metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Ferrocenyl-1-(2-hy­dr­oxy­phen­yl)-prop-2-en-1-one

aUniversidad Andres Bello, Departamento de Ciencias Químicas, Santiago, Chile, and bLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
*Correspondence e-mail: mfuentealba@unab.cl

(Received 19 May 2010; accepted 16 June 2010; online 23 June 2010)

The mol­ecular structure of the title compound, [Fe(C5H5)(C14H11O2)] consists of a ferrocenyl and 2-hy­droxy­phenyl group linked through the prop-2-en-1-one spacer and is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hydroxyl and the carbonyl groups.

Related literature

For biological activity of chalcones, see: Liu et al. (2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.]); Rao et al. (2004[Rao, Y. K., Fang, S.-H. & Tzeng, Y.-M. (2004). Bioorg. Med. Chem. 12, 2679-2686.]); Wu et al. (2002[Wu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299-2302.], 2006[Wu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27, 175-187.]); Xiang et al. (2006[Xiang, W., Tiekinke, R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Soo, B. K., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27,175-187.]); Zsoldos-Mady et al. (2006[Zsoldos-Mady, V., Csampai, A., Szabo, R., Meszaros-Alapi, E., Pasztor, J., Hudecz, F. & Sohar, P. (2006). Chem. Med. Chem. 1, 1119-1125.]). For their non-linear optical properties, see: Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]). For electro-active fluorescent materials, see: Belavaux-Nicot et al. (2005[Belavaux-Nicot, B., Maynadie, J., Lavabre, D., Lepetit, C. & Donnadieu, B. (2005). Eur. J. Inorg. Chem. pp. 2493-2505.]). For related structures, see: Escobar et al. (2008[Escobar, C. A., Vega, A., Sicker, D. & Ibañez, A. (2008). Acta Cryst. E64, o1834.]). For metallocene derivatives, see: Kudar et al. (2005[Kudar, V., Zsoldos-Mady, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem. 690, 4018-4026.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H11O2)]

  • Mr = 332.17

  • Monoclinic, P 21 /c

  • a = 10.8264 (12) Å

  • b = 12.0358 (13) Å

  • c = 11.8150 (13) Å

  • β = 103.839 (2)°

  • V = 1494.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 298 K

  • 0.25 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SABABS; Bruker, 2000[Bruker (2000). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.741, Tmax = 0.859

  • 11654 measured reflections

  • 3319 independent reflections

  • 2734 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.02

  • 3319 reflections

  • 199 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.79 2.523 (3) 148

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Chalcones are a family of aromatic ketones bearing two aromatic groups bridged together trough a central prop-2-en-1-one core. They have a wide range of applications covering from materials with various biological activities (Xiang et al., 2006; Wu et al., 2002, 2006; Liu et al., 2001; Zsoldos-Mady et al., 2006) to non-linear optics (Shettigar et al., 2006), including also electroactive fluorescent materials (Belavaux-Nicot et al., (2005). Ferrocene containing chalcones are also useful precursors for the synthesis of more complex heterocyclic metallocene derivatives (Kudar et al., (2005). Typically this kind of precursors are prepared trough a Claisen Shmidt condensation, reacting a ketone or an aldehyde with the appropriated ferrocene substituted aldehyde or ketone depending on the position were the ferrocenyl substituent is required.

For the case of 1-(2'-hydroxyphenyl)-substituted prop-2-en-1-ones (as the title compound) the presence of an intense H-bonding has been previously described (Escobar et al., 2008) this structural characteristic has been recognized to play a key role in its biological activity (Rao et al., (2004).

The molecular structure of the title compound is composed by the ferrocenyl moiety and the 2'-hydroxyphenyl group joined by the organic prop-2-en-1-one spacer.

The dihedral angle between the two aromatic rings joined by the conjugated organic spacer is 12.01 (9)°. The distances between the C5H5- and C5H4-ring centroids to the iron atom are 1.653 (1)Å and 1.648 (1)Å, respectively. Both cyclopentadienyl rings of the ferrocenyl group are coplanar with a dihedral angle 1.6 (1)°. These metrical parameters are typical of the η5···Fe···η5 coordination of the ferrocenyl moiety.

The main feature of the structure is an intramolecular hydrogen bond O—H···O between the hydroxyl and the carbonyl group forming a six-membered ring helping the molecular stabilization, this characteristic has been previously observed in other 2'-hydroxy chalcones (Escobar et al., 2008). This intramolecular bond leads the carbonyl group to display an S-cis-configuration in relation to the double bond. The double bond distance CC is 1.325 (3)Å and exhibits a cis-conformation.

Finally, no intermolecular hydrogen bonds are observed in the crystalline packing of title compound.

Related literature top

For biological activity of chalcones, see: Liu et al. (2001); Rao et al. (2004); Wu et al. (2002, 2006); Xiang et al. (2006); Zsoldos-Mady et al. (2006). For their non-linear optical properties, see: Shettigar et al. (2006). For electro-active fluorescent materials, see: Belavaux-Nicot et al. (2005). For related structures, see: Escobar et al. (2008). For metallocene derivatives, see: Kudar et al. (2005).

Experimental top

The title compound was prepared as follows: a solution of potassium hydroxide (2 g in 30 ml methanol) was added to a mixture of ferrocenecarboxaldehyde (0.6 g 4.4 mmol) and 2-hydroxyacetophenone (0.94 g 4.4 mmol). The mixture was allowed to react for three days under continuous stirring. Then, methanol was evaporated in a rotatory evaporator and the crude reaction mixture was submitted to column chromatography (silica gel 60, Ethyl acetate: Hexane = 1: 20 v/v). The combined fractions containing the title compound were evaporated in vacuo, redissolved in methanol, and allowed to crystallize, to give violet crystals (65%), mp. 405.3–406.6 °C. IR (KBr) cm-1: 3456 (OH), 3105 (C—H), 3086 (C—H), 1630 (CO). 1H NMR (CDCl3, 400 MHz): δ 4.22 (5H, s, C5H5), 4.56 (2H, s, –C5H4), 4.65 (2H, s, –C5H4), 6.95 (1H, t, J = 7.2 Hz, Harom), 7.26 (1H, d, J = 15 Hz, CH), 7.45 (1H, t, J = 7.2 Hz, Harom), 7.88 (1H, d, J = 9.1 Hz, Harom), 7.92 (1H, d, J = 15 Hz, CH), 13.08 (1H, s, OH). 13C NMR (CDCl3, 400 MHz): δ: 31.34, 69.51, 69.71, 70.36, 72.27, 117.15, 119.00, 119.10, 129.79, 136.30, 148.36, 164.03, 193.17.

Refinement top

The hydrogen atoms positions were calculated after each cycle of refinement with using a riding model with C—H distances in the range 0.93Å and 0.98Å. The Uiso(H) values were set equal to 1.2Ueq(C). The exception were the hydroxyl hydrogen atom which were located in the Fourier and then refined with the O—H distance constrained to be 0.82Å and the Ueq free to refine.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are presented at 30% probability level. H atoms are shown as a small spheres of arbitrary radius.
(E)-3-Ferrocenyl-1-(2-hydroxyphenyl)-prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C14H11O2)]F(000) = 688
Mr = 332.17Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4215 reflections
a = 10.8264 (12) Åθ = 2.5–25.7°
b = 12.0358 (13) ŵ = 1.01 mm1
c = 11.8150 (13) ÅT = 298 K
β = 103.839 (2)°Prism, violet
V = 1494.9 (3) Å30.25 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3319 independent reflections
Radiation source: fine-focus sealed tube2734 reflections with I > 2σ(I)
Parallel, graphite monochromatorRint = 0.016
ϕ– and ω–scansθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SABABS; Bruker, 2000)
h = 1413
Tmin = 0.741, Tmax = 0.859k = 1515
11654 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.5241P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.69 e Å3
16 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C5H5)(C14H11O2)]V = 1494.9 (3) Å3
Mr = 332.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8264 (12) ŵ = 1.01 mm1
b = 12.0358 (13) ÅT = 298 K
c = 11.8150 (13) Å0.25 × 0.19 × 0.15 mm
β = 103.839 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(SABABS; Bruker, 2000)
2734 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.859Rint = 0.016
11654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04316 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.69 e Å3
3319 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω-scans each set at different ϕ- and/or 2θ-angles and each scan (10.00 s exposure) covering -0.300° in ω. The crystal to detector distance was 6.275 cm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.61269 (3)0.33755 (3)0.17323 (3)0.05064 (15)
C10.5167 (5)0.2765 (4)0.2865 (3)0.1144 (12)
H10.52380.29990.36730.137*
C20.5826 (4)0.1914 (3)0.2476 (4)0.1009 (10)
H20.64890.14570.29730.121*
C30.5421 (3)0.1817 (3)0.1306 (3)0.0842 (8)
H30.57500.12850.08230.101*
C40.4497 (3)0.2579 (3)0.0903 (3)0.0835 (8)
H40.40600.26820.00820.100*
C50.4286 (4)0.3200 (3)0.1808 (5)0.1027 (10)
H50.36560.37930.17670.123*
C60.7415 (2)0.44963 (19)0.2599 (2)0.0506 (5)
C70.8045 (2)0.3637 (2)0.2124 (2)0.0532 (5)
H70.86980.31340.25650.064*
C80.7558 (2)0.3642 (2)0.0898 (2)0.0584 (6)
H80.78080.31320.03450.070*
C90.6634 (2)0.4489 (2)0.0607 (2)0.0596 (6)
H90.61370.46700.01790.072*
C100.6540 (2)0.5021 (2)0.1649 (2)0.0556 (6)
H100.59720.56400.17110.067*
C110.7555 (2)0.4760 (2)0.3823 (2)0.0545 (6)
H110.69980.52810.40050.065*
C120.8411 (2)0.4321 (2)0.4701 (2)0.0554 (6)
H120.89940.38110.45430.066*
C130.8463 (2)0.4620 (2)0.5922 (2)0.0562 (6)
C140.9390 (2)0.40822 (19)0.6881 (2)0.0531 (5)
C150.9355 (3)0.4298 (2)0.8046 (2)0.0617 (6)
C161.0187 (3)0.3761 (3)0.8961 (2)0.0715 (8)
H161.01320.38870.97240.086*
C171.1078 (3)0.3054 (3)0.8743 (3)0.0740 (8)
H171.16430.27090.93610.089*
C181.1157 (3)0.2841 (3)0.7616 (3)0.0693 (7)
H181.17760.23580.74790.083*
C191.0325 (2)0.3339 (2)0.6694 (2)0.0567 (6)
H191.03800.31840.59370.068*
O10.7687 (2)0.52989 (18)0.61393 (17)0.0793 (6)
O20.8498 (3)0.5003 (2)0.83039 (17)0.0900 (7)
H2A0.80620.52690.77000.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0501 (2)0.0550 (2)0.0459 (2)0.00450 (14)0.00977 (15)0.00348 (13)
C10.141 (3)0.145 (3)0.0747 (14)0.082 (2)0.0616 (16)0.0231 (17)
C20.099 (2)0.099 (2)0.0958 (17)0.0357 (15)0.0057 (16)0.0430 (17)
C30.081 (2)0.0678 (17)0.1030 (17)0.0195 (12)0.0212 (16)0.0147 (15)
C40.0549 (15)0.109 (2)0.0805 (15)0.0214 (12)0.0050 (12)0.0021 (14)
C50.074 (2)0.097 (2)0.159 (3)0.0151 (14)0.071 (2)0.0085 (19)
C60.0511 (12)0.0509 (12)0.0483 (12)0.0034 (10)0.0088 (10)0.0028 (10)
C70.0466 (12)0.0587 (13)0.0531 (13)0.0017 (10)0.0098 (10)0.0019 (10)
C80.0563 (14)0.0698 (15)0.0527 (13)0.0011 (12)0.0202 (11)0.0004 (12)
C90.0608 (14)0.0674 (16)0.0486 (13)0.0015 (12)0.0093 (11)0.0130 (11)
C100.0566 (13)0.0506 (13)0.0579 (14)0.0029 (11)0.0102 (11)0.0079 (10)
C110.0583 (14)0.0496 (12)0.0553 (13)0.0034 (11)0.0131 (11)0.0032 (10)
C120.0608 (14)0.0560 (13)0.0484 (13)0.0028 (11)0.0110 (11)0.0026 (10)
C130.0636 (15)0.0491 (12)0.0536 (13)0.0032 (11)0.0094 (11)0.0047 (10)
C140.0602 (14)0.0474 (12)0.0492 (12)0.0122 (10)0.0082 (10)0.0038 (10)
C150.0763 (17)0.0538 (14)0.0520 (13)0.0079 (13)0.0096 (12)0.0074 (11)
C160.087 (2)0.0692 (17)0.0514 (15)0.0145 (16)0.0036 (14)0.0036 (13)
C170.0640 (17)0.0815 (19)0.0657 (17)0.0105 (15)0.0056 (14)0.0130 (15)
C180.0521 (14)0.0751 (18)0.0782 (19)0.0040 (13)0.0104 (13)0.0095 (15)
C190.0525 (14)0.0614 (15)0.0557 (14)0.0074 (11)0.0121 (11)0.0005 (11)
O10.1007 (15)0.0734 (13)0.0587 (11)0.0266 (12)0.0092 (11)0.0091 (10)
O20.1251 (19)0.0873 (15)0.0560 (11)0.0263 (14)0.0186 (12)0.0127 (10)
Geometric parameters (Å, º) top
Fe1—C12.020 (3)C7—H70.9800
Fe1—C52.027 (3)C8—C91.412 (4)
Fe1—C22.027 (3)C8—H80.9800
Fe1—C62.032 (2)C9—C101.413 (4)
Fe1—C102.038 (2)C9—H90.9800
Fe1—C42.041 (3)C10—H100.9800
Fe1—C72.041 (2)C11—C121.325 (3)
Fe1—C32.042 (3)C11—H110.9300
Fe1—C82.051 (2)C12—C131.476 (3)
Fe1—C92.053 (2)C12—H120.9300
C1—C21.388 (6)C13—O11.242 (3)
C1—C51.474 (6)C13—C141.471 (3)
C1—H10.9800C14—C191.407 (4)
C2—C31.352 (5)C14—C151.411 (3)
C2—H20.9800C15—O21.346 (4)
C3—C41.357 (5)C15—C161.389 (4)
C3—H30.9800C16—C171.357 (5)
C4—C51.369 (5)C16—H160.9300
C4—H40.9800C17—C181.379 (4)
C5—H50.9800C17—H170.9300
C6—C71.426 (3)C18—C191.374 (4)
C6—C101.431 (3)C18—H180.9300
C6—C111.453 (3)C19—H190.9300
C7—C81.419 (4)O2—H2A0.8200
C1—Fe1—C542.73 (19)C5—C4—H4125.0
C1—Fe1—C240.12 (18)Fe1—C4—H4125.0
C5—Fe1—C268.23 (17)C4—C5—C1105.9 (4)
C1—Fe1—C6107.93 (13)C4—C5—Fe170.88 (18)
C5—Fe1—C6127.61 (14)C1—C5—Fe168.4 (2)
C2—Fe1—C6121.30 (13)C4—C5—H5127.1
C1—Fe1—C10122.65 (16)C1—C5—H5127.1
C5—Fe1—C10109.42 (13)Fe1—C5—H5127.1
C2—Fe1—C10157.53 (15)C7—C6—C10107.5 (2)
C6—Fe1—C1041.17 (9)C7—C6—C11127.2 (2)
C1—Fe1—C467.95 (15)C10—C6—C11125.2 (2)
C5—Fe1—C439.32 (15)C7—C6—Fe169.85 (13)
C2—Fe1—C465.85 (15)C10—C6—Fe169.62 (13)
C6—Fe1—C4164.59 (13)C11—C6—Fe1122.83 (16)
C10—Fe1—C4127.41 (13)C8—C7—C6107.6 (2)
C1—Fe1—C7124.25 (16)C8—C7—Fe170.09 (14)
C5—Fe1—C7164.50 (16)C6—C7—Fe169.18 (13)
C2—Fe1—C7107.18 (14)C8—C7—H7126.2
C6—Fe1—C740.97 (9)C6—C7—H7126.2
C10—Fe1—C768.79 (10)Fe1—C7—H7126.2
C4—Fe1—C7153.78 (13)C9—C8—C7108.7 (2)
C1—Fe1—C366.89 (16)C9—C8—Fe169.97 (14)
C5—Fe1—C366.53 (15)C7—C8—Fe169.34 (14)
C2—Fe1—C338.79 (16)C9—C8—H8125.6
C6—Fe1—C3154.81 (13)C7—C8—H8125.6
C10—Fe1—C3162.56 (13)Fe1—C8—H8125.6
C4—Fe1—C338.82 (14)C8—C9—C10108.0 (2)
C7—Fe1—C3119.85 (13)C8—C9—Fe169.78 (14)
C1—Fe1—C8160.64 (19)C10—C9—Fe169.20 (14)
C5—Fe1—C8154.32 (17)C8—C9—H9126.0
C2—Fe1—C8124.21 (17)C10—C9—H9126.0
C6—Fe1—C868.40 (10)Fe1—C9—H9126.0
C10—Fe1—C867.98 (11)C9—C10—C6108.1 (2)
C4—Fe1—C8120.54 (13)C9—C10—Fe170.40 (15)
C7—Fe1—C840.57 (10)C6—C10—Fe169.21 (13)
C3—Fe1—C8107.83 (13)C9—C10—H10125.9
C1—Fe1—C9157.92 (19)C6—C10—H10125.9
C5—Fe1—C9120.96 (16)Fe1—C10—H10125.9
C2—Fe1—C9160.54 (17)C12—C11—C6125.4 (2)
C6—Fe1—C968.60 (10)C12—C11—H11117.3
C10—Fe1—C940.39 (10)C6—C11—H11117.3
C4—Fe1—C9109.26 (12)C11—C12—C13121.6 (2)
C7—Fe1—C968.36 (10)C11—C12—H12119.2
C3—Fe1—C9125.61 (14)C13—C12—H12119.2
C8—Fe1—C940.25 (10)O1—C13—C14120.1 (2)
C2—C1—C5105.2 (3)O1—C13—C12119.6 (2)
C2—C1—Fe170.23 (19)C14—C13—C12120.3 (2)
C5—C1—Fe168.89 (18)C19—C14—C15117.3 (2)
C2—C1—H1127.4C19—C14—C13122.9 (2)
C5—C1—H1127.4C15—C14—C13119.8 (2)
Fe1—C1—H1127.4O2—C15—C16118.1 (3)
C3—C2—C1109.6 (4)O2—C15—C14121.2 (2)
C3—C2—Fe171.20 (19)C16—C15—C14120.6 (3)
C1—C2—Fe169.6 (2)C17—C16—C15120.2 (3)
C3—C2—H2125.2C17—C16—H16119.9
C1—C2—H2125.2C15—C16—H16119.9
Fe1—C2—H2125.2C16—C17—C18120.7 (3)
C2—C3—C4109.4 (4)C16—C17—H17119.6
C2—C3—Fe170.0 (2)C18—C17—H17119.6
C4—C3—Fe170.52 (19)C19—C18—C17120.3 (3)
C2—C3—H3125.3C19—C18—H18119.9
C4—C3—H3125.3C17—C18—H18119.9
Fe1—C3—H3125.3C18—C19—C14120.9 (3)
C3—C4—C5110.0 (4)C18—C19—H19119.6
C3—C4—Fe170.66 (18)C14—C19—H19119.6
C5—C4—Fe169.8 (2)C15—O2—H2A109.5
C3—C4—H4125.0
C5—Fe1—C1—C2115.9 (3)C5—Fe1—C6—C1143.5 (3)
C6—Fe1—C1—C2117.6 (2)C2—Fe1—C6—C1141.9 (3)
C10—Fe1—C1—C2160.5 (2)C10—Fe1—C6—C11119.4 (3)
C4—Fe1—C1—C278.2 (2)C4—Fe1—C6—C1171.9 (5)
C7—Fe1—C1—C275.3 (3)C7—Fe1—C6—C11122.0 (3)
C3—Fe1—C1—C236.0 (2)C3—Fe1—C6—C1173.7 (4)
C8—Fe1—C1—C241.8 (5)C8—Fe1—C6—C11159.8 (2)
C9—Fe1—C1—C2165.2 (3)C9—Fe1—C6—C11156.8 (2)
C2—Fe1—C1—C5115.9 (3)C10—C6—C7—C80.1 (3)
C6—Fe1—C1—C5126.5 (2)C11—C6—C7—C8176.3 (2)
C10—Fe1—C1—C583.6 (2)Fe1—C6—C7—C859.81 (17)
C4—Fe1—C1—C537.7 (2)C10—C6—C7—Fe159.67 (16)
C7—Fe1—C1—C5168.8 (2)C11—C6—C7—Fe1116.5 (2)
C3—Fe1—C1—C579.8 (2)C1—Fe1—C7—C8163.7 (2)
C8—Fe1—C1—C5157.7 (3)C5—Fe1—C7—C8166.8 (5)
C9—Fe1—C1—C549.4 (4)C2—Fe1—C7—C8122.9 (2)
C5—C1—C2—C30.2 (4)C6—Fe1—C7—C8118.8 (2)
Fe1—C1—C2—C360.2 (2)C10—Fe1—C7—C880.49 (16)
C5—C1—C2—Fe160.4 (2)C4—Fe1—C7—C852.9 (3)
C1—Fe1—C2—C3120.3 (4)C3—Fe1—C7—C882.7 (2)
C5—Fe1—C2—C379.2 (3)C9—Fe1—C7—C836.95 (16)
C6—Fe1—C2—C3159.1 (2)C1—Fe1—C7—C677.5 (2)
C10—Fe1—C2—C3167.5 (3)C5—Fe1—C7—C648.0 (5)
C4—Fe1—C2—C336.4 (2)C2—Fe1—C7—C6118.3 (2)
C7—Fe1—C2—C3116.5 (2)C10—Fe1—C7—C638.31 (14)
C8—Fe1—C2—C375.2 (3)C4—Fe1—C7—C6171.7 (3)
C9—Fe1—C2—C343.0 (5)C3—Fe1—C7—C6158.51 (17)
C5—Fe1—C2—C141.1 (3)C8—Fe1—C7—C6118.8 (2)
C6—Fe1—C2—C180.7 (3)C9—Fe1—C7—C681.85 (15)
C10—Fe1—C2—C147.3 (5)C6—C7—C8—C90.2 (3)
C4—Fe1—C2—C183.9 (3)Fe1—C7—C8—C959.06 (18)
C7—Fe1—C2—C1123.2 (2)C6—C7—C8—Fe159.24 (17)
C3—Fe1—C2—C1120.3 (4)C1—Fe1—C8—C9164.6 (4)
C8—Fe1—C2—C1164.5 (2)C5—Fe1—C8—C951.8 (4)
C9—Fe1—C2—C1163.3 (3)C2—Fe1—C8—C9164.04 (19)
C1—C2—C3—C40.4 (4)C6—Fe1—C8—C981.97 (16)
Fe1—C2—C3—C459.7 (2)C10—Fe1—C8—C937.47 (15)
C1—C2—C3—Fe159.3 (2)C4—Fe1—C8—C984.0 (2)
C1—Fe1—C3—C237.2 (3)C7—Fe1—C8—C9120.1 (2)
C5—Fe1—C3—C284.0 (3)C3—Fe1—C8—C9124.51 (19)
C6—Fe1—C3—C245.8 (4)C1—Fe1—C8—C744.5 (5)
C10—Fe1—C3—C2164.0 (4)C5—Fe1—C8—C7171.9 (3)
C4—Fe1—C3—C2120.3 (3)C2—Fe1—C8—C775.8 (2)
C7—Fe1—C3—C280.2 (3)C6—Fe1—C8—C738.16 (14)
C8—Fe1—C3—C2122.9 (3)C10—Fe1—C8—C782.67 (16)
C9—Fe1—C3—C2163.8 (2)C4—Fe1—C8—C7155.85 (18)
C1—Fe1—C3—C483.1 (3)C3—Fe1—C8—C7115.35 (18)
C5—Fe1—C3—C436.3 (2)C9—Fe1—C8—C7120.1 (2)
C2—Fe1—C3—C4120.3 (3)C7—C8—C9—C100.1 (3)
C6—Fe1—C3—C4166.1 (2)Fe1—C8—C9—C1058.82 (18)
C10—Fe1—C3—C443.7 (5)C7—C8—C9—Fe158.68 (18)
C7—Fe1—C3—C4159.51 (19)C1—Fe1—C9—C8166.5 (3)
C8—Fe1—C3—C4116.9 (2)C5—Fe1—C9—C8156.6 (2)
C9—Fe1—C3—C475.9 (2)C2—Fe1—C9—C843.0 (4)
C2—C3—C4—C50.5 (4)C6—Fe1—C9—C881.43 (16)
Fe1—C3—C4—C558.9 (2)C10—Fe1—C9—C8119.5 (2)
C2—C3—C4—Fe159.4 (2)C4—Fe1—C9—C8114.86 (18)
C1—Fe1—C4—C380.1 (3)C7—Fe1—C9—C837.23 (15)
C5—Fe1—C4—C3121.0 (3)C3—Fe1—C9—C874.8 (2)
C2—Fe1—C4—C336.4 (2)C1—Fe1—C9—C1047.0 (4)
C6—Fe1—C4—C3157.4 (4)C5—Fe1—C9—C1083.9 (2)
C10—Fe1—C4—C3164.9 (2)C2—Fe1—C9—C10162.6 (4)
C7—Fe1—C4—C343.4 (4)C6—Fe1—C9—C1038.09 (15)
C8—Fe1—C4—C380.4 (2)C4—Fe1—C9—C10125.63 (18)
C9—Fe1—C4—C3123.3 (2)C7—Fe1—C9—C1082.28 (16)
C1—Fe1—C4—C540.9 (3)C3—Fe1—C9—C10165.73 (17)
C2—Fe1—C4—C584.6 (3)C8—Fe1—C9—C10119.5 (2)
C6—Fe1—C4—C536.5 (6)C8—C9—C10—C60.0 (3)
C10—Fe1—C4—C574.1 (3)Fe1—C9—C10—C659.13 (17)
C7—Fe1—C4—C5164.4 (3)C8—C9—C10—Fe159.18 (18)
C3—Fe1—C4—C5121.0 (3)C7—C6—C10—C90.1 (3)
C8—Fe1—C4—C5158.6 (2)C11—C6—C10—C9176.3 (2)
C9—Fe1—C4—C5115.7 (3)Fe1—C6—C10—C959.87 (18)
C3—C4—C5—C10.3 (4)C7—C6—C10—Fe159.81 (16)
Fe1—C4—C5—C159.7 (2)C11—C6—C10—Fe1116.5 (2)
C3—C4—C5—Fe159.4 (2)C1—Fe1—C10—C9160.9 (2)
C2—C1—C5—C40.1 (4)C5—Fe1—C10—C9115.3 (2)
Fe1—C1—C5—C461.4 (2)C2—Fe1—C10—C9164.8 (4)
C2—C1—C5—Fe161.3 (2)C6—Fe1—C10—C9119.3 (2)
C1—Fe1—C5—C4116.6 (3)C4—Fe1—C10—C975.0 (2)
C2—Fe1—C5—C478.0 (3)C7—Fe1—C10—C981.12 (16)
C6—Fe1—C5—C4168.50 (19)C3—Fe1—C10—C942.0 (5)
C10—Fe1—C5—C4125.9 (2)C8—Fe1—C10—C937.34 (15)
C7—Fe1—C5—C4153.6 (4)C1—Fe1—C10—C679.8 (2)
C3—Fe1—C5—C435.9 (2)C5—Fe1—C10—C6125.4 (2)
C8—Fe1—C5—C446.5 (4)C2—Fe1—C10—C645.6 (4)
C9—Fe1—C5—C482.8 (3)C4—Fe1—C10—C6165.71 (16)
C2—Fe1—C5—C138.6 (2)C7—Fe1—C10—C638.13 (14)
C6—Fe1—C5—C174.9 (3)C3—Fe1—C10—C6161.2 (4)
C10—Fe1—C5—C1117.5 (2)C8—Fe1—C10—C681.91 (16)
C4—Fe1—C5—C1116.6 (3)C9—Fe1—C10—C6119.3 (2)
C7—Fe1—C5—C136.9 (6)C7—C6—C11—C128.4 (4)
C3—Fe1—C5—C180.8 (3)C10—C6—C11—C12176.1 (2)
C8—Fe1—C5—C1163.1 (3)Fe1—C6—C11—C1296.9 (3)
C9—Fe1—C5—C1160.6 (2)C6—C11—C12—C13178.5 (2)
C1—Fe1—C6—C7122.0 (2)C11—C12—C13—O10.1 (4)
C5—Fe1—C6—C7165.5 (2)C11—C12—C13—C14177.5 (2)
C2—Fe1—C6—C780.0 (2)O1—C13—C14—C19177.5 (2)
C10—Fe1—C6—C7118.6 (2)C12—C13—C14—C195.2 (4)
C4—Fe1—C6—C7166.1 (4)O1—C13—C14—C153.2 (4)
C3—Fe1—C6—C748.3 (3)C12—C13—C14—C15174.2 (2)
C8—Fe1—C6—C737.80 (15)C19—C14—C15—O2179.5 (2)
C9—Fe1—C6—C781.21 (15)C13—C14—C15—O21.1 (4)
C1—Fe1—C6—C10119.4 (2)C19—C14—C15—C162.2 (4)
C5—Fe1—C6—C1075.9 (2)C13—C14—C15—C16177.2 (2)
C2—Fe1—C6—C10161.4 (2)O2—C15—C16—C17179.1 (3)
C4—Fe1—C6—C1047.5 (5)C14—C15—C16—C172.6 (4)
C7—Fe1—C6—C10118.6 (2)C15—C16—C17—C181.3 (5)
C3—Fe1—C6—C10166.9 (3)C16—C17—C18—C190.4 (5)
C8—Fe1—C6—C1080.80 (16)C17—C18—C19—C140.7 (4)
C9—Fe1—C6—C1037.39 (15)C15—C14—C19—C180.6 (4)
C1—Fe1—C6—C110.0 (3)C13—C14—C19—C18178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.792.523 (3)148

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H11O2)]
Mr332.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.8264 (12), 12.0358 (13), 11.8150 (13)
β (°) 103.839 (2)
V3)1494.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.25 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SABABS; Bruker, 2000)
Tmin, Tmax0.741, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
11654, 3319, 2734
Rint0.016
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.02
No. of reflections3319
No. of parameters199
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.792.523 (3)147.7
 

Acknowledgements

The authors gratefully acknowledge generous financial support from FONDECYT (1080147 and 11080044).

References

First citationBelavaux-Nicot, B., Maynadie, J., Lavabre, D., Lepetit, C. & Donnadieu, B. (2005). Eur. J. Inorg. Chem. pp. 2493–2505.  Google Scholar
First citationBruker (2000). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscobar, C. A., Vega, A., Sicker, D. & Ibañez, A. (2008). Acta Cryst. E64, o1834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKudar, V., Zsoldos-Mady, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem. 690, 4018–4026.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, Y. K., Fang, S.-H. & Tzeng, Y.-M. (2004). Bioorg. Med. Chem. 12, 2679–2686.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationWu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299–2302.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiang, W., Tiekinke, R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Soo, B. K., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27,175–187.  Web of Science PubMed Google Scholar
First citationZsoldos-Mady, V., Csampai, A., Szabo, R., Meszaros-Alapi, E., Pasztor, J., Hudecz, F. & Sohar, P. (2006). Chem. Med. Chem. 1, 1119–1125.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds