metal-organic compounds
catena-Poly[[diaquabis(isoquinoline-κN)cobalt(II)]-μ-succinato-κ2O1:O4]
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title compound, [Co(C4H4O4)(C9H7N)2(H2O)2]n, the CoII cation, located on an inversion center, is coordinated by two succinate anions, two isoquinoline ligands and two water molecules in a distorted octahedral geometry. The succinate anion, located across another inversion center, bridges the Co cations, forming polymeric chains running along the b axis. The partially overlapped arrangement of parallel isoquinoline ring systems of adjacent polymeric chains and the shorter face-to-face distance of 3.402 (6) Å indicates the existence of weak π–π stacking in the Classical intra- and intermolecular O—H⋯O hydrogen bonding and weak non-classical intermolecular C—H⋯O hydrogen bonding help to stabilize the crystal structure.
Related literature
For general background to π–π stacking, see: Deisenhofer & Michel (1989); Su & Xu (2004); Xu et al. (2007). For two related isoquinoline complexes, see: Li et al. (2009a,b). For a related polymeric NiII complex bridged by succinate anions, see: Liu et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810023895/rk2211sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023895/rk2211Isup2.hkl
The CoCl2.6H2O (0.48 g, 2 mmol), succinic acid (0.24 g, 2 mmol), NaOH (0.16 g, 4 mmol) and isoquinoline (0.23 ml, 2 mmol) were dissolved in a water/ethanol solution (20 ml, 1:1). The solution was refluxed for 4 h. The reaction mixture was cooled to room temperature and filtered. The single crystals were obtained from the filtrate after two weeks.
Water H atoms were located in a difference Fourier map and refined as-riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C–H = 0.93Å (aromatic) and 0.97Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Co(C4H4O4)(C9H7N)2(H2O)2] | F(000) = 486 |
Mr = 469.35 | Dx = 1.482 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2408 reflections |
a = 11.258 (4) Å | θ = 3.5–24.6° |
b = 9.023 (5) Å | µ = 0.86 mm−1 |
c = 11.390 (7) Å | T = 294 K |
β = 114.667 (5)° | Prism, pink |
V = 1051.4 (9) Å3 | 0.24 × 0.14 × 0.12 mm |
Z = 2 |
Rigaku R-AXIS RAPID IP diffractometer | 1891 independent reflections |
Radiation source: fine-focus sealed tube | 1165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.2°, θmin = 3.3° |
ω–scan | h = −13→13 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→8 |
Tmin = 0.788, Tmax = 0.862 | l = −13→13 |
4907 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 0.82 | w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3 |
1891 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
[Co(C4H4O4)(C9H7N)2(H2O)2] | V = 1051.4 (9) Å3 |
Mr = 469.35 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.258 (4) Å | µ = 0.86 mm−1 |
b = 9.023 (5) Å | T = 294 K |
c = 11.390 (7) Å | 0.24 × 0.14 × 0.12 mm |
β = 114.667 (5)° |
Rigaku R-AXIS RAPID IP diffractometer | 1891 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1165 reflections with I > 2σ(I) |
Tmin = 0.788, Tmax = 0.862 | Rint = 0.040 |
4907 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 0.82 | Δρmax = 0.23 e Å−3 |
1891 reflections | Δρmin = −0.23 e Å−3 |
142 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | 0.5000 | 0.5000 | 0.5000 | 0.03143 (14) | |
N1 | 0.5562 (2) | 0.5432 (2) | 0.34392 (16) | 0.0394 (6) | |
O1 | 0.50790 (18) | 0.27225 (15) | 0.47973 (14) | 0.0392 (4) | |
O2 | 0.31969 (17) | 0.21732 (17) | 0.31456 (15) | 0.0434 (5) | |
O1W | 0.29833 (13) | 0.50231 (19) | 0.37221 (11) | 0.0369 (4) | |
H1A | 0.2673 | 0.5677 | 0.3070 | 0.044* | |
H1B | 0.2846 | 0.4213 | 0.3263 | 0.044* | |
C1 | 0.6531 (3) | 0.4608 (3) | 0.3341 (2) | 0.0513 (8) | |
H1 | 0.6940 | 0.3889 | 0.3965 | 0.062* | |
C2 | 0.6927 (3) | 0.4788 (4) | 0.2376 (2) | 0.0572 (8) | |
H2 | 0.7600 | 0.4205 | 0.2357 | 0.069* | |
C3 | 0.6326 (3) | 0.5844 (3) | 0.1411 (2) | 0.0462 (7) | |
C4 | 0.6658 (3) | 0.6069 (4) | 0.0350 (3) | 0.0647 (9) | |
H4 | 0.7314 | 0.5506 | 0.0274 | 0.078* | |
C5 | 0.6012 (4) | 0.7107 (4) | −0.0549 (3) | 0.0698 (10) | |
H5 | 0.6228 | 0.7246 | −0.1246 | 0.084* | |
C6 | 0.5030 (4) | 0.7973 (4) | −0.0451 (3) | 0.0700 (10) | |
H6 | 0.4603 | 0.8681 | −0.1080 | 0.084* | |
C7 | 0.4689 (3) | 0.7791 (3) | 0.0560 (2) | 0.0583 (9) | |
H7 | 0.4034 | 0.8372 | 0.0620 | 0.070* | |
C8 | 0.5334 (3) | 0.6720 (3) | 0.1506 (2) | 0.0410 (7) | |
C9 | 0.4999 (3) | 0.6448 (3) | 0.2554 (2) | 0.0399 (6) | |
H9 | 0.4343 | 0.7022 | 0.2620 | 0.048* | |
C10 | 0.4249 (2) | 0.1817 (2) | 0.4066 (2) | 0.0294 (6) | |
C11 | 0.4568 (2) | 0.0192 (2) | 0.43056 (17) | 0.0335 (6) | |
H11A | 0.4999 | −0.0128 | 0.3768 | 0.040* | |
H11B | 0.3758 | −0.0360 | 0.4039 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.0357 (3) | 0.0151 (2) | 0.0285 (2) | −0.0009 (3) | −0.00145 (17) | 0.0019 (2) |
N1 | 0.0390 (13) | 0.0305 (13) | 0.0367 (11) | 0.0033 (10) | 0.0040 (9) | 0.0038 (9) |
O1 | 0.0391 (11) | 0.0153 (8) | 0.0426 (10) | −0.0025 (9) | −0.0035 (8) | −0.0015 (8) |
O2 | 0.0444 (12) | 0.0209 (10) | 0.0399 (9) | 0.0028 (8) | −0.0073 (8) | −0.0005 (8) |
O1W | 0.0410 (9) | 0.0205 (8) | 0.0306 (7) | 0.0015 (10) | −0.0034 (6) | 0.0011 (8) |
C1 | 0.0472 (19) | 0.044 (2) | 0.0487 (15) | 0.0098 (15) | 0.0061 (13) | 0.0064 (13) |
C2 | 0.0420 (17) | 0.059 (2) | 0.0639 (17) | 0.0070 (17) | 0.0159 (14) | −0.0038 (17) |
C3 | 0.0436 (19) | 0.0442 (18) | 0.0443 (15) | −0.0146 (15) | 0.0119 (13) | −0.0090 (14) |
C4 | 0.061 (2) | 0.073 (2) | 0.0654 (19) | −0.028 (2) | 0.0313 (18) | −0.0158 (19) |
C5 | 0.086 (3) | 0.070 (3) | 0.056 (2) | −0.041 (2) | 0.033 (2) | −0.0074 (19) |
C6 | 0.096 (3) | 0.056 (2) | 0.0468 (18) | −0.020 (2) | 0.0196 (19) | 0.0072 (16) |
C7 | 0.072 (2) | 0.0434 (19) | 0.0503 (18) | −0.0043 (17) | 0.0166 (17) | 0.0055 (15) |
C8 | 0.0474 (19) | 0.0300 (15) | 0.0382 (14) | −0.0077 (14) | 0.0104 (12) | 0.0015 (13) |
C9 | 0.0428 (17) | 0.0304 (15) | 0.0383 (14) | −0.0012 (13) | 0.0087 (12) | 0.0010 (13) |
C10 | 0.0384 (16) | 0.0185 (13) | 0.0264 (11) | 0.0001 (13) | 0.0087 (11) | 0.0025 (11) |
C11 | 0.0413 (14) | 0.0142 (13) | 0.0323 (11) | 0.0007 (12) | 0.0030 (9) | 0.0003 (11) |
Co—N1i | 2.157 (2) | C3—C8 | 1.409 (4) |
Co—N1 | 2.157 (2) | C3—C4 | 1.420 (4) |
Co—O1 | 2.0740 (18) | C4—C5 | 1.354 (4) |
Co—O1i | 2.0740 (18) | C4—H4 | 0.9300 |
Co—O1Wi | 2.1249 (14) | C5—C6 | 1.397 (5) |
Co—O1W | 2.1249 (14) | C5—H5 | 0.9300 |
N1—C9 | 1.314 (3) | C6—C7 | 1.367 (4) |
N1—C1 | 1.363 (3) | C6—H6 | 0.9300 |
O1—C10 | 1.259 (3) | C7—C8 | 1.404 (4) |
O2—C10 | 1.253 (3) | C7—H7 | 0.9300 |
O1W—H1A | 0.8975 | C8—C9 | 1.416 (3) |
O1W—H1B | 0.8743 | C9—H9 | 0.9300 |
C1—C2 | 1.357 (3) | C10—C11 | 1.507 (3) |
C1—H1 | 0.9300 | C11—C11ii | 1.511 (4) |
C2—C3 | 1.398 (4) | C11—H11A | 0.9700 |
C2—H2 | 0.9300 | C11—H11B | 0.9700 |
O1—Co—O1i | 180.0 | C2—C3—C4 | 123.6 (3) |
O1—Co—O1Wi | 89.04 (7) | C8—C3—C4 | 118.9 (3) |
O1i—Co—O1Wi | 90.96 (7) | C5—C4—C3 | 119.6 (3) |
O1—Co—O1W | 90.96 (7) | C5—C4—H4 | 120.2 |
O1i—Co—O1W | 89.04 (7) | C3—C4—H4 | 120.2 |
O1Wi—Co—O1W | 180.0 | C4—C5—C6 | 121.3 (3) |
O1—Co—N1i | 87.33 (7) | C4—C5—H5 | 119.4 |
O1i—Co—N1i | 92.67 (7) | C6—C5—H5 | 119.4 |
O1Wi—Co—N1i | 91.76 (7) | C7—C6—C5 | 120.7 (3) |
O1W—Co—N1i | 88.24 (7) | C7—C6—H6 | 119.7 |
O1—Co—N1 | 92.67 (7) | C5—C6—H6 | 119.7 |
O1i—Co—N1 | 87.33 (7) | C6—C7—C8 | 119.5 (3) |
O1Wi—Co—N1 | 88.24 (7) | C6—C7—H7 | 120.3 |
O1W—Co—N1 | 91.76 (7) | C8—C7—H7 | 120.3 |
N1i—Co—N1 | 180.0 | C7—C8—C3 | 120.0 (2) |
C9—N1—C1 | 117.7 (2) | C7—C8—C9 | 122.1 (3) |
C9—N1—Co | 123.03 (19) | C3—C8—C9 | 117.8 (2) |
C1—N1—Co | 119.26 (16) | N1—C9—C8 | 123.7 (3) |
C10—O1—Co | 131.47 (16) | N1—C9—H9 | 118.2 |
Co—O1W—H1A | 120.6 | C8—C9—H9 | 118.2 |
Co—O1W—H1B | 105.9 | O2—C10—O1 | 124.7 (2) |
H1A—O1W—H1B | 98.3 | O2—C10—C11 | 118.2 (2) |
C2—C1—N1 | 123.1 (2) | O1—C10—C11 | 117.2 (2) |
C2—C1—H1 | 118.5 | C10—C11—C11ii | 114.4 (2) |
N1—C1—H1 | 118.5 | C10—C11—H11A | 108.7 |
C1—C2—C3 | 120.3 (3) | C11ii—C11—H11A | 108.7 |
C1—C2—H2 | 119.9 | C10—C11—H11B | 108.7 |
C3—C2—H2 | 119.9 | C11ii—C11—H11B | 108.7 |
C2—C3—C8 | 117.4 (2) | H11A—C11—H11B | 107.6 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2iii | 0.90 | 1.89 | 2.774 (3) | 169 |
O1W—H1B···O2 | 0.87 | 1.90 | 2.689 (3) | 150 |
C5—H5···O2iv | 0.93 | 2.56 | 3.487 (5) | 176 |
Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C4H4O4)(C9H7N)2(H2O)2] |
Mr | 469.35 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 11.258 (4), 9.023 (5), 11.390 (7) |
β (°) | 114.667 (5) |
V (Å3) | 1051.4 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.24 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.788, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4907, 1891, 1165 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.057, 0.82 |
No. of reflections | 1891 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.23 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2i | 0.90 | 1.89 | 2.774 (3) | 169 |
O1W—H1B···O2 | 0.87 | 1.90 | 2.689 (3) | 150 |
C5—H5···O2ii | 0.93 | 2.56 | 3.487 (5) | 176 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
The work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, M.-J., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m1613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Gu, J.-M. & Xu, D.-J. (2003). Acta Cryst. E59, m330–m332. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The π···π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π···π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.
A part of the polymeric molecular structure is shown in Fig. 1. The CoII cation located on an inversion center is coordinated by two succinate anions, two isoqiunoline ligands and two water moleculaes with a distorted octahedral geometry. The succinate anion is located across another inversion center, and bridges Co cations to form the one-dimensional polymeric chains running along the crystallographic b axis, similar to that found in a NiII complex bridged by siccinate anions (Liu et al., 2003). The carboxyl group is oriented with respect to the carbon skeleton of succinate anion at a dihedral angle of 28.4 (2)°.
The partially overlapped arrangement of parallel isoqiunoline ring systems of adjacent polymeric chains related by a symmetry operation of (1-x, 1-y, -z) and shorter face-to-face distance of 3.402 (6)Å indicate the existence of weak π···π stacking in the crystal structure. Classical intra- and intermolecualr O–H···O hydrogen bonding and weak non-classical intermolecular C–H···O hydrogen bonding help to stabilize the crystal structure (Table 1).