0.0461 (12)0.0012 (10)0.0017 (9)0.0087 (9)
C17B0.0452 (13)0.0516 (14)0.0495 (13)0.0010 (10)0.0010 (10)0.0047 (10)
C18A0.0494 (13)0.0453 (12)0.0396 (11)0.0094 (10)0.0031 (9)0.0012 (9)
C18B0.0535 (14)0.0446 (13)0.0449 (12)0.0043 (10)0.0073 (10)0.0020 (9)
C19A0.0599 (16)0.0618 (16)0.0596 (14)0.0046 (12)0.0197 (12)0.0018 (12)
C19B0.0661 (17)0.0626 (17)0.0757 (17)0.0040 (13)0.0266 (13)0.0016 (13)
C20A0.0616 (16)0.0756 (18)0.0565 (14)0.0027 (13)0.0059 (12)0.0235 (12)
C20B0.0739 (18)0.0630 (17)0.0613 (15)0.0052 (13)0.0056 (13)0.0226 (12)
N1A0.0406 (10)0.0427 (10)0.0349 (9)0.0067 (8)0.0027 (7)0.0009 (7)
N1B0.0400 (10)0.0431 (10)0.0379 (9)0.0078 (8)0.0035 (7)0.0030 (7)
O1A0.0752 (12)0.0512 (10)0.0609 (10)0.0247 (9)0.0019 (8)0.0015 (8)
O1B0.0754 (12)0.0515 (10)0.0695 (11)0.0248 (9)0.0036 (9)0.0024 (8)
F1A0.1198 (15)0.0471 (10)0.1379 (15)0.0088 (9)0.0230 (12)0.0122 (9)
F1B0.1071 (14)0.0511 (10)0.1397 (15)0.0017 (9)0.0408 (11)0.0226 (9)
F2A0.243 (3)0.0645 (11)0.0667 (11)0.0309 (13)0.0118 (13)0.0188 (8)
F2B0.288 (3)0.0562 (11)0.0733 (12)0.0189 (14)0.0228 (14)0.0154 (8)
Geometric parameters (Å, º) top
C1A—N1A1.465 (2)C10A—H10A0.9300
C1A—C6A1.511 (3)C10B—C11B1.378 (3)
C1A—C2A1.551 (3)C10B—H10B0.9300
C1A—H1A0.9800C11A—H11A0.9300
C1B—N1B1.464 (2)C11B—H11B0.9300
C1B—C6B1.507 (3)C12A—C17A1.379 (3)
C1B—C2B1.547 (3)C12A—C13A1.380 (3)
C1B—H1B0.9800C12B—C13B1.376 (3)
C2A—C3A1.509 (3)C12B—C17B1.381 (3)
C2A—C18A1.532 (3)C13A—C14A1.370 (3)
C2A—H2A0.9800C13A—H13A0.9300
C2B—C3B1.514 (3)C13B—C14B1.373 (3)
C2B—C18B1.532 (3)C13B—H13B0.9300
C2B—H2B0.9800C14A—F2A1.350 (3)
C3A—O1A1.208 (2)C14A—C15A1.354 (3)
C3A—C4A1.501 (3)C14B—F2B1.351 (3)
C3B—O1B1.208 (2)C14B—C15B1.358 (3)
C3B—C4B1.498 (3)C15A—C16A1.366 (3)
C4A—C5A1.528 (3)C15A—H15A0.9300
C4A—H4A10.9700C15B—C16B1.357 (3)
C4A—H4A20.9700C15B—H15B0.9300
C4B—C5B1.528 (3)C16A—C17A1.377 (3)
C4B—H4B10.9700C16A—H16A0.9300
C4B—H4B20.9700C16B—C17B1.374 (3)
C5A—N1A1.456 (2)C16B—H16B0.9300
C5A—C12A1.508 (3)C17A—H17A0.9300
C5A—H5A0.9800C17B—H17B0.9300
C5B—N1B1.456 (2)C18A—C20A1.520 (3)
C5B—C12B1.505 (3)C18A—C19A1.526 (3)
C5B—H5B0.9800C18A—H18A0.9800
C6A—C11A1.380 (3)C18B—C20B1.520 (3)
C6A—C7A1.382 (3)C18B—C19B1.526 (3)
C6B—C11B1.383 (3)C18B—H18B0.9800
C6B—C7B1.385 (3)C19A—H19A0.9600
C7A—C8A1.365 (3)C19A—H19B0.9600
C7A—H7A0.9300C19A—H19C0.9600
C7B—C8B1.364 (3)C19B—H19D0.9600
C7B—H7B0.9300C19B—H19E0.9600
C8A—F1A1.352 (3)C19B—H19F0.9600
C8A—C9A1.360 (4)C20A—H20A0.9600
C8B—F1B1.355 (3)C20A—H20B0.9600
C8B—C9B1.359 (3)C20A—H20C0.9600
C9A—C10A1.368 (3)C20B—H20D0.9600
C9A—H9A0.9300C20B—H20E0.9600
C9B—C10B1.370 (3)C20B—H20F0.9600
C9B—H9B0.9300N1A—H1C0.94 (2)
C10A—C11A1.382 (3)N1B—H1D0.90 (2)
N1A—C1A—C6A108.22 (15)C6A—C11A—C10A121.3 (2)
N1A—C1A—C2A108.26 (15)C6A—C11A—H11A119.3
C6A—C1A—C2A113.02 (15)C10A—C11A—H11A119.3
N1A—C1A—H1A109.1C10B—C11B—C6B120.8 (2)
C6A—C1A—H1A109.1C10B—C11B—H11B119.6
C2A—C1A—H1A109.1C6B—C11B—H11B119.6
N1B—C1B—C6B108.57 (15)C17A—C12A—C13A118.14 (19)
N1B—C1B—C2B108.26 (15)C17A—C12A—C5A121.22 (19)
C6B—C1B—C2B113.08 (15)C13A—C12A—C5A120.51 (17)
N1B—C1B—H1B109.0C13B—C12B—C17B118.02 (19)
C6B—C1B—H1B109.0C13B—C12B—C5B120.61 (18)
C2B—C1B—H1B109.0C17B—C12B—C5B121.27 (19)
C3A—C2A—C18A115.91 (16)C14A—C13A—C12A118.8 (2)
C3A—C2A—C1A106.73 (15)C14A—C13A—H13A120.6
C18A—C2A—C1A114.78 (16)C12A—C13A—H13A120.6
C3A—C2A—H2A106.2C14B—C13B—C12B118.5 (2)
C18A—C2A—H2A106.2C14B—C13B—H13B120.8
C1A—C2A—H2A106.2C12B—C13B—H13B120.8
C3B—C2B—C18B115.87 (17)F2A—C14A—C15A118.2 (2)
C3B—C2B—C1B106.91 (15)F2A—C14A—C13A118.0 (2)
C18B—C2B—C1B114.87 (16)C15A—C14A—C13A123.7 (2)
C3B—C2B—H2B106.1F2B—C14B—C15B118.6 (2)
C18B—C2B—H2B106.1F2B—C14B—C13B117.5 (2)
C1B—C2B—H2B106.1C15B—C14B—C13B124.0 (2)
O1A—C3A—C4A121.10 (19)C14A—C15A—C16A117.5 (2)
O1A—C3A—C2A124.16 (19)C14A—C15A—H15A121.2
C4A—C3A—C2A114.71 (17)C16A—C15A—H15A121.2
O1B—C3B—C4B121.01 (19)C16B—C15B—C14B117.3 (2)
O1B—C3B—C2B123.97 (19)C16B—C15B—H15B121.4
C4B—C3B—C2B114.99 (17)C14B—C15B—H15B121.4
C3A—C4A—C5A111.77 (16)C15A—C16A—C17A120.5 (2)
C3A—C4A—H4A1109.3C15A—C16A—H16A119.8
C5A—C4A—H4A1109.3C17A—C16A—H16A119.8
C3A—C4A—H4A2109.3C15B—C16B—C17B120.6 (2)
C5A—C4A—H4A2109.3C15B—C16B—H16B119.7
H4A1—C4A—H4A2107.9C17B—C16B—H16B119.7
C3B—C4B—C5B112.31 (17)C16A—C17A—C12A121.3 (2)
C3B—C4B—H4B1109.1C16A—C17A—H17A119.3
C5B—C4B—H4B1109.1C12A—C17A—H17A119.3
C3B—C4B—H4B2109.1C16B—C17B—C12B121.6 (2)
C5B—C4B—H4B2109.1C16B—C17B—H17B119.2
H4B1—C4B—H4B2107.9C12B—C17B—H17B119.2
N1A—C5A—C12A110.77 (16)C20A—C18A—C19A111.35 (17)
N1A—C5A—C4A107.98 (15)C20A—C18A—C2A114.42 (17)
C12A—C5A—C4A110.20 (16)C19A—C18A—C2A111.09 (18)
N1A—C5A—H5A109.3C20A—C18A—H18A106.5
C12A—C5A—H5A109.3C19A—C18A—H18A106.5
C4A—C5A—H5A109.3C2A—C18A—H18A106.5
N1B—C5B—C12B110.99 (16)C20B—C18B—C19B111.27 (18)
N1B—C5B—C4B107.76 (16)C20B—C18B—C2B114.81 (17)
C12B—C5B—C4B110.50 (16)C19B—C18B—C2B110.89 (19)
N1B—C5B—H5B109.2C20B—C18B—H18B106.4
C12B—C5B—H5B109.2C19B—C18B—H18B106.4
C4B—C5B—H5B109.2C2B—C18B—H18B106.4
C11A—C6A—C7A118.61 (19)C18A—C19A—H19A109.5
C11A—C6A—C1A121.09 (18)C18A—C19A—H19B109.5
C7A—C6A—C1A120.27 (18)H19A—C19A—H19B109.5
C11B—C6B—C7B118.67 (19)C18A—C19A—H19C109.5
C11B—C6B—C1B121.19 (18)H19A—C19A—H19C109.5
C7B—C6B—C1B120.11 (18)H19B—C19A—H19C109.5
C8A—C7A—C6A118.5 (2)C18B—C19B—H19D109.5
C8A—C7A—H7A120.8C18B—C19B—H19E109.5
C6A—C7A—H7A120.8H19D—C19B—H19E109.5
C8B—C7B—C6B118.7 (2)C18B—C19B—H19F109.5
C8B—C7B—H7B120.6H19D—C19B—H19F109.5
C6B—C7B—H7B120.6H19E—C19B—H19F109.5
F1A—C8A—C9A118.0 (2)C18A—C20A—H20A109.5
F1A—C8A—C7A118.2 (2)C18A—C20A—H20B109.5
C9A—C8A—C7A123.7 (2)H20A—C20A—H20B109.5
F1B—C8B—C9B118.1 (2)C18A—C20A—H20C109.5
F1B—C8B—C7B118.4 (2)H20A—C20A—H20C109.5
C9B—C8B—C7B123.5 (2)H20B—C20A—H20C109.5
C8A—C9A—C10A118.0 (2)C18B—C20B—H20D109.5
C8A—C9A—H9A121.0C18B—C20B—H20E109.5
C10A—C9A—H9A121.0H20D—C20B—H20E109.5
C8B—C9B—C10B117.8 (2)C18B—C20B—H20F109.5
C8B—C9B—H9B121.1H20D—C20B—H20F109.5
C10B—C9B—H9B121.1H20E—C20B—H20F109.5
C9A—C10A—C11A119.8 (2)C5A—N1A—C1A113.26 (15)
C9A—C10A—H10A120.1C5A—N1A—H1C107.8 (13)
C11A—C10A—H10A120.1C1A—N1A—H1C109.7 (13)
C9B—C10B—C11B120.5 (2)C5B—N1B—C1B113.39 (15)
C9B—C10B—H10B119.8C5B—N1B—H1D109.1 (13)
C11B—C10B—H10B119.8C1B—N1B—H1D108.6 (13)
N1A—C1A—C2A—C3A58.33 (19)C9A—C10A—C11A—C6A0.1 (3)
C6A—C1A—C2A—C3A178.18 (16)C9B—C10B—C11B—C6B0.2 (3)
N1A—C1A—C2A—C18A171.79 (16)C7B—C6B—C11B—C10B0.2 (3)
C6A—C1A—C2A—C18A51.9 (2)C1B—C6B—C11B—C10B178.21 (18)
N1B—C1B—C2B—C3B57.92 (19)N1A—C5A—C12A—C17A146.61 (19)
C6B—C1B—C2B—C3B178.26 (15)C4A—C5A—C12A—C17A94.0 (2)
N1B—C1B—C2B—C18B172.02 (16)N1A—C5A—C12A—C13A37.5 (3)
C6B—C1B—C2B—C18B51.7 (2)C4A—C5A—C12A—C13A81.9 (2)
C18A—C2A—C3A—O1A5.0 (3)N1B—C5B—C12B—C13B39.5 (3)
C1A—C2A—C3A—O1A124.3 (2)C4B—C5B—C12B—C13B80.0 (3)
C18A—C2A—C3A—C4A177.13 (17)N1B—C5B—C12B—C17B144.1 (2)
C1A—C2A—C3A—C4A53.6 (2)C4B—C5B—C12B—C17B96.4 (2)
C18B—C2B—C3B—O1B4.0 (3)C17A—C12A—C13A—C14A0.4 (3)
C1B—C2B—C3B—O1B125.5 (2)C5A—C12A—C13A—C14A175.7 (2)
C18B—C2B—C3B—C4B178.10 (18)C17B—C12B—C13B—C14B0.2 (4)
C1B—C2B—C3B—C4B52.4 (2)C5B—C12B—C13B—C14B176.3 (2)
O1A—C3A—C4A—C5A126.3 (2)C12A—C13A—C14A—F2A179.7 (2)
C2A—C3A—C4A—C5A51.7 (2)C12A—C13A—C14A—C15A0.1 (4)
O1B—C3B—C4B—C5B127.6 (2)C12B—C13B—C14B—F2B179.8 (3)
C2B—C3B—C4B—C5B50.3 (2)C12B—C13B—C14B—C15B0.2 (5)
C3A—C4A—C5A—N1A51.7 (2)F2A—C14A—C15A—C16A179.9 (2)
C3A—C4A—C5A—C12A172.77 (17)C13A—C14A—C15A—C16A0.3 (4)
C3B—C4B—C5B—N1B51.0 (2)F2B—C14B—C15B—C16B179.4 (3)
C3B—C4B—C5B—C12B172.41 (17)C13B—C14B—C15B—C16B0.2 (4)
N1A—C1A—C6A—C11A133.00 (19)C14A—C15A—C16A—C17A1.1 (4)
C2A—C1A—C6A—C11A107.1 (2)C14B—C15B—C16B—C17B1.1 (4)
N1A—C1A—C6A—C7A45.0 (2)C15A—C16A—C17A—C12A1.6 (3)
C2A—C1A—C6A—C7A74.9 (2)C13A—C12A—C17A—C16A1.2 (3)
N1B—C1B—C6B—C11B135.60 (19)C5A—C12A—C17A—C16A174.83 (19)
C2B—C1B—C6B—C11B104.2 (2)C15B—C16B—C17B—C12B1.6 (3)
N1B—C1B—C6B—C7B42.8 (2)C13B—C12B—C17B—C16B1.1 (3)
C2B—C1B—C6B—C7B77.3 (2)C5B—C12B—C17B—C16B175.4 (2)
C11A—C6A—C7A—C8A0.6 (3)C3A—C2A—C18A—C20A61.5 (2)
C1A—C6A—C7A—C8A177.38 (19)C1A—C2A—C18A—C20A63.7 (2)
C11B—C6B—C7B—C8B1.0 (3)C3A—C2A—C18A—C19A65.6 (2)
C1B—C6B—C7B—C8B177.45 (19)C1A—C2A—C18A—C19A169.19 (17)
C6A—C7A—C8A—F1A178.86 (19)C3B—C2B—C18B—C20B60.8 (3)
C6A—C7A—C8A—C9A0.6 (4)C1B—C2B—C18B—C20B64.8 (2)
C6B—C7B—C8B—F1B178.2 (2)C3B—C2B—C18B—C19B66.4 (2)
C6B—C7B—C8B—C9B1.5 (4)C1B—C2B—C18B—C19B168.07 (17)
F1A—C8A—C9A—C10A179.3 (2)C12A—C5A—N1A—C1A177.83 (16)
C7A—C8A—C9A—C10A0.1 (4)C4A—C5A—N1A—C1A61.4 (2)
F1B—C8B—C9B—C10B178.7 (2)C6A—C1A—N1A—C5A170.81 (16)
C7B—C8B—C9B—C10B1.0 (4)C2A—C1A—N1A—C5A66.4 (2)
C8A—C9A—C10A—C11A0.2 (3)C12B—C5B—N1B—C1B177.36 (16)
C8B—C9B—C10B—C11B0.2 (3)C4B—C5B—N1B—C1B61.5 (2)
C7A—C6A—C11A—C10A0.3 (3)C6B—C1B—N1B—C5B170.01 (16)
C1A—C6A—C11A—C10A177.70 (18)C2B—C1B—N1B—C5B66.9 (2)

Experimental details

Crystal data
Chemical formulaC20H21F2NO
Mr329.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)8.8217 (3), 12.7612 (4), 30.8613 (9)
β (°) 91.892 (2)
V3)3472.33 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.893, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
39632, 8517, 4760
Rint0.051
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.178, 1.01
No. of reflections8517
No. of parameters445
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the Industrial Technology Development Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government and by the 2010 Post-Doc. Research Program funded by Pukyong National University. The authors are also grateful to the SAIF, Indian Institute of Technology, Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPandiarajan, K., Sabapathy Mohan, R. T., Misbah Ul Hasan. (1986). Magn. Reson. Chem. 24, 312–316.  Google Scholar
First citationRamachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds