organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1536-o1537

(E)-4-Hy­dr­oxy-2-[(2-hy­dr­oxy­phen­yl)iminiometh­yl]phenolate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2010; accepted 28 May 2010; online 5 June 2010)

The title compound, C13H11NO3, crystallizes in a zwitterionic form and has a trans configuration about the C=N bond. The mol­ecule is almost planar, the dihedral angle between the two benzene rings being 4.32 (8)°. The two hy­droxy substit­uents are coplanar with each of their attached benzene rings [r.m.s. deviations of 0.0053 (2) and 0.0052 (2) Å]. An intra­molecular N—H⋯O hydrogen bond formed between the iminium N and the phenolate O atom generates an S(6) ring motif. In the crystal, the mol­ecules are linked through O—H⋯O hydrogen bonds into chains along [110]. Two neighbouring chains are further connected through O—H⋯O hydrogen bonds in an anti­parallel manner. ππ inter­actions are also observed, with centroid–centroid distances of 3.7115 (19) and 3.743 (2) Å.

Related literature

For background to Schiff bases and their applications, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Kagkelari et al. (2009[Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279-3283.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.], 2010a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010a). Acta Cryst. E66, o934-o935.],b[Eltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010b). Acta Cryst. E66, o1262-o1263.]); Tan & Liu (2009[Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO3

  • Mr = 229.23

  • Monoclinic, C 2/c

  • a = 11.048 (5) Å

  • b = 8.187 (3) Å

  • c = 22.858 (10) Å

  • β = 102.242 (13)°

  • V = 2020.5 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.12 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.996

  • 15107 measured reflections

  • 2967 independent reflections

  • 2122 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.173

  • S = 1.06

  • 2967 reflections

  • 198 parameters

  • All H-atom parameters refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.90 (3) 1.74 (3) 2.625 (2) 166 (3)
O3—H1O3⋯O2ii 0.95 (3) 1.69 (3) 2.633 (2) 173 (2)
N1—H1N1⋯O2 0.89 (3) 1.83 (3) 2.581 (2) 141 (2)
C13—H13⋯O1ii 1.00 (2) 2.60 (2) 3.411 (3) 137.8 (18)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands and their complexes have varieties of biological activities and applications such as antibacterial and antifungal (Karthikeyan et al., 2006), anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006) properties as well as being used in coordination chemistry (Kagkelari et al., 2009). Our on going research on Schiff base ligands and their complexes (Eltayeb et al., 2009; 2010a,b) has lead us to synthesize the title Schiff base ligand (I) and its crystal structure is reported herein.

The molecule of (I) (Fig. 1), C13H11NO3, crystallizes in a zwitterionic form with cationic iminium and anionic enolate. The molecule exists in a trans configuration about the CN bond [1.302 (2)Å] as indicated by the torsion angle C1–N1–C7–C8 of 178.69 (15)°. The molecule is essentially planar with the dihedral angle of 4.32 (8)° between the two benzene rings. The two hydroxy groups are co-planar with each of their attached benzene rings with the r.m.s. of 0.0053 (2) and 0.0052 (2) Å for the seven non hydrogen atoms of C1–C6/O1 and C8–C13/O3, respectively. An intramolecular N—H···O hydrogen bond (Fig. 1; Table 1) between the NH+ with the phenolate O- atom generate an S(6) ring motif (Bernstein et al., 1995) which stabilizes the planarity of the molecule. The bond distances are in normal ranges (Allen et al., 1987) and comparable with those of related structures (Eltayeb et al., 2009; 2010a,b; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterionic molecules are linked through O3—H1O3···O2 hydrogen bonds into chains along the [110] direction and two neighboring chains are further connected to each other by O1—H1O1···O2 hydrogen bonds in an antiparallel manner (Table 1). The crystal is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). ππ interactions with centroid···centroid distances of Cg1···Cg2iii = 3.7115 (19) Å and Cg1···Cg2iv = 3.743 (2) Å were observed (symmetry codes (iii) = -x, 1-y, 1-z and (iv) = 1/2-x, 1/2-y, 1-z); Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Related literature top

For background to Schiff bases and their applications, see: Dao et al. (2000); Kagkelari et al. (2009); Karthikeyan et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb et al. (2009, 2010a,b); Tan & Liu (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 2,5-dihydroxybenzaldehyde (0.276 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered and the filtrate was evaporated to give a red powder product. Red plate-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from acetone by slow evaporation in the refrigerator after a few days.

Refinement top

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.76 Å from C8 and the deepest hole is located at 1.46 Å from H1O1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis. Hydrogen bonds are shown as dashed lines.
(E)-4-Hydroxy-2-[(2-hydroxyphenyl)iminiomethyl]phenolate top
Crystal data top
C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.507 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2967 reflections
a = 11.048 (5) Åθ = 1.8–30.1°
b = 8.187 (3) ŵ = 0.11 mm1
c = 22.858 (10) ÅT = 100 K
β = 102.242 (13)°Plate, red
V = 2020.5 (15) Å30.35 × 0.12 × 0.04 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2967 independent reflections
Radiation source: sealed tube2122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.963, Tmax = 0.996k = 1111
15107 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.1024P)2 + 0.2914P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H11NO3V = 2020.5 (15) Å3
Mr = 229.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.048 (5) ŵ = 0.11 mm1
b = 8.187 (3) ÅT = 100 K
c = 22.858 (10) Å0.35 × 0.12 × 0.04 mm
β = 102.242 (13)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2122 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.996Rint = 0.087
15107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.173All H-atom parameters refined
S = 1.06Δρmax = 0.48 e Å3
2967 reflectionsΔρmin = 0.28 e Å3
198 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33647 (12)0.68246 (15)0.56400 (5)0.0181 (3)
H1O10.339 (3)0.792 (4)0.5686 (14)0.049 (8)*
O20.19184 (11)0.49929 (14)0.43502 (5)0.0172 (3)
O30.15299 (12)0.01393 (15)0.36222 (6)0.0195 (3)
H1O30.212 (3)0.001 (3)0.3867 (14)0.045 (8)*
N10.18126 (13)0.43402 (17)0.54431 (6)0.0136 (3)
H1N10.213 (2)0.484 (3)0.5165 (12)0.034 (7)*
C10.22799 (14)0.47819 (19)0.60450 (7)0.0137 (3)
C20.30862 (15)0.6115 (2)0.61334 (7)0.0147 (3)
C30.35926 (16)0.6624 (2)0.67122 (8)0.0167 (3)
H30.413 (2)0.755 (3)0.6766 (10)0.024 (6)*
C40.32876 (16)0.5824 (2)0.71942 (8)0.0177 (3)
H40.363 (2)0.614 (3)0.7600 (11)0.026 (6)*
C50.24766 (16)0.4510 (2)0.71042 (8)0.0178 (3)
H50.227 (2)0.393 (3)0.7447 (11)0.028 (6)*
C60.19743 (16)0.3972 (2)0.65277 (7)0.0161 (3)
H60.1437 (19)0.309 (3)0.6478 (9)0.016 (5)*
C70.09838 (15)0.32381 (19)0.52344 (7)0.0142 (3)
H70.0643 (18)0.254 (2)0.5512 (9)0.013 (5)*
C80.05807 (15)0.29461 (19)0.46077 (7)0.0139 (3)
C90.10800 (15)0.38498 (19)0.41820 (7)0.0139 (3)
C100.06509 (16)0.3443 (2)0.35726 (7)0.0160 (3)
H100.101 (2)0.405 (3)0.3290 (11)0.027 (6)*
C110.02034 (15)0.2222 (2)0.34016 (7)0.0156 (3)
H110.049 (2)0.192 (3)0.2956 (11)0.025 (6)*
C120.06925 (15)0.1342 (2)0.38267 (7)0.0144 (3)
C130.03095 (15)0.17081 (19)0.44220 (7)0.0146 (3)
H130.066 (2)0.111 (3)0.4732 (10)0.024 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (7)0.0158 (6)0.0154 (6)0.0033 (5)0.0063 (5)0.0012 (4)
O20.0194 (6)0.0153 (6)0.0168 (6)0.0061 (5)0.0040 (5)0.0009 (4)
O30.0194 (6)0.0202 (6)0.0198 (6)0.0099 (5)0.0062 (5)0.0055 (5)
N10.0137 (6)0.0136 (6)0.0131 (6)0.0001 (5)0.0018 (5)0.0008 (5)
C10.0141 (7)0.0136 (7)0.0128 (7)0.0030 (6)0.0014 (6)0.0005 (5)
C20.0157 (7)0.0140 (7)0.0146 (7)0.0013 (6)0.0037 (6)0.0021 (6)
C30.0169 (8)0.0139 (7)0.0182 (8)0.0009 (6)0.0014 (6)0.0019 (6)
C40.0205 (8)0.0174 (8)0.0139 (7)0.0026 (6)0.0011 (6)0.0008 (6)
C50.0203 (8)0.0185 (8)0.0150 (7)0.0031 (7)0.0045 (6)0.0021 (6)
C60.0168 (8)0.0151 (8)0.0163 (8)0.0005 (6)0.0036 (6)0.0016 (6)
C70.0134 (7)0.0131 (7)0.0164 (7)0.0011 (6)0.0037 (6)0.0015 (6)
C80.0133 (7)0.0130 (7)0.0152 (7)0.0002 (6)0.0025 (6)0.0010 (6)
C90.0119 (7)0.0127 (7)0.0172 (7)0.0002 (6)0.0032 (6)0.0001 (6)
C100.0176 (8)0.0159 (7)0.0153 (7)0.0014 (6)0.0049 (6)0.0010 (6)
C110.0143 (7)0.0175 (7)0.0151 (7)0.0004 (6)0.0035 (6)0.0011 (6)
C120.0125 (7)0.0123 (7)0.0183 (8)0.0021 (6)0.0031 (6)0.0016 (6)
C130.0155 (7)0.0134 (7)0.0158 (7)0.0012 (6)0.0052 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C21.3608 (19)C5—C61.389 (2)
O1—H1O10.91 (3)C5—H50.98 (2)
O2—C91.316 (2)C6—H60.93 (2)
O3—C121.364 (2)C7—C81.427 (2)
O3—H1O30.95 (3)C7—H70.99 (2)
N1—C71.302 (2)C8—C131.413 (2)
N1—C11.410 (2)C8—C91.423 (2)
N1—H1N10.89 (3)C9—C101.413 (2)
C1—C61.389 (2)C10—C111.373 (2)
C1—C21.396 (2)C10—H100.97 (2)
C2—C31.387 (2)C11—C121.406 (2)
C3—C41.383 (2)C11—H111.03 (2)
C3—H30.96 (2)C12—C131.370 (2)
C4—C51.387 (3)C13—H131.00 (2)
C4—H40.96 (2)
C2—O1—H1O1109.4 (19)C1—C6—H6122.1 (13)
C12—O3—H1O3112.0 (17)N1—C7—C8121.96 (15)
C7—N1—C1128.22 (15)N1—C7—H7120.0 (12)
C7—N1—H1N1114.2 (17)C8—C7—H7118.0 (12)
C1—N1—H1N1117.6 (17)C13—C8—C9120.89 (14)
C6—C1—C2120.88 (14)C13—C8—C7118.07 (14)
C6—C1—N1123.52 (15)C9—C8—C7121.02 (15)
C2—C1—N1115.60 (14)O2—C9—C10121.61 (14)
O1—C2—C3123.09 (15)O2—C9—C8121.39 (14)
O1—C2—C1117.61 (14)C10—C9—C8116.99 (15)
C3—C2—C1119.28 (15)C11—C10—C9121.25 (15)
C4—C3—C2120.03 (16)C11—C10—H10122.8 (14)
C4—C3—H3121.6 (14)C9—C10—H10116.0 (14)
C2—C3—H3118.3 (14)C10—C11—C12121.19 (15)
C3—C4—C5120.51 (15)C10—C11—H11120.5 (12)
C3—C4—H4122.0 (14)C12—C11—H11118.3 (12)
C5—C4—H4117.5 (14)O3—C12—C13122.86 (14)
C4—C5—C6120.17 (16)O3—C12—C11117.72 (15)
C4—C5—H5120.3 (14)C13—C12—C11119.42 (15)
C6—C5—H5119.5 (14)C12—C13—C8120.25 (14)
C5—C6—C1119.12 (16)C12—C13—H13120.8 (13)
C5—C6—H6118.8 (13)C8—C13—H13119.0 (13)
C7—N1—C1—C65.5 (3)N1—C7—C8—C90.4 (2)
C7—N1—C1—C2174.41 (15)C13—C8—C9—O2179.28 (14)
C6—C1—C2—O1178.56 (15)C7—C8—C9—O20.7 (2)
N1—C1—C2—O11.6 (2)C13—C8—C9—C100.4 (2)
C6—C1—C2—C30.5 (2)C7—C8—C9—C10178.20 (15)
N1—C1—C2—C3179.68 (14)O2—C9—C10—C11178.48 (15)
O1—C2—C3—C4178.66 (15)C8—C9—C10—C110.4 (2)
C1—C2—C3—C40.7 (2)C9—C10—C11—C120.6 (3)
C2—C3—C4—C50.0 (3)C10—C11—C12—O3179.51 (15)
C3—C4—C5—C60.8 (3)C10—C11—C12—C130.0 (2)
C4—C5—C6—C11.0 (3)O3—C12—C13—C8178.68 (14)
C2—C1—C6—C50.4 (2)C11—C12—C13—C80.8 (2)
N1—C1—C6—C5179.48 (15)C9—C8—C13—C121.0 (2)
C1—N1—C7—C8178.69 (15)C7—C8—C13—C12177.65 (15)
N1—C7—C8—C13179.06 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.90 (3)1.74 (3)2.625 (2)166 (3)
O3—H1O3···O2ii0.95 (3)1.69 (3)2.633 (2)173 (2)
N1—H1N1···O20.89 (3)1.83 (3)2.581 (2)141 (2)
C13—H13···O1ii1.00 (2)2.60 (2)3.411 (3)137.8 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H11NO3
Mr229.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)11.048 (5), 8.187 (3), 22.858 (10)
β (°) 102.242 (13)
V3)2020.5 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.12 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15107, 2967, 2122
Rint0.087
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.173, 1.06
No. of reflections2967
No. of parameters198
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.48, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.90 (3)1.74 (3)2.625 (2)166 (3)
O3—H1O3···O2ii0.95 (3)1.69 (3)2.633 (2)173 (2)
N1—H1N1···O20.89 (3)1.83 (3)2.581 (2)141 (2)
C13—H13···O1ii1.00 (2)2.60 (2)3.411 (3)137.8 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y1/2, z.
 

Footnotes

On study leave from Department of Chemistry International University of Africa, Khartoum, Sudan; e-mail: nasertaha90@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (PKIMIA/815002). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010a). Acta Cryst. E66, o934–o935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010b). Acta Cryst. E66, o1262–o1263.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1536-o1537
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds