organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1540-o1541

16-[(E)-Benzyl­­idene]-13-hy­dr­oxy-4-methyl-2-phenyl-4,14-di­aza­penta­cyclo-[12.3.1.01,5.05,13.07,12]octa­deca-7(12),8,10-triene-6,17-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2010; accepted 28 May 2010; online 5 June 2010)

In the title compound, C30H26N2O3, the two pyrrolidine rings adopt twisted and envelope conformations, whereas the cyclo­pentane ring adopts an envelope conformation. The least-squares planes through the pyrrolidine rings form a dihedral angle of 41.72 (10)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(5) ring motif. Centrosymmetrically related mol­ecules are linked via two pairs of inter­molecular C—H⋯O inter­actions, forming R22(16) ring motifs. In the crystal packing, the mol­ecules are linked into two-dimensional networks parallel to the ab plane via C—H⋯O inter­actions.

Related literature

For general background to and the biological activity of pyrrolidine derivatives, see: Gothelf & Jørgensen (1998[Gothelf, K. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863-909.]); Gu et al. (2004[Gu, Y. G., Zhang, X., Clark, R. F., Djuric, S. & Ma, Z. (2004). Tetrahedron Lett. 45, 3051-3053.]); Horri et al. (1986[Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038-1046.]); Tsukamoto et al. (1989[Tsukamoto, K., Uno, A., Shimada, S. & Imokaw, G. (1989). Clin. Res. 37A, 722-729.]); Karpas et al. (1988[Karpas, A., Fleet, G. W. J., Dwek, R. A., Petursson, S., Mamgoong, S. K., Ramsden, N. G., Jacob, G. S. & Rademacher, T. W. (1988). Proc. Natl. Acad. Sci. USA, 85, 9229-9233.]). For the biological activity of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Lee et al. (2001[Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483-3486.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26N2O3

  • Mr = 462.53

  • Triclinic, [P \overline 1]

  • a = 9.0333 (5) Å

  • b = 9.4222 (5) Å

  • c = 14.0290 (7) Å

  • α = 80.943 (2)°

  • β = 78.034 (1)°

  • γ = 80.578 (1)°

  • V = 1142.88 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.51 × 0.39 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.991

  • 21768 measured reflections

  • 4213 independent reflections

  • 3812 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.130

  • S = 1.06

  • 4213 reflections

  • 420 parameters

  • All H-atom parameters refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H12O⋯N2 0.82 (3) 2.10 (3) 2.6741 (19) 127 (2)
C17—H17A⋯O1i 0.965 (19) 2.56 (2) 3.278 (2) 130.8 (15)
C26—H26A⋯O1ii 0.98 (3) 2.60 (2) 3.535 (2) 161.6 (18)
C29—H29A⋯O2iii 0.96 (3) 2.43 (2) 3.363 (2) 165.7 (18)
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The cycloaddition reaction of azomethine ylide 1,3-dipoles with olefinic dipolarophiles constitutes a straightforward approach to the synthesis of highly substituted pyrrolidine derivatives (Gothelf & Jørgensen, 1998). Pyrrolidine ring is present in many biologically active natural compounds and pharmaceuticals (Gu et al., 2004), and find utility in the treatment of diseases such as diabetes (Horri et al., 1986), cancer (Tsukamoto et al., 1989) and viral infections (Karpas et al., 1988). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (El-Subbagh et al., 2000) and anticancer (Dimmock et al., 2001) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001).

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. For the two pyrrolidine rings, N1/C11–C14 is twisted about the N1–C12 with the puckering parameters (Cremer & Pople, 1975) Q = 0.4589 (16) Å and ϕ = 202.6 (2)° whereas the N2/C11/C13/C22/C23 ring adopts an envelope conformation with atom N2 deviating by 0.251 (1) Å from the mean plane through the remaining atoms (puckering parameters Q = 0.3814 (18) Å and ϕ = 356.2 (3)°). The cyclopentane (C13–C15/C20/C21) ring adopts an envelope conformation with the flap at atom C13 (puckering parameters Q = 0.2688 (10) Å and ϕ = 186.5 (10)°). The two pyrrolidine rings make a dihedral angle of 41.72 (10)° between their least-squares planes. The molecular structure is stabilized by intramolecular O2—H12O···N2 hydrogen bond which generates an S(5) ring motif (Bernstein et al., 1995).

Centrosymmetrically related molecules are linked via two pairs of intermolecular C26—H26A···O1 and C29—H29A···O2 interactions, forming R22 (16) ring motifs (Table 1). In the crystal packing (Fig. 2), the molecules are linked into two- dimensional networks parallel to the ab plane via C17—H17A···O1 interactions.

Related literature top

For general background to and the biological activity of pyrrolidine derivatives, see: Gothelf & Jørgensen (1998); Gu et al. (2004); Horri et al. (1986); Tsukamoto et al. (1989); Karpas et al. (1988). For the biological activity of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000); Dimmock et al. (2001); Lee et al. (2001). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 3,5-bis[(E)-benzylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.364 mmol), ninhydrin (0.065 g, 0.364 mmol) and sarcosine (0.032 g, 0.364 mmol) were dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was recrystallised from ethyl acetate to give the title compound as yellow crystals.

Refinement top

All H atoms were located in a difference Fourier map and refined freely. The highest residual electron density peak is located at 1.10 Å from H22A and the deepest hole is located at 0.65 Å from C22.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular hydrogen interaction is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
16-[(E)-Benzylidene]-13-hydroxy-4-methyl-2-phenyl-4,14- diazapentacyclo-[12.3.1.01,5.05,13.07,12]octadeca- 7(12),8,10-triene-6,17-dione top
Crystal data top
C30H26N2O3Z = 2
Mr = 462.53F(000) = 488
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0333 (5) ÅCell parameters from 9987 reflections
b = 9.4222 (5) Åθ = 2.8–35.8°
c = 14.0290 (7) ŵ = 0.09 mm1
α = 80.943 (2)°T = 100 K
β = 78.034 (1)°Plate, yellow
γ = 80.578 (1)°0.51 × 0.39 × 0.10 mm
V = 1142.88 (10) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4213 independent reflections
Radiation source: fine-focus sealed tube3812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.957, Tmax = 0.991k = 1111
21768 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.7251P]
where P = (Fo2 + 2Fc2)/3
4213 reflections(Δ/σ)max = 0.001
420 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C30H26N2O3γ = 80.578 (1)°
Mr = 462.53V = 1142.88 (10) Å3
Triclinic, P1Z = 2
a = 9.0333 (5) ÅMo Kα radiation
b = 9.4222 (5) ŵ = 0.09 mm1
c = 14.0290 (7) ÅT = 100 K
α = 80.943 (2)°0.51 × 0.39 × 0.10 mm
β = 78.034 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4213 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3812 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.991Rint = 0.026
21768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130All H-atom parameters refined
S = 1.06Δρmax = 0.58 e Å3
4213 reflectionsΔρmin = 0.29 e Å3
420 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82023 (14)0.80718 (12)0.24270 (9)0.0260 (3)
O20.64023 (14)0.37335 (13)0.07491 (8)0.0233 (3)
O30.49620 (13)0.63815 (12)0.34310 (8)0.0233 (3)
N10.85499 (15)0.43423 (14)0.12050 (9)0.0178 (3)
N20.48231 (16)0.62423 (16)0.12640 (10)0.0245 (3)
C10.8502 (2)0.36212 (19)0.51299 (12)0.0239 (4)
C20.8939 (2)0.23665 (19)0.57195 (13)0.0277 (4)
C31.0315 (2)0.15119 (19)0.54275 (13)0.0260 (4)
C41.1253 (2)0.19167 (19)0.45416 (13)0.0253 (4)
C51.0797 (2)0.31676 (19)0.39408 (12)0.0242 (4)
C60.94117 (19)0.40277 (17)0.42240 (12)0.0208 (3)
C70.88836 (18)0.53511 (17)0.36091 (12)0.0205 (3)
C80.94062 (18)0.42773 (17)0.19982 (11)0.0185 (3)
C90.88818 (17)0.55001 (16)0.26407 (12)0.0184 (3)
C100.81293 (18)0.69051 (16)0.21854 (11)0.0186 (3)
C110.72678 (18)0.67304 (16)0.13952 (11)0.0184 (3)
C120.84420 (18)0.58165 (16)0.06730 (11)0.0190 (3)
C130.60692 (17)0.56650 (16)0.18033 (11)0.0171 (3)
C140.69153 (18)0.41489 (16)0.15331 (11)0.0181 (3)
C150.65722 (18)0.31123 (17)0.24635 (11)0.0187 (3)
C160.69109 (19)0.16143 (17)0.25931 (13)0.0229 (4)
C170.6500 (2)0.08829 (18)0.35298 (13)0.0260 (4)
C180.5782 (2)0.16322 (19)0.43228 (13)0.0263 (4)
C190.54172 (19)0.31276 (18)0.41913 (12)0.0229 (4)
C200.58088 (18)0.38532 (16)0.32502 (11)0.0182 (3)
C210.55375 (17)0.54298 (17)0.29254 (11)0.0174 (3)
C220.4708 (2)0.78239 (19)0.11858 (14)0.0287 (4)
C230.63604 (19)0.81395 (18)0.09578 (12)0.0215 (3)
C240.70024 (18)0.86012 (16)0.01149 (12)0.0198 (3)
C250.8288 (2)0.93160 (19)0.03534 (13)0.0259 (4)
C260.8949 (2)0.97029 (19)0.13279 (14)0.0283 (4)
C270.8334 (2)0.93817 (18)0.20774 (13)0.0275 (4)
C280.7038 (2)0.86923 (19)0.18502 (13)0.0271 (4)
C290.6380 (2)0.83022 (17)0.08779 (12)0.0231 (4)
C300.3337 (2)0.5723 (2)0.16840 (14)0.0283 (4)
H1A0.751 (2)0.424 (2)0.5344 (14)0.027 (5)*
H2A0.824 (3)0.207 (2)0.6373 (17)0.035 (6)*
H3A1.062 (3)0.062 (2)0.5834 (16)0.035 (6)*
H4A1.217 (3)0.135 (2)0.4338 (15)0.027 (5)*
H5A1.147 (2)0.344 (2)0.3286 (16)0.030 (5)*
H7A0.839 (2)0.624 (2)0.3991 (15)0.031 (5)*
H8A0.936 (2)0.335 (2)0.2384 (14)0.023 (5)*
H8B1.052 (2)0.431 (2)0.1686 (14)0.022 (5)*
H12A0.945 (2)0.616 (2)0.0488 (13)0.019 (4)*
H12B0.802 (2)0.5839 (19)0.0082 (14)0.017 (4)*
H16A0.742 (2)0.114 (2)0.2045 (14)0.019 (4)*
H17A0.674 (2)0.016 (2)0.3623 (15)0.031 (5)*
H18A0.557 (2)0.110 (2)0.4966 (16)0.031 (5)*
H19A0.489 (2)0.366 (2)0.4725 (15)0.024 (5)*
H22A0.406 (3)0.812 (3)0.1827 (18)0.045 (6)*
H22B0.407 (2)0.828 (2)0.0667 (15)0.027 (5)*
H23A0.643 (2)0.891 (2)0.1339 (15)0.028 (5)*
H25A0.862 (2)0.959 (2)0.0191 (16)0.032 (5)*
H26A0.983 (3)1.023 (2)0.1492 (15)0.033 (5)*
H27A0.879 (3)0.966 (2)0.2779 (17)0.035 (6)*
H28A0.653 (3)0.851 (2)0.2365 (17)0.041 (6)*
H29A0.549 (3)0.782 (2)0.0749 (16)0.035 (5)*
H30A0.260 (2)0.616 (2)0.1267 (16)0.031 (5)*
H30B0.284 (2)0.607 (2)0.2355 (16)0.029 (5)*
H30C0.347 (2)0.457 (2)0.1750 (15)0.031 (5)*
H12O0.589 (3)0.446 (3)0.0529 (18)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (7)0.0153 (6)0.0296 (6)0.0057 (5)0.0063 (5)0.0034 (5)
O20.0284 (6)0.0247 (6)0.0191 (6)0.0035 (5)0.0075 (5)0.0057 (5)
O30.0265 (6)0.0194 (6)0.0213 (6)0.0018 (5)0.0029 (5)0.0055 (5)
N10.0205 (7)0.0159 (6)0.0154 (6)0.0033 (5)0.0004 (5)0.0011 (5)
N20.0205 (7)0.0265 (7)0.0235 (7)0.0010 (6)0.0038 (6)0.0006 (6)
C10.0257 (9)0.0246 (8)0.0222 (8)0.0046 (7)0.0046 (7)0.0039 (7)
C20.0320 (9)0.0276 (9)0.0235 (9)0.0087 (7)0.0043 (7)0.0005 (7)
C30.0333 (10)0.0214 (8)0.0250 (9)0.0047 (7)0.0111 (7)0.0004 (7)
C40.0253 (9)0.0241 (8)0.0270 (9)0.0007 (7)0.0070 (7)0.0052 (7)
C50.0256 (9)0.0252 (8)0.0224 (8)0.0059 (7)0.0038 (7)0.0033 (7)
C60.0253 (8)0.0195 (8)0.0204 (8)0.0073 (6)0.0061 (6)0.0038 (6)
C70.0221 (8)0.0176 (8)0.0233 (8)0.0057 (6)0.0049 (6)0.0033 (6)
C80.0192 (8)0.0153 (7)0.0196 (8)0.0025 (6)0.0009 (6)0.0015 (6)
C90.0179 (7)0.0153 (7)0.0226 (8)0.0055 (6)0.0027 (6)0.0022 (6)
C100.0189 (8)0.0163 (7)0.0184 (7)0.0054 (6)0.0031 (6)0.0010 (6)
C110.0221 (8)0.0147 (7)0.0158 (7)0.0039 (6)0.0011 (6)0.0014 (6)
C120.0211 (8)0.0160 (7)0.0176 (8)0.0022 (6)0.0007 (6)0.0006 (6)
C130.0191 (8)0.0154 (7)0.0154 (7)0.0026 (6)0.0014 (6)0.0001 (6)
C140.0218 (8)0.0171 (7)0.0154 (7)0.0030 (6)0.0023 (6)0.0033 (6)
C150.0191 (8)0.0174 (8)0.0202 (8)0.0053 (6)0.0039 (6)0.0010 (6)
C160.0255 (8)0.0180 (8)0.0260 (9)0.0049 (6)0.0044 (7)0.0035 (7)
C170.0298 (9)0.0154 (8)0.0321 (9)0.0072 (7)0.0064 (7)0.0036 (7)
C180.0321 (9)0.0231 (8)0.0224 (8)0.0109 (7)0.0041 (7)0.0071 (7)
C190.0259 (8)0.0237 (8)0.0188 (8)0.0094 (7)0.0009 (6)0.0002 (6)
C200.0201 (8)0.0169 (8)0.0182 (8)0.0067 (6)0.0029 (6)0.0008 (6)
C210.0168 (7)0.0182 (8)0.0162 (7)0.0049 (6)0.0007 (6)0.0016 (6)
C220.0250 (9)0.0254 (9)0.0292 (9)0.0006 (7)0.0008 (7)0.0042 (7)
C230.0228 (8)0.0185 (8)0.0197 (8)0.0003 (6)0.0011 (6)0.0015 (6)
C240.0205 (8)0.0136 (7)0.0216 (8)0.0006 (6)0.0017 (6)0.0033 (6)
C250.0234 (9)0.0254 (9)0.0283 (9)0.0049 (7)0.0070 (7)0.0031 (7)
C260.0214 (9)0.0253 (9)0.0331 (10)0.0051 (7)0.0010 (7)0.0053 (7)
C270.0308 (9)0.0203 (8)0.0236 (9)0.0016 (7)0.0034 (7)0.0048 (7)
C280.0335 (10)0.0222 (8)0.0241 (9)0.0000 (7)0.0051 (7)0.0025 (7)
C290.0253 (9)0.0156 (7)0.0271 (9)0.0045 (6)0.0029 (7)0.0002 (6)
C300.0240 (9)0.0318 (10)0.0275 (9)0.0061 (7)0.0032 (7)0.0012 (7)
Geometric parameters (Å, º) top
O1—C101.2158 (19)C13—C211.539 (2)
O2—C141.4085 (19)C13—C141.569 (2)
O2—H12O0.82 (3)C14—C151.511 (2)
O3—C211.2134 (19)C15—C161.386 (2)
N1—C121.4682 (19)C15—C201.397 (2)
N1—C81.470 (2)C16—C171.391 (2)
N1—C141.485 (2)C16—H16A0.948 (19)
N2—C221.465 (2)C17—C181.398 (3)
N2—C131.469 (2)C17—H17A0.96 (2)
N2—C301.478 (2)C18—C191.385 (2)
C1—C21.383 (2)C18—H18A0.96 (2)
C1—C61.398 (2)C19—C201.392 (2)
C1—H1A1.01 (2)C19—H19A0.97 (2)
C2—C31.388 (3)C20—C211.479 (2)
C2—H2A1.03 (2)C22—C231.528 (2)
C3—C41.388 (3)C22—H22A1.02 (2)
C3—H3A0.97 (2)C22—H22B1.02 (2)
C4—C51.393 (2)C23—C241.518 (2)
C4—H4A0.93 (2)C23—H23A0.98 (2)
C5—C61.394 (2)C24—C251.392 (2)
C5—H5A1.01 (2)C24—C291.392 (2)
C6—C71.471 (2)C25—C261.391 (3)
C7—C91.344 (2)C25—H25A0.96 (2)
C7—H7A1.05 (2)C26—C271.380 (3)
C8—C91.528 (2)C26—H26A0.98 (2)
C8—H8A0.96 (2)C27—C281.386 (3)
C8—H8B1.01 (2)C27—H27A1.00 (2)
C9—C101.497 (2)C28—C291.388 (2)
C10—C111.523 (2)C28—H28A0.98 (2)
C11—C231.551 (2)C29—H29A0.96 (2)
C11—C121.557 (2)C30—H30A0.98 (2)
C11—C131.557 (2)C30—H30B1.03 (2)
C12—H12A0.989 (19)C30—H30C1.06 (2)
C12—H12B0.975 (19)
C14—O2—H12O105.0 (18)O2—C14—C13111.61 (13)
C12—N1—C8109.09 (12)N1—C14—C13105.53 (12)
C12—N1—C14101.76 (12)C15—C14—C13104.90 (12)
C8—N1—C14115.23 (12)C16—C15—C20120.51 (14)
C22—N2—C13105.68 (13)C16—C15—C14128.27 (15)
C22—N2—C30111.93 (14)C20—C15—C14111.21 (13)
C13—N2—C30115.98 (13)C15—C16—C17118.07 (16)
C2—C1—C6120.81 (16)C15—C16—H16A118.9 (11)
C2—C1—H1A120.0 (11)C17—C16—H16A123.0 (11)
C6—C1—H1A119.2 (11)C16—C17—C18121.26 (15)
C1—C2—C3120.10 (16)C16—C17—H17A118.4 (12)
C1—C2—H2A119.9 (12)C18—C17—H17A120.4 (12)
C3—C2—H2A120.0 (12)C19—C18—C17120.75 (15)
C2—C3—C4119.93 (16)C19—C18—H18A120.1 (13)
C2—C3—H3A120.5 (13)C17—C18—H18A119.2 (13)
C4—C3—H3A119.6 (13)C18—C19—C20117.80 (16)
C3—C4—C5119.85 (16)C18—C19—H19A122.1 (12)
C3—C4—H4A120.6 (13)C20—C19—H19A120.1 (12)
C5—C4—H4A119.6 (13)C19—C20—C15121.55 (15)
C4—C5—C6120.66 (16)C19—C20—C21127.92 (15)
C4—C5—H5A119.7 (12)C15—C20—C21110.52 (13)
C6—C5—H5A119.6 (12)O3—C21—C20127.33 (14)
C5—C6—C1118.62 (15)O3—C21—C13125.07 (14)
C5—C6—C7122.39 (15)C20—C21—C13107.57 (12)
C1—C6—C7118.99 (15)N2—C22—C23104.88 (14)
C9—C7—C6126.85 (15)N2—C22—H22A106.9 (14)
C9—C7—H7A117.9 (11)C23—C22—H22A116.5 (14)
C6—C7—H7A115.1 (11)N2—C22—H22B109.0 (11)
N1—C8—C9114.88 (13)C23—C22—H22B115.3 (11)
N1—C8—H8A107.7 (12)H22A—C22—H22B104.0 (18)
C9—C8—H8A111.2 (12)C24—C23—C22115.92 (14)
N1—C8—H8B107.6 (11)C24—C23—C11112.96 (13)
C9—C8—H8B108.8 (11)C22—C23—C11104.13 (13)
H8A—C8—H8B106.1 (16)C24—C23—H23A108.3 (12)
C7—C9—C10117.64 (14)C22—C23—H23A108.2 (12)
C7—C9—C8124.61 (14)C11—C23—H23A106.8 (12)
C10—C9—C8117.27 (13)C25—C24—C29118.25 (15)
O1—C10—C9122.92 (15)C25—C24—C23119.22 (15)
O1—C10—C11123.45 (14)C29—C24—C23122.50 (15)
C9—C10—C11113.63 (13)C26—C25—C24121.00 (17)
C10—C11—C23115.69 (13)C26—C25—H25A123.0 (13)
C10—C11—C12105.08 (13)C24—C25—H25A115.8 (13)
C23—C11—C12118.06 (13)C27—C26—C25120.17 (17)
C10—C11—C13110.93 (12)C27—C26—H26A119.1 (12)
C23—C11—C13105.36 (12)C25—C26—H26A120.7 (13)
C12—C11—C13100.70 (12)C26—C27—C28119.42 (16)
N1—C12—C11103.98 (12)C26—C27—H27A121.2 (13)
N1—C12—H12A111.4 (11)C28—C27—H27A119.4 (13)
C11—C12—H12A113.4 (11)C27—C28—C29120.43 (17)
N1—C12—H12B110.0 (11)C27—C28—H28A121.6 (14)
C11—C12—H12B108.6 (11)C29—C28—H28A117.9 (14)
H12A—C12—H12B109.3 (15)C28—C29—C24120.71 (16)
N2—C13—C21113.55 (13)C28—C29—H29A118.1 (13)
N2—C13—C11103.47 (12)C24—C29—H29A121.2 (13)
C21—C13—C11116.85 (12)N2—C30—H30A109.5 (12)
N2—C13—C14113.34 (13)N2—C30—H30B113.5 (12)
C21—C13—C14104.78 (12)H30A—C30—H30B103.0 (17)
C11—C13—C14104.80 (12)N2—C30—H30C109.9 (11)
O2—C14—N1108.21 (12)H30A—C30—H30C110.9 (17)
O2—C14—C15111.55 (13)H30B—C30—H30C109.8 (16)
N1—C14—C15114.89 (13)
C6—C1—C2—C31.7 (3)N2—C13—C14—N1123.70 (13)
C1—C2—C3—C40.1 (3)C21—C13—C14—N1111.97 (13)
C2—C3—C4—C51.1 (3)C11—C13—C14—N111.59 (15)
C3—C4—C5—C60.6 (3)N2—C13—C14—C15114.57 (14)
C4—C5—C6—C11.0 (2)C21—C13—C14—C159.76 (15)
C4—C5—C6—C7179.61 (15)C11—C13—C14—C15133.32 (12)
C2—C1—C6—C52.1 (2)O2—C14—C15—C1651.5 (2)
C2—C1—C6—C7178.44 (15)N1—C14—C15—C1672.2 (2)
C5—C6—C7—C946.8 (2)C13—C14—C15—C16172.45 (15)
C1—C6—C7—C9133.81 (18)O2—C14—C15—C20128.10 (14)
C12—N1—C8—C948.56 (17)N1—C14—C15—C20108.28 (15)
C14—N1—C8—C965.12 (17)C13—C14—C15—C207.11 (17)
C6—C7—C9—C10173.33 (15)C20—C15—C16—C171.4 (2)
C6—C7—C9—C81.6 (3)C14—C15—C16—C17179.04 (16)
N1—C8—C9—C7145.29 (15)C15—C16—C17—C180.7 (3)
N1—C8—C9—C1026.47 (19)C16—C17—C18—C191.9 (3)
C7—C9—C10—O137.5 (2)C17—C18—C19—C200.9 (3)
C8—C9—C10—O1150.11 (15)C18—C19—C20—C151.3 (2)
C7—C9—C10—C11142.41 (14)C18—C19—C20—C21179.67 (16)
C8—C9—C10—C1129.93 (18)C16—C15—C20—C192.5 (2)
O1—C10—C11—C234.6 (2)C14—C15—C20—C19177.89 (14)
C9—C10—C11—C23175.34 (12)C16—C15—C20—C21178.31 (14)
O1—C10—C11—C12127.48 (16)C14—C15—C20—C211.28 (18)
C9—C10—C11—C1252.57 (15)C19—C20—C21—O32.4 (3)
O1—C10—C11—C13124.53 (16)C15—C20—C21—O3176.71 (15)
C9—C10—C11—C1355.42 (17)C19—C20—C21—C13175.60 (15)
C8—N1—C12—C1172.99 (15)C15—C20—C21—C135.29 (17)
C14—N1—C12—C1149.20 (14)N2—C13—C21—O363.2 (2)
C10—C11—C12—N174.48 (14)C11—C13—C21—O357.2 (2)
C23—C11—C12—N1154.79 (13)C14—C13—C21—O3172.66 (15)
C13—C11—C12—N140.83 (15)N2—C13—C21—C20114.90 (14)
C22—N2—C13—C2189.21 (15)C11—C13—C21—C20124.74 (14)
C30—N2—C13—C2135.42 (19)C14—C13—C21—C209.29 (16)
C22—N2—C13—C1138.45 (15)C13—N2—C22—C2341.02 (16)
C30—N2—C13—C11163.08 (14)C30—N2—C22—C23168.15 (14)
C22—N2—C13—C14151.36 (13)N2—C22—C23—C2498.82 (16)
C30—N2—C13—C1484.00 (17)N2—C22—C23—C1125.91 (17)
C10—C11—C13—N2147.07 (13)C10—C11—C23—C24113.20 (15)
C23—C11—C13—N221.16 (15)C12—C11—C23—C2412.5 (2)
C12—C11—C13—N2102.09 (13)C13—C11—C23—C24123.89 (14)
C10—C11—C13—C2121.49 (18)C10—C11—C23—C22120.19 (15)
C23—C11—C13—C21104.42 (15)C12—C11—C23—C22114.10 (15)
C12—C11—C13—C21132.33 (14)C13—C11—C23—C222.72 (16)
C10—C11—C13—C1493.95 (14)C22—C23—C24—C25160.82 (15)
C23—C11—C13—C14140.15 (12)C11—C23—C24—C2579.13 (19)
C12—C11—C13—C1416.89 (14)C22—C23—C24—C2921.0 (2)
C12—N1—C14—O282.39 (14)C11—C23—C24—C2999.04 (18)
C8—N1—C14—O2159.73 (12)C29—C24—C25—C261.0 (2)
C12—N1—C14—C15152.24 (13)C23—C24—C25—C26177.28 (15)
C8—N1—C14—C1534.36 (18)C24—C25—C26—C270.1 (3)
C12—N1—C14—C1337.20 (14)C25—C26—C27—C281.0 (3)
C8—N1—C14—C1380.67 (14)C26—C27—C28—C291.2 (3)
N2—C13—C14—O26.38 (17)C27—C28—C29—C240.3 (3)
C21—C13—C14—O2130.71 (13)C25—C24—C29—C280.8 (2)
C11—C13—C14—O2105.73 (14)C23—C24—C29—C28177.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12O···N20.82 (3)2.10 (3)2.6741 (19)127 (2)
C17—H17A···O1i0.965 (19)2.56 (2)3.278 (2)130.8 (15)
C26—H26A···O1ii0.98 (3)2.60 (2)3.535 (2)161.6 (18)
C29—H29A···O2iii0.96 (3)2.43 (2)3.363 (2)165.7 (18)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H26N2O3
Mr462.53
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0333 (5), 9.4222 (5), 14.0290 (7)
α, β, γ (°)80.943 (2), 78.034 (1), 80.578 (1)
V3)1142.88 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.39 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
21768, 4213, 3812
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.06
No. of reflections4213
No. of parameters420
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12O···N20.82 (3)2.10 (3)2.6741 (19)127 (2)
C17—H17A···O1i0.965 (19)2.56 (2)3.278 (2)130.8 (15)
C26—H26A···O1ii0.98 (3)2.60 (2)3.535 (2)161.6 (18)
C29—H29A···O2iii0.96 (3)2.43 (2)3.363 (2)165.7 (18)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research grant (1001/PKIMIA/8111016). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). RSK thanks USM for the award of post doctoral fellowship and CKQ also thanks USM for the award of USM Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGothelf, K. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863–909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGu, Y. G., Zhang, X., Clark, R. F., Djuric, S. & Ma, Z. (2004). Tetrahedron Lett. 45, 3051–3053.  Web of Science CrossRef CAS Google Scholar
First citationHorri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038–1046.  PubMed Web of Science Google Scholar
First citationKarpas, A., Fleet, G. W. J., Dwek, R. A., Petursson, S., Mamgoong, S. K., Ramsden, N. G., Jacob, G. S. & Rademacher, T. W. (1988). Proc. Natl. Acad. Sci. USA, 85, 9229–9233.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukamoto, K., Uno, A., Shimada, S. & Imokaw, G. (1989). Clin. Res. 37A, 722–729.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1540-o1541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds