organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1833-o1834

Tris(2-benzamido­eth­yl)ammonium tetra­fluoro­borate

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: alamgir@chem.jsums.edu

(Received 20 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C27H31N4O3+·BF4, the central N atom is protonated. The three arms form a pocket and one amidic O atom accepts an inter­molecular hydrogen bond with the protonated amine. The tetra­fluoro­borate anion is outside the cavity and is hydrogen bonded to one amide N atom. Adjacent organic cations are connected by a pair of N—H⋯O hydrogen bonds, forming a chain.

Related literature

For general background to tris­(amino­eth­yl)–amine and its binding of anions, see: Bianchi et al. (1997[Bianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley-VCH.]); Kang et al. (2005[Kang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328-330.]); Hossain,(2008[Hossain, M. A. (2008). Curr. Org. Chem. 12, 1231-1256.]); For related structures, see: Bazzicalupi et al. (2009[Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391-2398.]); Hossain et al. (2004[Hossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751-3755.]); Burgess et al. (1991[Burgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506-2508.]), Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o922.]); Saeed et al. (2010[Saeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656-o657.]).

[Scheme 1]

Experimental

Crystal data
  • C27H31N4O3+·BF4

  • Mr = 546.37

  • Monoclinic, P 21 /n

  • a = 13.325 (2) Å

  • b = 9.572 (2) Å

  • c = 21.118 (3) Å

  • β = 94.546 (10)°

  • V = 2685.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 90 K

  • 0.27 × 0.25 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • 31844 measured reflections

  • 5914 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.00

  • 5914 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 1.003 (19) 1.70 (2) 2.646 (2) 155.2 (16)
N2—H2N⋯O3i 0.87 (2) 2.01 (2) 2.861 (2) 168.8 (19)
N3—H3N⋯F3 0.92 (2) 2.00 (2) 2.901 (2) 170.0 (18)
N4—H4N⋯O2ii 0.87 (2) 2.12 (2) 2.894 (2) 147.5 (19)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tris(aminoethyl)–amine, trend with C3 symmetry is known to bind an anion (Burgess et al., 1991; Hossain et al., 2004; Bazzicalupi et al., 2009) and is often used to build azacryptands with amine or amide functionality (Hossain, 2008). These molecules are of particularly interest for binding anions with three fold rotation axes, such as nitrate, phosphate, perchlorate and sulfate (Bianchi et al., 1997). The binding is predominantly occurred through hydrogen bonding and electrostatic interactions of protonated amines or amidic protons with negatively charged species. For example, tetrahedral sulfate was seen to be encapsulated in amine cryptand or amide cryptand where the same trend units are as used as building blocks (Kang et al., 2005). Herein, we report the molecularcv and crystal structures of the title compound in which a tetrafluoroborate anion is held outside the cavity with one hydrogen bond and remains outside the cavity. Single crystal analysis of the title compound reveals that the molecule crystallizes in its monoclinic space group forming a cavity with the three arms that are connected with one central amine (Fig. 1). The central amine is protonated and the chrage is balanced with one tetrafluoroborate that is located outside the cavity and is bonded with one amide nitrogen. In the single–crystal, one amide H points toward the cavity and makes an intermolecular hydrogen bond with the proton on the central amine with N···O distance of 2.864 (2)Å (Table 1). Two adjacent molecules are connected each other forming a centrosymmetric dimer with two hydrogen bonds with N···O bonds distances of 2.861 (2)Å and 2.894 (2)Å (Fig. 2). Similar intramolecular bonding was previously reported for mono–functional (Lo & Ng, 2008) or di–functional (Saeed et al., 2010).

Related literature top

For general background to tris(aminoethyl)–amine and its binding of anions, see: Bianchi et al. (1997); Kang et al. (2005); Hossain,(2008); For related structures, see: Bazzicalupi et al. (2009); Hossain et al. (2004); Burgess et al. (1991), Lo & Ng (2008); Saeed et al. (2010).

Experimental top

To a solution of tris(2–benzamidoethyl) amine (50 mg) in methanol (1 ml) was added a few drops fluoroboric acid at room temperature. The white powder formed was collected by filtration. Yield: 80%. M.P. 423 K. 1H NMR (500 MHz, D2O, TSP): δ 8.78 (b, 3H, NHCO), 7.81(d, 3H, ArH), 7.72 (b, 1H, NHCH2), 7.56 (t, 3H, ArH), 7.47 (t, 3H, ArH), 3.72 (t, 6H, CH2NHCO), 3.35 (t, 6H, NHCH2). 13C NMR (125 MHz, D2O, TSP): δ 167.8 (CO), 138.9 (ArC), 131.9 (ArC), 128.8 (ArC). 127.6 (ArC), 52.4 (NHCH2), 34.8 (CH2CO). The salt was redissolved in water and crystals suitable for X–ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95–0.99Å and thereafter treated as riding. The coordinates of those on N were refined. The Uiso for H was assigned as 1.2 times Ueq of the attached atom. The largest residual density peak was 1.50 Å from O2.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Hydrogen bonds are presented by dashed lines.
[Figure 2] Fig. 2. A view of the hydrogen bonded centrosymmetric dimer.
Tris(2-benzamidoethyl)ammonium tetrafluoroborate top
Crystal data top
C27H31N4O3+·BF4F(000) = 1144
Mr = 546.37Dx = 1.352 Mg m3
Monoclinic, P21/nMelting point: 423 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.325 (2) ÅCell parameters from 6170 reflections
b = 9.572 (2) Åθ = 2.5–27.1°
c = 21.118 (3) ŵ = 0.11 mm1
β = 94.546 (10)°T = 90 K
V = 2685.1 (8) Å3Block, colourless
Z = 40.27 × 0.25 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
3310 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 27.1°, θmin = 2.6°
ω–scans with κ–offsetsh = 1717
31844 measured reflectionsk = 1212
5914 independent reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5914 reflectionsΔρmax = 0.26 e Å3
365 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (7)
Crystal data top
C27H31N4O3+·BF4V = 2685.1 (8) Å3
Mr = 546.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.325 (2) ŵ = 0.11 mm1
b = 9.572 (2) ÅT = 90 K
c = 21.118 (3) Å0.27 × 0.25 × 0.10 mm
β = 94.546 (10)°
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
3310 reflections with I > 2σ(I)
31844 measured reflectionsRint = 0.068
5914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
5914 reflectionsΔρmin = 0.27 e Å3
365 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69598 (10)0.66708 (15)0.51248 (6)0.0235 (3)
O20.97004 (10)0.65535 (14)0.51217 (6)0.0237 (3)
O30.66033 (11)0.35955 (15)0.42976 (6)0.0269 (4)
N10.77743 (12)0.52786 (18)0.61191 (7)0.0190 (4)
H1N0.7663 (14)0.584 (2)0.5718 (9)0.023*
N20.55317 (13)0.65036 (19)0.56356 (7)0.0227 (4)
H2N0.4881 (16)0.655 (2)0.5611 (9)0.027*
N30.89693 (13)0.78188 (18)0.58685 (7)0.0207 (4)
H3N0.8721 (15)0.867 (2)0.5972 (9)0.025*
N40.81500 (13)0.39353 (18)0.47972 (7)0.0204 (4)
H4N0.8780 (16)0.412 (2)0.4753 (9)0.024*
C10.67293 (15)0.4962 (2)0.63108 (9)0.0212 (5)
H1A0.67820.46110.67530.025*
H1B0.64320.42080.60350.025*
C20.60230 (16)0.6219 (2)0.62667 (8)0.0238 (5)
H2A0.54950.60730.65640.029*
H2B0.64120.70580.64110.029*
C30.60327 (16)0.6812 (2)0.51281 (9)0.0208 (5)
C40.54443 (15)0.7377 (2)0.45532 (9)0.0203 (5)
C50.46519 (16)0.8306 (2)0.45962 (9)0.0243 (5)
H50.44420.85550.50010.029*
C60.41677 (16)0.8870 (2)0.40503 (10)0.0293 (5)
H60.36320.95160.40810.035*
C70.44618 (16)0.8496 (2)0.34635 (10)0.0310 (6)
H70.41210.88750.30900.037*
C80.52504 (17)0.7572 (2)0.34138 (10)0.0312 (6)
H80.54470.73130.30080.037*
C90.57503 (16)0.7029 (2)0.39571 (9)0.0269 (5)
H90.63050.64170.39240.032*
C100.83608 (15)0.6116 (2)0.66272 (9)0.0218 (5)
H10A0.86000.54830.69780.026*
H10B0.79080.68140.68010.026*
C110.92603 (15)0.6867 (2)0.63859 (9)0.0224 (5)
H11A0.96120.73980.67400.027*
H11B0.97370.61680.62390.027*
C120.92266 (15)0.7599 (2)0.52720 (9)0.0197 (5)
C130.88929 (15)0.8684 (2)0.47918 (9)0.0191 (5)
C140.80176 (16)0.9456 (2)0.48281 (9)0.0237 (5)
H140.76180.93250.51760.028*
C150.77232 (17)1.0423 (2)0.43572 (9)0.0270 (5)
H150.71201.09420.43820.032*
C160.83094 (17)1.0627 (2)0.38534 (9)0.0267 (5)
H160.81121.12960.35350.032*
C170.91824 (17)0.9861 (2)0.38106 (9)0.0272 (5)
H170.95831.00000.34630.033*
C180.94687 (16)0.8890 (2)0.42784 (9)0.0231 (5)
H181.00650.83590.42480.028*
C190.83279 (16)0.3959 (2)0.59740 (8)0.0211 (5)
H19A0.82990.33090.63370.025*
H19B0.90450.41920.59350.025*
C200.79230 (16)0.3222 (2)0.53764 (8)0.0223 (5)
H20A0.82100.22680.53740.027*
H20B0.71840.31310.53810.027*
C210.74826 (15)0.4008 (2)0.42910 (9)0.0199 (5)
C220.78649 (15)0.4566 (2)0.36920 (9)0.0211 (5)
C230.86024 (15)0.5588 (2)0.36906 (9)0.0228 (5)
H230.88700.59890.40800.027*
C240.89490 (16)0.6025 (2)0.31219 (9)0.0280 (5)
H240.94400.67460.31220.034*
C250.85853 (18)0.5420 (2)0.25530 (9)0.0308 (6)
H250.88440.56990.21660.037*
C260.78424 (18)0.4403 (2)0.25513 (10)0.0338 (6)
H260.75890.39860.21630.041*
C270.74720 (17)0.4001 (2)0.31173 (9)0.0274 (5)
H270.69450.33320.31140.033*
B10.8258 (2)1.0373 (3)0.69733 (11)0.0262 (6)
F10.74417 (10)0.95062 (13)0.70473 (5)0.0393 (4)
F20.81014 (10)1.16644 (13)0.72363 (5)0.0396 (4)
F30.83701 (9)1.05339 (12)0.63193 (5)0.0297 (3)
F40.91193 (10)0.97574 (15)0.72626 (5)0.0444 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (9)0.0295 (9)0.0217 (7)0.0012 (7)0.0004 (6)0.0045 (6)
O20.0247 (9)0.0212 (9)0.0252 (8)0.0040 (7)0.0008 (6)0.0025 (6)
O30.0196 (9)0.0279 (9)0.0329 (8)0.0000 (7)0.0000 (6)0.0030 (7)
N10.0182 (10)0.0217 (10)0.0169 (9)0.0006 (8)0.0003 (7)0.0011 (7)
N20.0147 (10)0.0320 (11)0.0213 (9)0.0018 (9)0.0014 (8)0.0021 (8)
N30.0235 (11)0.0182 (10)0.0201 (9)0.0020 (8)0.0010 (7)0.0013 (8)
N40.0170 (10)0.0250 (10)0.0192 (9)0.0013 (9)0.0013 (8)0.0006 (8)
C10.0182 (12)0.0258 (13)0.0199 (11)0.0029 (10)0.0034 (8)0.0007 (9)
C20.0230 (12)0.0304 (13)0.0181 (11)0.0016 (10)0.0027 (9)0.0003 (9)
C30.0210 (13)0.0188 (12)0.0223 (11)0.0010 (10)0.0007 (9)0.0017 (9)
C40.0183 (12)0.0212 (12)0.0209 (11)0.0012 (10)0.0010 (9)0.0017 (9)
C50.0226 (13)0.0241 (12)0.0263 (12)0.0013 (10)0.0036 (9)0.0007 (10)
C60.0250 (13)0.0293 (14)0.0333 (13)0.0044 (11)0.0010 (10)0.0069 (11)
C70.0247 (13)0.0398 (15)0.0275 (12)0.0034 (12)0.0040 (10)0.0123 (11)
C80.0321 (14)0.0391 (15)0.0224 (12)0.0044 (12)0.0024 (10)0.0050 (10)
C90.0231 (13)0.0292 (14)0.0283 (12)0.0022 (10)0.0021 (9)0.0023 (10)
C100.0237 (12)0.0236 (12)0.0173 (10)0.0001 (10)0.0028 (9)0.0019 (9)
C110.0212 (12)0.0236 (12)0.0218 (11)0.0013 (10)0.0010 (9)0.0010 (9)
C120.0172 (12)0.0195 (12)0.0221 (11)0.0051 (10)0.0012 (9)0.0019 (9)
C130.0185 (12)0.0173 (12)0.0212 (11)0.0019 (10)0.0004 (8)0.0035 (9)
C140.0274 (13)0.0228 (12)0.0206 (11)0.0009 (11)0.0010 (9)0.0039 (10)
C150.0284 (13)0.0226 (13)0.0292 (12)0.0035 (11)0.0024 (10)0.0026 (10)
C160.0325 (14)0.0207 (12)0.0253 (12)0.0028 (11)0.0065 (10)0.0017 (10)
C170.0302 (14)0.0286 (14)0.0225 (12)0.0068 (11)0.0009 (9)0.0002 (10)
C180.0206 (12)0.0225 (12)0.0261 (11)0.0021 (10)0.0016 (9)0.0034 (10)
C190.0239 (12)0.0181 (12)0.0213 (11)0.0051 (10)0.0019 (9)0.0012 (9)
C200.0248 (13)0.0215 (12)0.0210 (11)0.0003 (10)0.0048 (9)0.0006 (9)
C210.0159 (12)0.0168 (11)0.0268 (12)0.0024 (10)0.0004 (9)0.0039 (9)
C220.0184 (12)0.0216 (12)0.0225 (11)0.0055 (10)0.0029 (9)0.0014 (9)
C230.0243 (13)0.0236 (13)0.0203 (11)0.0040 (10)0.0012 (9)0.0021 (9)
C240.0264 (13)0.0264 (13)0.0312 (13)0.0020 (11)0.0021 (10)0.0031 (10)
C250.0428 (16)0.0291 (14)0.0209 (12)0.0080 (12)0.0050 (10)0.0042 (10)
C260.0472 (16)0.0296 (14)0.0231 (12)0.0057 (13)0.0079 (11)0.0007 (10)
C270.0294 (14)0.0230 (13)0.0285 (12)0.0003 (11)0.0058 (10)0.0036 (10)
B10.0297 (16)0.0295 (16)0.0199 (13)0.0049 (13)0.0043 (11)0.0011 (11)
F10.0437 (9)0.0353 (8)0.0392 (7)0.0023 (7)0.0056 (6)0.0090 (6)
F20.0628 (10)0.0305 (8)0.0269 (7)0.0042 (7)0.0127 (6)0.0040 (6)
F30.0397 (8)0.0307 (8)0.0194 (6)0.0108 (6)0.0058 (5)0.0022 (5)
F40.0383 (9)0.0703 (11)0.0249 (7)0.0223 (8)0.0048 (6)0.0119 (7)
Geometric parameters (Å, º) top
O1—C31.243 (2)C11—H11A0.9900
O2—C121.238 (2)C11—H11B0.9900
O3—C211.238 (2)C12—C131.495 (3)
N1—C191.506 (2)C13—C141.388 (3)
N1—C101.507 (2)C13—C181.391 (3)
N1—C11.511 (2)C14—C151.392 (3)
N1—H1N1.003 (19)C14—H140.9500
N2—C31.340 (2)C15—C161.383 (3)
N2—C21.463 (2)C15—H150.9500
N2—H2N0.87 (2)C16—C171.384 (3)
N3—C121.348 (2)C16—H160.9500
N3—C111.452 (2)C17—C181.388 (3)
N3—H3N0.92 (2)C17—H170.9500
N4—C211.337 (2)C18—H180.9500
N4—C201.453 (2)C19—C201.508 (3)
N4—H4N0.87 (2)C19—H19A0.9900
C1—C21.526 (3)C19—H19B0.9900
C1—H1A0.9900C20—H20A0.9900
C1—H1B0.9900C20—H20B0.9900
C2—H2A0.9900C21—C221.499 (3)
C2—H2B0.9900C22—C231.387 (3)
C3—C41.493 (3)C22—C271.392 (3)
C4—C51.389 (3)C23—C241.385 (3)
C4—C91.394 (3)C23—H230.9500
C5—C61.385 (3)C24—C251.386 (3)
C5—H50.9500C24—H240.9500
C6—C71.376 (3)C25—C261.388 (3)
C6—H60.9500C25—H250.9500
C7—C81.384 (3)C26—C271.384 (3)
C7—H70.9500C26—H260.9500
C8—C91.382 (3)C27—H270.9500
C8—H80.9500B1—F21.378 (3)
C9—H90.9500B1—F11.387 (3)
C10—C111.520 (3)B1—F41.388 (3)
C10—H10A0.9900B1—F31.409 (2)
C10—H10B0.9900
C19—N1—C10110.86 (15)O2—C12—N3122.60 (18)
C19—N1—C1111.27 (16)O2—C12—C13121.20 (17)
C10—N1—C1110.66 (15)N3—C12—C13116.19 (18)
C19—N1—H1N108.6 (11)C14—C13—C18119.04 (19)
C10—N1—H1N110.5 (11)C14—C13—C12122.60 (17)
C1—N1—H1N104.8 (11)C18—C13—C12118.33 (18)
C3—N2—C2123.66 (18)C13—C14—C15120.34 (19)
C3—N2—H2N120.1 (13)C13—C14—H14119.8
C2—N2—H2N115.9 (13)C15—C14—H14119.8
C12—N3—C11122.19 (18)C16—C15—C14119.9 (2)
C12—N3—H3N119.1 (12)C16—C15—H15120.0
C11—N3—H3N117.5 (12)C14—C15—H15120.0
C21—N4—C20121.86 (18)C15—C16—C17120.3 (2)
C21—N4—H4N119.3 (13)C15—C16—H16119.9
C20—N4—H4N116.9 (13)C17—C16—H16119.9
N1—C1—C2113.71 (17)C16—C17—C18119.6 (2)
N1—C1—H1A108.8C16—C17—H17120.2
C2—C1—H1A108.8C18—C17—H17120.2
N1—C1—H1B108.8C17—C18—C13120.8 (2)
C2—C1—H1B108.8C17—C18—H18119.6
H1A—C1—H1B107.7C13—C18—H18119.6
N2—C2—C1115.56 (16)N1—C19—C20114.47 (16)
N2—C2—H2A108.4N1—C19—H19A108.6
C1—C2—H2A108.4C20—C19—H19A108.6
N2—C2—H2B108.4N1—C19—H19B108.6
C1—C2—H2B108.4C20—C19—H19B108.6
H2A—C2—H2B107.5H19A—C19—H19B107.6
O1—C3—N2122.62 (18)N4—C20—C19113.57 (17)
O1—C3—C4119.51 (17)N4—C20—H20A108.9
N2—C3—C4117.86 (18)C19—C20—H20A108.9
C5—C4—C9119.34 (18)N4—C20—H20B108.9
C5—C4—C3122.10 (17)C19—C20—H20B108.9
C9—C4—C3118.41 (19)H20A—C20—H20B107.7
C6—C5—C4120.12 (19)O3—C21—N4122.99 (18)
C6—C5—H5119.9O3—C21—C22120.58 (17)
C4—C5—H5119.9N4—C21—C22116.38 (18)
C7—C6—C5120.0 (2)C23—C22—C27119.33 (19)
C7—C6—H6120.0C23—C22—C21122.77 (17)
C5—C6—H6120.0C27—C22—C21117.88 (19)
C6—C7—C8120.5 (2)C24—C23—C22119.99 (19)
C6—C7—H7119.8C24—C23—H23120.0
C8—C7—H7119.8C22—C23—H23120.0
C9—C8—C7119.8 (2)C23—C24—C25120.5 (2)
C9—C8—H8120.1C23—C24—H24119.8
C7—C8—H8120.1C25—C24—H24119.8
C8—C9—C4120.3 (2)C24—C25—C26119.7 (2)
C8—C9—H9119.9C24—C25—H25120.1
C4—C9—H9119.9C26—C25—H25120.1
N1—C10—C11113.03 (15)C27—C26—C25119.7 (2)
N1—C10—H10A109.0C27—C26—H26120.1
C11—C10—H10A109.0C25—C26—H26120.1
N1—C10—H10B109.0C26—C27—C22120.6 (2)
C11—C10—H10B109.0C26—C27—H27119.7
H10A—C10—H10B107.8C22—C27—H27119.7
N3—C11—C10112.24 (16)F2—B1—F1110.24 (19)
N3—C11—H11A109.2F2—B1—F4110.49 (19)
C10—C11—H11A109.2F1—B1—F4108.96 (19)
N3—C11—H11B109.2F2—B1—F3109.16 (19)
C10—C11—H11B109.2F1—B1—F3108.70 (18)
H11A—C11—H11B107.9F4—B1—F3109.26 (18)
C19—N1—C1—C2162.24 (15)N3—C12—C13—C18151.42 (18)
C10—N1—C1—C274.0 (2)C18—C13—C14—C150.1 (3)
C3—N2—C2—C161.3 (3)C12—C13—C14—C15177.89 (18)
N1—C1—C2—N283.1 (2)C13—C14—C15—C160.7 (3)
C2—N2—C3—O111.6 (3)C14—C15—C16—C170.8 (3)
C2—N2—C3—C4167.04 (19)C15—C16—C17—C180.3 (3)
O1—C3—C4—C5140.5 (2)C16—C17—C18—C130.5 (3)
N2—C3—C4—C538.1 (3)C14—C13—C18—C170.6 (3)
O1—C3—C4—C935.0 (3)C12—C13—C18—C17178.56 (18)
N2—C3—C4—C9146.4 (2)C10—N1—C19—C20166.83 (16)
C9—C4—C5—C60.5 (3)C1—N1—C19—C2069.6 (2)
C3—C4—C5—C6175.96 (19)C21—N4—C20—C19140.97 (19)
C4—C5—C6—C70.9 (3)N1—C19—C20—N472.5 (2)
C5—C6—C7—C81.0 (3)C20—N4—C21—O36.9 (3)
C6—C7—C8—C90.4 (4)C20—N4—C21—C22170.42 (17)
C7—C8—C9—C41.9 (3)O3—C21—C22—C23149.1 (2)
C5—C4—C9—C81.9 (3)N4—C21—C22—C2333.5 (3)
C3—C4—C9—C8177.53 (19)O3—C21—C22—C2732.3 (3)
C19—N1—C10—C1175.0 (2)N4—C21—C22—C27145.04 (19)
C1—N1—C10—C11161.06 (17)C27—C22—C23—C240.8 (3)
C12—N3—C11—C10112.8 (2)C21—C22—C23—C24177.74 (19)
N1—C10—C11—N358.7 (2)C22—C23—C24—C251.9 (3)
C11—N3—C12—O22.2 (3)C23—C24—C25—C262.3 (3)
C11—N3—C12—C13178.72 (17)C24—C25—C26—C270.1 (3)
O2—C12—C13—C14148.4 (2)C25—C26—C27—C222.5 (3)
N3—C12—C13—C1430.7 (3)C23—C22—C27—C263.0 (3)
O2—C12—C13—C1829.5 (3)C21—C22—C27—C26175.61 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O11.003 (19)1.70 (2)2.646 (2)155.2 (16)
N2—H2N···O3i0.87 (2)2.01 (2)2.861 (2)168.8 (19)
N3—H3N···F30.92 (2)2.00 (2)2.901 (2)170.0 (18)
N4—H4N···O2ii0.87 (2)2.12 (2)2.894 (2)147.5 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H31N4O3+·BF4
Mr546.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)13.325 (2), 9.572 (2), 21.118 (3)
β (°) 94.546 (10)
V3)2685.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.25 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer with Oxford Cryostream
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
31844, 5914, 3310
Rint0.068
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.00
No. of reflections5914
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O11.003 (19)1.70 (2)2.646 (2)155.2 (16)
N2—H2N···O3i0.87 (2)2.01 (2)2.861 (2)168.8 (19)
N3—H3N···F30.92 (2)2.00 (2)2.901 (2)170.0 (18)
N4—H4N···O2ii0.87 (2)2.12 (2)2.894 (2)147.5 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. This material is based upon work supported by the National Science Foundation under CHE–0821357. HB was supported by the National Institutes of Health (NIH) Science Education Partnership Award (SEPA) Program "Recovery Act Administrative Supplements Providing Summer Research Research Experiences for Students and Science Educators" under contract 5R25RR020405–04S1. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)–ENH–TR–13, administered by the Louisiana Board of Regents.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391–2398.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBianchi, A., García–España, E. & Bowman–James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley–VCH.  Google Scholar
First citationBurgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506–2508.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHossain, M. A. (2008). Curr. Org. Chem. 12, 1231–1256.  Web of Science CrossRef CAS Google Scholar
First citationHossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman–James, K. (2004). Inorg. Chem. 43, 3751–3755.  CSD CrossRef PubMed CAS Google Scholar
First citationKang, S. O., Hossain, M. A., Powell, D. & Bowman–James, K. (2005). Chem. Commun. pp. 328–330.  Web of Science CSD CrossRef Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656–o657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1833-o1834
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds