metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­(iso­quinoline-κN)cobalt(II)]-μ-succinato-κ2O1:O4]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 16 June 2010; accepted 20 June 2010; online 26 June 2010)

In the title compound, [Co(C4H4O4)(C9H7N)2(H2O)2]n, the CoII cation, located on an inversion center, is coordinated by two succinate anions, two isoquinoline ligands and two water mol­ecules in a distorted octa­hedral geometry. The succinate anion, located across another inversion center, bridges the Co cations, forming polymeric chains running along the b axis. The partially overlapped arrangement of parallel isoquinoline ring systems of adjacent polymeric chains and the shorter face-to-face distance of 3.402 (6) Å indicates the existence of weak ππ stacking in the crystal structure. Classical intra- and inter­molecular O—H⋯O hydrogen bonding and weak non-classical inter­molecular C—H⋯O hydrogen bonding help to stabilize the crystal structure.

Related literature

For general background to ππ stacking, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For two related isoquinoline complexes, see: Li et al. (2009a[Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m881.],b[Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m1613.]). For a related polymeric NiII complex bridged by succinate anions, see: Liu et al. (2003[Liu, Y., Gu, J.-M. & Xu, D.-J. (2003). Acta Cryst. E59, m330-m332.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H4O4)(C9H7N)2(H2O)2]

  • Mr = 469.35

  • Monoclinic, P 21 /n

  • a = 11.258 (4) Å

  • b = 9.023 (5) Å

  • c = 11.390 (7) Å

  • β = 114.667 (5)°

  • V = 1051.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 294 K

  • 0.24 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.788, Tmax = 0.862

  • 4907 measured reflections

  • 1891 independent reflections

  • 1165 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.057

  • S = 0.82

  • 1891 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.90 1.89 2.774 (3) 169
O1W—H1B⋯O2 0.87 1.90 2.689 (3) 150
C5—H5⋯O2ii 0.93 2.56 3.487 (5) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The π···π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π···π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

A part of the polymeric molecular structure is shown in Fig. 1. The CoII cation located on an inversion center is coordinated by two succinate anions, two isoqiunoline ligands and two water moleculaes with a distorted octahedral geometry. The succinate anion is located across another inversion center, and bridges Co cations to form the one-dimensional polymeric chains running along the crystallographic b axis, similar to that found in a NiII complex bridged by siccinate anions (Liu et al., 2003). The carboxyl group is oriented with respect to the carbon skeleton of succinate anion at a dihedral angle of 28.4 (2)°.

The partially overlapped arrangement of parallel isoqiunoline ring systems of adjacent polymeric chains related by a symmetry operation of (1-x, 1-y, -z) and shorter face-to-face distance of 3.402 (6)Å indicate the existence of weak π···π stacking in the crystal structure. Classical intra- and intermolecualr O–H···O hydrogen bonding and weak non-classical intermolecular C–H···O hydrogen bonding help to stabilize the crystal structure (Table 1).

Related literature top

For general background to ππ stacking, see: Deisenhofer & Michel, (1989); Su & Xu, (2004); Xu et al. (2007). For two related isoquinoline complexes, see: Li et al. (2009a,b). For a related polymeric NiII complex bridged by succinate anions, see: Liu et al. (2003).

Experimental top

The CoCl2.6H2O (0.48 g, 2 mmol), succinic acid (0.24 g, 2 mmol), NaOH (0.16 g, 4 mmol) and isoquinoline (0.23 ml, 2 mmol) were dissolved in a water/ethanol solution (20 ml, 1:1). The solution was refluxed for 4 h. The reaction mixture was cooled to room temperature and filtered. The single crystals were obtained from the filtrate after two weeks.

Refinement top

Water H atoms were located in a difference Fourier map and refined as-riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C–H = 0.93Å (aromatic) and 0.97Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of the polymeric molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1-x, 1-y, 1-z.
catena-Poly[[diaquabis(isoquinoline-κN)cobalt(II)]-µ- succinato-κ2O1:O4] top
Crystal data top
[Co(C4H4O4)(C9H7N)2(H2O)2]F(000) = 486
Mr = 469.35Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2408 reflections
a = 11.258 (4) Åθ = 3.5–24.6°
b = 9.023 (5) ŵ = 0.86 mm1
c = 11.390 (7) ÅT = 294 K
β = 114.667 (5)°Prism, pink
V = 1051.4 (9) Å30.24 × 0.14 × 0.12 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1891 independent reflections
Radiation source: fine-focus sealed tube1165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω–scanh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 108
Tmin = 0.788, Tmax = 0.862l = 1313
4907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
1891 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Co(C4H4O4)(C9H7N)2(H2O)2]V = 1051.4 (9) Å3
Mr = 469.35Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.258 (4) ŵ = 0.86 mm1
b = 9.023 (5) ÅT = 294 K
c = 11.390 (7) Å0.24 × 0.14 × 0.12 mm
β = 114.667 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1891 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1165 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.862Rint = 0.040
4907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 0.82Δρmax = 0.23 e Å3
1891 reflectionsΔρmin = 0.23 e Å3
142 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50000.50000.03143 (14)
N10.5562 (2)0.5432 (2)0.34392 (16)0.0394 (6)
O10.50790 (18)0.27225 (15)0.47973 (14)0.0392 (4)
O20.31969 (17)0.21732 (17)0.31456 (15)0.0434 (5)
O1W0.29833 (13)0.50231 (19)0.37221 (11)0.0369 (4)
H1A0.26730.56770.30700.044*
H1B0.28460.42130.32630.044*
C10.6531 (3)0.4608 (3)0.3341 (2)0.0513 (8)
H10.69400.38890.39650.062*
C20.6927 (3)0.4788 (4)0.2376 (2)0.0572 (8)
H20.76000.42050.23570.069*
C30.6326 (3)0.5844 (3)0.1411 (2)0.0462 (7)
C40.6658 (3)0.6069 (4)0.0350 (3)0.0647 (9)
H40.73140.55060.02740.078*
C50.6012 (4)0.7107 (4)0.0549 (3)0.0698 (10)
H50.62280.72460.12460.084*
C60.5030 (4)0.7973 (4)0.0451 (3)0.0700 (10)
H60.46030.86810.10800.084*
C70.4689 (3)0.7791 (3)0.0560 (2)0.0583 (9)
H70.40340.83720.06200.070*
C80.5334 (3)0.6720 (3)0.1506 (2)0.0410 (7)
C90.4999 (3)0.6448 (3)0.2554 (2)0.0399 (6)
H90.43430.70220.26200.048*
C100.4249 (2)0.1817 (2)0.4066 (2)0.0294 (6)
C110.4568 (2)0.0192 (2)0.43056 (17)0.0335 (6)
H11A0.49990.01280.37680.040*
H11B0.37580.03600.40390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0357 (3)0.0151 (2)0.0285 (2)0.0009 (3)0.00145 (17)0.0019 (2)
N10.0390 (13)0.0305 (13)0.0367 (11)0.0033 (10)0.0040 (9)0.0038 (9)
O10.0391 (11)0.0153 (8)0.0426 (10)0.0025 (9)0.0035 (8)0.0015 (8)
O20.0444 (12)0.0209 (10)0.0399 (9)0.0028 (8)0.0073 (8)0.0005 (8)
O1W0.0410 (9)0.0205 (8)0.0306 (7)0.0015 (10)0.0034 (6)0.0011 (8)
C10.0472 (19)0.044 (2)0.0487 (15)0.0098 (15)0.0061 (13)0.0064 (13)
C20.0420 (17)0.059 (2)0.0639 (17)0.0070 (17)0.0159 (14)0.0038 (17)
C30.0436 (19)0.0442 (18)0.0443 (15)0.0146 (15)0.0119 (13)0.0090 (14)
C40.061 (2)0.073 (2)0.0654 (19)0.028 (2)0.0313 (18)0.0158 (19)
C50.086 (3)0.070 (3)0.056 (2)0.041 (2)0.033 (2)0.0074 (19)
C60.096 (3)0.056 (2)0.0468 (18)0.020 (2)0.0196 (19)0.0072 (16)
C70.072 (2)0.0434 (19)0.0503 (18)0.0043 (17)0.0166 (17)0.0055 (15)
C80.0474 (19)0.0300 (15)0.0382 (14)0.0077 (14)0.0104 (12)0.0015 (13)
C90.0428 (17)0.0304 (15)0.0383 (14)0.0012 (13)0.0087 (12)0.0010 (13)
C100.0384 (16)0.0185 (13)0.0264 (11)0.0001 (13)0.0087 (11)0.0025 (11)
C110.0413 (14)0.0142 (13)0.0323 (11)0.0007 (12)0.0030 (9)0.0003 (11)
Geometric parameters (Å, º) top
Co—N1i2.157 (2)C3—C81.409 (4)
Co—N12.157 (2)C3—C41.420 (4)
Co—O12.0740 (18)C4—C51.354 (4)
Co—O1i2.0740 (18)C4—H40.9300
Co—O1Wi2.1249 (14)C5—C61.397 (5)
Co—O1W2.1249 (14)C5—H50.9300
N1—C91.314 (3)C6—C71.367 (4)
N1—C11.363 (3)C6—H60.9300
O1—C101.259 (3)C7—C81.404 (4)
O2—C101.253 (3)C7—H70.9300
O1W—H1A0.8975C8—C91.416 (3)
O1W—H1B0.8743C9—H90.9300
C1—C21.357 (3)C10—C111.507 (3)
C1—H10.9300C11—C11ii1.511 (4)
C2—C31.398 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
O1—Co—O1i180.0C2—C3—C4123.6 (3)
O1—Co—O1Wi89.04 (7)C8—C3—C4118.9 (3)
O1i—Co—O1Wi90.96 (7)C5—C4—C3119.6 (3)
O1—Co—O1W90.96 (7)C5—C4—H4120.2
O1i—Co—O1W89.04 (7)C3—C4—H4120.2
O1Wi—Co—O1W180.0C4—C5—C6121.3 (3)
O1—Co—N1i87.33 (7)C4—C5—H5119.4
O1i—Co—N1i92.67 (7)C6—C5—H5119.4
O1Wi—Co—N1i91.76 (7)C7—C6—C5120.7 (3)
O1W—Co—N1i88.24 (7)C7—C6—H6119.7
O1—Co—N192.67 (7)C5—C6—H6119.7
O1i—Co—N187.33 (7)C6—C7—C8119.5 (3)
O1Wi—Co—N188.24 (7)C6—C7—H7120.3
O1W—Co—N191.76 (7)C8—C7—H7120.3
N1i—Co—N1180.0C7—C8—C3120.0 (2)
C9—N1—C1117.7 (2)C7—C8—C9122.1 (3)
C9—N1—Co123.03 (19)C3—C8—C9117.8 (2)
C1—N1—Co119.26 (16)N1—C9—C8123.7 (3)
C10—O1—Co131.47 (16)N1—C9—H9118.2
Co—O1W—H1A120.6C8—C9—H9118.2
Co—O1W—H1B105.9O2—C10—O1124.7 (2)
H1A—O1W—H1B98.3O2—C10—C11118.2 (2)
C2—C1—N1123.1 (2)O1—C10—C11117.2 (2)
C2—C1—H1118.5C10—C11—C11ii114.4 (2)
N1—C1—H1118.5C10—C11—H11A108.7
C1—C2—C3120.3 (3)C11ii—C11—H11A108.7
C1—C2—H2119.9C10—C11—H11B108.7
C3—C2—H2119.9C11ii—C11—H11B108.7
C2—C3—C8117.4 (2)H11A—C11—H11B107.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.901.892.774 (3)169
O1W—H1B···O20.871.902.689 (3)150
C5—H5···O2iv0.932.563.487 (5)176
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C4H4O4)(C9H7N)2(H2O)2]
Mr469.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.258 (4), 9.023 (5), 11.390 (7)
β (°) 114.667 (5)
V3)1051.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.24 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.788, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
4907, 1891, 1165
Rint0.040
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.057, 0.82
No. of reflections1891
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.901.892.774 (3)169
O1W—H1B···O20.871.902.689 (3)150
C5—H5···O2ii0.932.563.487 (5)176
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, M.-J., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M.-J., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m1613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Gu, J.-M. & Xu, D.-J. (2003). Acta Cryst. E59, m330–m332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds