organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1538-o1539

9-(4-Hy­dr­oxy-3-meth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6-tetra­hydro-9H-xanthene-1,8(2H,7H)-dione

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2010; accepted 28 May 2010; online 5 June 2010)

In the title compound, C24H28O5, the two cyclo­hexene rings adopt envelope conformations, and the planes through the coplanar atoms makes dihedral angles of 82.86 (6) and 77.90 (6)° with the benzene ring. The two cyclo­hexene rings make a dihedral angle of 5.33 (6)° between their least-squares planes. The pyran ring adopts a flattened boat conformation. In the crystal packing, mol­ecules are linked into two-dimensional networks parallel to the ab plane via O—H⋯O and C—H⋯O inter­actions.

Related literature

For the synthesis of the title compound, see: Venkatesan et al. (2008[Venkatesan, K., Pujari, S. S., Lahoti, R. J. & Srinivasan, K. V. (2008). Ultrason. Sonochem. 15, 548-553.]). For general background to and the biological activity of xanthene derivatives, see: Hafez et al. (2008[Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538-4543.]); Ashry et al. (2006[Ashry, E. S. H. E., Awad, L. F., Ibrahim, E. S. I. & Bdeewy, O. K. (2006). Arkivoc, 2, 178-186.]); Sill & Sweet (1977[Sill, A. D. & Sweet, F. W. (1977). US Patent No. 4008240.]); Ion (1997[Ion, R. M. (1997). Prog. Catal. 2, 55-76.]); Chibale et al. (2003[Chibale, K., Visser, M., Schalkwyk, D., Smith, P. J., Saravanamuthu, A. & Fairlamb, A. H. (2003). Tetrahedron, 59, 2289-2296.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28O5

  • Mr = 396.46

  • Orthorhombic, P b c a

  • a = 11.4861 (10) Å

  • b = 11.8659 (11) Å

  • c = 30.087 (3) Å

  • V = 4100.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.24 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.979

  • 26584 measured reflections

  • 5972 independent reflections

  • 4634 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.06

  • 5972 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H14O⋯O3i 0.86 (2) 1.95 (2) 2.7319 (13) 151 (2)
C2—H2A⋯O2ii 0.97 2.55 3.5003 (16) 165
C20—H20C⋯O2iii 0.96 2.58 3.4646 (17) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthene derivatives especially benzoxanthenes are well-known in organic synthesis due to their biologically active properties such as anti-inflammatory (Hafez et al., 2008), antimicrobial (Ashry et al., 2006), antiviral (Sill & Sweet, 1977) activities and as well as being used in photodynamic therapy (Ion, 1997). Molecules based on the 9,9-dimethylxanthene moiety have inhibitory activity towards trypanothione reductase (TryR) (Chibale et al., 2003). In view of its importance in this field, the crystal structure of the title compound was determined and the results are presented here.

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. The two cyclohexene rings, C1—C6 and C8—C13, adopt an envelope conformation, and the plane through the coplanar atoms makes dihedral angles of 82.86 (6)° and 77.90 (6)°, respectively, with the benzene ring (C14—C19). The puckering parameters (Cremer & Pople, 1975) are Q = 0.4872 (14) Å, Θ = 125.01 (16)° and ϕ = 307.7 (2)° for the C1—C6 ring, Q = 0.4698 (14) Å, Θ = 56.48 (17)° and ϕ = 172.6 (2) ° for the C8—C13 ring. The two cyclohexene rings make a dihedral angle of 5.33 (6)° between their least-squares planes. The pyran ring (O1/C1/C6—C8/C13) adopts a flattened boat conformation with atoms C7 and O1 deviating by 0.150 (1) and 0.111 (1) Å, respectively, from the base of the boat.

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional networks parallel to the ab plane via O5–H14O···O3, C2–H2A···O2 and C20–H20C···O2 interactions (Table 1).

Related literature top

For the synthesis of the title compound, see: Venkatesan et al. (2008). For general background to and the biological activity of xanthene derivatives, see: Hafez et al. (2008); Ashry et al. (2006); Sill & Sweet (1977); Ion (1997); Chibale et al. (2003). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The synthesis of the title compound was performed according to the procedure described in the literature (Venkatesan et al., 2008). A mixture of vanilin (90 mg, 0.59 mmol), dimedone (160 mg, 1.14 mmol), p-toluenesulfonic acid (2 mg) in MeOH (4 ml) and water (2 ml) was heated to 50 °C in N2 atmosphere for about 20 min. Good quality crystals suitable for characterisation by X-ray crystallography were obtained by recrystallisation from hot methanol.

Refinement top

Atom H14O was located in a difference Fourier map and allowed to refine freely. All other hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
9-(4-Hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6-tetrahydro- 9H-xanthene-1,8(2H,7H)-dione top
Crystal data top
C24H28O5F(000) = 1696
Mr = 396.46Dx = 1.284 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5544 reflections
a = 11.4861 (10) Åθ = 2.2–31.4°
b = 11.8659 (11) ŵ = 0.09 mm1
c = 30.087 (3) ÅT = 100 K
V = 4100.6 (6) Å3Block, colourless
Z = 80.35 × 0.30 × 0.24 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5972 independent reflections
Radiation source: fine-focus sealed tube4634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1612
Tmin = 0.970, Tmax = 0.979k = 1616
26584 measured reflectionsl = 2042
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.8139P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H28O5V = 4100.6 (6) Å3
Mr = 396.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4861 (10) ŵ = 0.09 mm1
b = 11.8659 (11) ÅT = 100 K
c = 30.087 (3) Å0.35 × 0.30 × 0.24 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4634 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.979Rint = 0.046
26584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
5972 reflectionsΔρmin = 0.38 e Å3
271 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28861 (7)0.40281 (8)0.37337 (3)0.01617 (19)
O20.01386 (8)0.44676 (8)0.26832 (3)0.0228 (2)
O30.01627 (8)0.68315 (9)0.41472 (4)0.0257 (2)
O40.35090 (8)0.35573 (8)0.36534 (3)0.0207 (2)
O50.27890 (8)0.17322 (8)0.41056 (4)0.0225 (2)
C10.23302 (10)0.38185 (10)0.33355 (4)0.0146 (2)
C20.30172 (10)0.30335 (11)0.30502 (4)0.0170 (2)
H2A0.36160.34540.28950.020*
H2B0.33980.24770.32360.020*
C30.22358 (11)0.24318 (11)0.27099 (4)0.0190 (3)
C40.15068 (12)0.33410 (12)0.24770 (5)0.0215 (3)
H4A0.09830.29790.22680.026*
H4B0.20230.38260.23080.026*
C50.08000 (11)0.40592 (10)0.27917 (4)0.0171 (2)
C60.12984 (10)0.42841 (10)0.32340 (4)0.0142 (2)
C70.05937 (10)0.49443 (10)0.35702 (4)0.0142 (2)
H7A0.02280.55900.34230.017*
C80.14118 (10)0.53630 (10)0.39271 (4)0.0143 (2)
C90.10776 (11)0.63245 (11)0.42079 (4)0.0172 (2)
C100.19236 (11)0.67093 (11)0.45628 (5)0.0195 (3)
H10A0.24280.72830.44380.023*
H10B0.14870.70540.48030.023*
C110.26798 (11)0.57635 (11)0.47544 (4)0.0185 (3)
C120.32808 (11)0.51647 (11)0.43638 (4)0.0182 (3)
H12A0.36460.44790.44710.022*
H12B0.38880.56490.42470.022*
C130.24524 (10)0.48756 (10)0.39991 (4)0.0145 (2)
C140.03504 (10)0.41644 (10)0.37528 (4)0.0144 (2)
C150.15186 (10)0.43068 (10)0.36324 (4)0.0150 (2)
H15A0.17420.49370.34700.018*
C160.23459 (10)0.35118 (11)0.37548 (4)0.0154 (2)
C170.20159 (11)0.25532 (10)0.39955 (4)0.0163 (2)
C180.08671 (11)0.24362 (11)0.41294 (5)0.0192 (3)
H18A0.06480.18200.43010.023*
C190.00419 (11)0.32338 (11)0.40088 (5)0.0186 (3)
H19A0.07260.31460.41000.022*
C200.14395 (12)0.15751 (11)0.29401 (5)0.0253 (3)
H20A0.19060.10250.30920.038*
H20B0.09510.19570.31510.038*
H20C0.09630.12070.27220.038*
C210.29993 (13)0.18345 (13)0.23661 (5)0.0291 (3)
H21A0.34980.13040.25140.044*
H21B0.25130.14440.21570.044*
H21C0.34650.23810.22120.044*
C220.36133 (12)0.62585 (14)0.50611 (5)0.0282 (3)
H22A0.32460.66250.53080.042*
H22B0.41070.56640.51680.042*
H22C0.40720.67960.48990.042*
C230.19191 (13)0.49357 (13)0.50166 (5)0.0280 (3)
H23A0.15510.53240.52590.042*
H23B0.13340.46260.48240.042*
H23C0.23960.43380.51310.042*
C240.39966 (11)0.46439 (12)0.35714 (5)0.0238 (3)
H24A0.48310.45940.35770.036*
H24B0.37390.51600.37970.036*
H24C0.37480.49080.32850.036*
H14O0.3488 (19)0.1956 (19)0.4055 (8)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0129 (4)0.0191 (4)0.0165 (4)0.0030 (3)0.0024 (3)0.0032 (3)
O20.0224 (5)0.0237 (5)0.0223 (5)0.0030 (4)0.0075 (4)0.0022 (4)
O30.0185 (5)0.0247 (5)0.0339 (6)0.0067 (4)0.0031 (4)0.0047 (4)
O40.0105 (4)0.0246 (5)0.0272 (5)0.0030 (3)0.0023 (3)0.0053 (4)
O50.0165 (5)0.0195 (5)0.0315 (5)0.0044 (4)0.0038 (4)0.0044 (4)
C10.0140 (5)0.0146 (5)0.0152 (5)0.0022 (4)0.0005 (4)0.0006 (4)
C20.0153 (5)0.0179 (5)0.0179 (6)0.0010 (4)0.0009 (4)0.0017 (5)
C30.0214 (6)0.0169 (6)0.0187 (6)0.0027 (5)0.0022 (5)0.0026 (5)
C40.0263 (7)0.0216 (6)0.0166 (6)0.0029 (5)0.0036 (5)0.0008 (5)
C50.0205 (6)0.0143 (5)0.0166 (6)0.0021 (4)0.0024 (5)0.0028 (5)
C60.0132 (5)0.0135 (5)0.0159 (5)0.0021 (4)0.0003 (4)0.0024 (4)
C70.0106 (5)0.0146 (5)0.0173 (6)0.0004 (4)0.0012 (4)0.0017 (4)
C80.0114 (5)0.0148 (5)0.0166 (5)0.0015 (4)0.0001 (4)0.0015 (4)
C90.0144 (5)0.0166 (5)0.0206 (6)0.0004 (4)0.0021 (5)0.0007 (5)
C100.0165 (6)0.0202 (6)0.0219 (6)0.0002 (5)0.0008 (5)0.0049 (5)
C110.0155 (5)0.0237 (6)0.0163 (6)0.0008 (5)0.0010 (5)0.0023 (5)
C120.0127 (5)0.0229 (6)0.0191 (6)0.0005 (4)0.0017 (4)0.0036 (5)
C130.0119 (5)0.0161 (5)0.0156 (5)0.0006 (4)0.0011 (4)0.0001 (5)
C140.0116 (5)0.0152 (5)0.0164 (5)0.0014 (4)0.0005 (4)0.0004 (4)
C150.0129 (5)0.0156 (5)0.0164 (5)0.0004 (4)0.0002 (4)0.0008 (4)
C160.0112 (5)0.0199 (6)0.0151 (5)0.0013 (4)0.0007 (4)0.0016 (5)
C170.0141 (5)0.0177 (6)0.0171 (6)0.0026 (4)0.0031 (4)0.0001 (5)
C180.0169 (6)0.0173 (6)0.0235 (6)0.0005 (4)0.0003 (5)0.0043 (5)
C190.0130 (5)0.0193 (6)0.0235 (6)0.0002 (4)0.0016 (5)0.0028 (5)
C200.0260 (7)0.0145 (6)0.0354 (8)0.0013 (5)0.0065 (6)0.0001 (6)
C210.0334 (8)0.0288 (7)0.0252 (7)0.0090 (6)0.0034 (6)0.0102 (6)
C220.0221 (7)0.0409 (8)0.0216 (7)0.0028 (6)0.0033 (5)0.0115 (6)
C230.0301 (7)0.0339 (8)0.0200 (7)0.0016 (6)0.0021 (6)0.0045 (6)
C240.0143 (6)0.0272 (7)0.0298 (7)0.0045 (5)0.0002 (5)0.0047 (6)
Geometric parameters (Å, º) top
O1—C131.3772 (15)C11—C221.5317 (18)
O1—C11.3802 (14)C11—C231.5333 (19)
O2—C51.2263 (15)C11—C121.5370 (18)
O3—C91.2246 (15)C12—C131.4922 (17)
O4—C161.3714 (15)C12—H12A0.9700
O4—C241.4272 (17)C12—H12B0.9700
O5—C171.3591 (15)C14—C191.3922 (18)
O5—H14O0.86 (2)C14—C151.4001 (16)
C1—C61.3427 (17)C15—C161.3886 (17)
C1—C21.4924 (17)C15—H15A0.9300
C2—C31.5372 (18)C16—C171.4007 (18)
C2—H2A0.9700C17—C181.3867 (18)
C2—H2B0.9700C18—C191.3877 (18)
C3—C211.5301 (19)C18—H18A0.9300
C3—C201.5329 (19)C19—H19A0.9300
C3—C41.5350 (18)C20—H20A0.9600
C4—C51.5106 (19)C20—H20B0.9600
C4—H4A0.9700C20—H20C0.9600
C4—H4B0.9700C21—H21A0.9600
C5—C61.4730 (17)C21—H21B0.9600
C6—C71.5140 (17)C21—H21C0.9600
C7—C81.5108 (17)C22—H22A0.9600
C7—C141.5278 (16)C22—H22B0.9600
C7—H7A0.9800C22—H22C0.9600
C8—C131.3454 (16)C23—H23A0.9600
C8—C91.4706 (17)C23—H23B0.9600
C9—C101.5143 (18)C23—H23C0.9600
C10—C111.5317 (18)C24—H24A0.9600
C10—H10A0.9700C24—H24B0.9600
C10—H10B0.9700C24—H24C0.9600
C13—O1—C1117.88 (9)C11—C12—H12A109.1
C16—O4—C24117.15 (10)C13—C12—H12B109.1
C17—O5—H14O110.3 (15)C11—C12—H12B109.1
C6—C1—O1122.11 (11)H12A—C12—H12B107.8
C6—C1—C2126.34 (11)C8—C13—O1122.80 (11)
O1—C1—C2111.55 (10)C8—C13—C12125.88 (11)
C1—C2—C3111.36 (10)O1—C13—C12111.32 (10)
C1—C2—H2A109.4C19—C14—C15118.86 (11)
C3—C2—H2A109.4C19—C14—C7119.92 (10)
C1—C2—H2B109.4C15—C14—C7120.94 (11)
C3—C2—H2B109.4C16—C15—C14120.35 (12)
H2A—C2—H2B108.0C16—C15—H15A119.8
C21—C3—C20109.88 (12)C14—C15—H15A119.8
C21—C3—C4109.24 (11)O4—C16—C15125.52 (12)
C20—C3—C4110.30 (11)O4—C16—C17114.24 (11)
C21—C3—C2109.31 (11)C15—C16—C17120.23 (11)
C20—C3—C2110.83 (11)O5—C17—C18118.62 (12)
C4—C3—C2107.22 (10)O5—C17—C16122.09 (11)
C5—C4—C3113.79 (11)C18—C17—C16119.28 (11)
C5—C4—H4A108.8C17—C18—C19120.37 (12)
C3—C4—H4A108.8C17—C18—H18A119.8
C5—C4—H4B108.8C19—C18—H18A119.8
C3—C4—H4B108.8C18—C19—C14120.78 (12)
H4A—C4—H4B107.7C18—C19—H19A119.6
O2—C5—C6120.71 (12)C14—C19—H19A119.6
O2—C5—C4121.91 (12)C3—C20—H20A109.5
C6—C5—C4117.36 (11)C3—C20—H20B109.5
C1—C6—C5118.29 (11)H20A—C20—H20B109.5
C1—C6—C7122.20 (11)C3—C20—H20C109.5
C5—C6—C7119.31 (10)H20A—C20—H20C109.5
C8—C7—C6108.21 (10)H20B—C20—H20C109.5
C8—C7—C14112.65 (10)C3—C21—H21A109.5
C6—C7—C14107.84 (10)C3—C21—H21B109.5
C8—C7—H7A109.4H21A—C21—H21B109.5
C6—C7—H7A109.4C3—C21—H21C109.5
C14—C7—H7A109.4H21A—C21—H21C109.5
C13—C8—C9118.22 (11)H21B—C21—H21C109.5
C13—C8—C7121.72 (11)C11—C22—H22A109.5
C9—C8—C7120.07 (10)C11—C22—H22B109.5
O3—C9—C8121.30 (12)H22A—C22—H22B109.5
O3—C9—C10120.51 (12)C11—C22—H22C109.5
C8—C9—C10118.14 (11)H22A—C22—H22C109.5
C9—C10—C11114.09 (11)H22B—C22—H22C109.5
C9—C10—H10A108.7C11—C23—H23A109.5
C11—C10—H10A108.7C11—C23—H23B109.5
C9—C10—H10B108.7H23A—C23—H23B109.5
C11—C10—H10B108.7C11—C23—H23C109.5
H10A—C10—H10B107.6H23A—C23—H23C109.5
C22—C11—C10110.04 (11)H23B—C23—H23C109.5
C22—C11—C23109.54 (12)O4—C24—H24A109.5
C10—C11—C23109.87 (11)O4—C24—H24B109.5
C22—C11—C12108.88 (10)H24A—C24—H24B109.5
C10—C11—C12107.80 (11)O4—C24—H24C109.5
C23—C11—C12110.68 (11)H24A—C24—H24C109.5
C13—C12—C11112.46 (10)H24B—C24—H24C109.5
C13—C12—H12A109.1
C13—O1—C1—C610.47 (17)C9—C10—C11—C22172.25 (11)
C13—O1—C1—C2169.61 (10)C9—C10—C11—C2367.06 (14)
C6—C1—C2—C322.80 (18)C9—C10—C11—C1253.64 (14)
O1—C1—C2—C3157.11 (10)C22—C11—C12—C13167.54 (12)
C1—C2—C3—C21168.27 (11)C10—C11—C12—C1348.19 (14)
C1—C2—C3—C2070.47 (13)C23—C11—C12—C1371.99 (14)
C1—C2—C3—C449.96 (14)C9—C8—C13—O1174.91 (11)
C21—C3—C4—C5174.64 (12)C7—C8—C13—O15.31 (18)
C20—C3—C4—C564.49 (15)C9—C8—C13—C124.82 (19)
C2—C3—C4—C556.29 (14)C7—C8—C13—C12174.95 (12)
C3—C4—C5—O2148.98 (12)C1—O1—C13—C812.05 (17)
C3—C4—C5—C632.87 (16)C1—O1—C13—C12167.72 (10)
O1—C1—C6—C5176.84 (10)C11—C12—C13—C821.12 (18)
C2—C1—C6—C53.25 (18)C11—C12—C13—O1159.11 (10)
O1—C1—C6—C78.37 (18)C8—C7—C14—C1952.88 (15)
C2—C1—C6—C7171.54 (11)C6—C7—C14—C1966.46 (15)
O2—C5—C6—C1179.82 (11)C8—C7—C14—C15133.24 (12)
C4—C5—C6—C11.65 (17)C6—C7—C14—C15107.43 (13)
O2—C5—C6—C75.23 (17)C19—C14—C15—C162.08 (19)
C4—C5—C6—C7176.59 (11)C7—C14—C15—C16171.87 (11)
C1—C6—C7—C822.67 (15)C24—O4—C16—C1525.08 (18)
C5—C6—C7—C8162.59 (10)C24—O4—C16—C17156.10 (12)
C1—C6—C7—C1499.45 (13)C14—C15—C16—O4179.50 (12)
C5—C6—C7—C1475.29 (13)C14—C15—C16—C170.74 (19)
C6—C7—C8—C1321.08 (15)O4—C16—C17—O51.71 (18)
C14—C7—C8—C1398.04 (13)C15—C16—C17—O5177.18 (12)
C6—C7—C8—C9159.15 (11)O4—C16—C17—C18177.85 (12)
C14—C7—C8—C981.73 (14)C15—C16—C17—C183.26 (19)
C13—C8—C9—O3177.09 (12)O5—C17—C18—C19177.48 (12)
C7—C8—C9—O33.13 (18)C16—C17—C18—C193.0 (2)
C13—C8—C9—C100.12 (17)C17—C18—C19—C140.1 (2)
C7—C8—C9—C10179.65 (11)C15—C14—C19—C182.4 (2)
O3—C9—C10—C11152.16 (12)C7—C14—C19—C18171.61 (12)
C8—C9—C10—C1130.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H14O···O3i0.86 (2)1.95 (2)2.7319 (13)151 (2)
C2—H2A···O2ii0.972.553.5003 (16)165
C20—H20C···O2iii0.962.583.4646 (17)154
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H28O5
Mr396.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.4861 (10), 11.8659 (11), 30.087 (3)
V3)4100.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.24
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
26584, 5972, 4634
Rint0.046
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.06
No. of reflections5972
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H14O···O3i0.86 (2)1.95 (2)2.7319 (13)151 (2)
C2—H2A···O2ii0.97002.55003.5003 (16)165.00
C20—H20C···O2iii0.96002.58003.4646 (17)154.00
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y, z+1/2; (iii) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NH, ASAR and NM are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAshry, E. S. H. E., Awad, L. F., Ibrahim, E. S. I. & Bdeewy, O. K. (2006). Arkivoc, 2, 178–186.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChibale, K., Visser, M., Schalkwyk, D., Smith, P. J., Saravanamuthu, A. & Fairlamb, A. H. (2003). Tetrahedron, 59, 2289–2296.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538–4543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIon, R. M. (1997). Prog. Catal. 2, 55–76.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSill, A. D. & Sweet, F. W. (1977). US Patent No. 4008240.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatesan, K., Pujari, S. S., Lahoti, R. J. & Srinivasan, K. V. (2008). Ultrason. Sonochem. 15, 548–553.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1538-o1539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds