organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(3,5-di­methyl­phen­yl)-5-methyl­benzene

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 27 May 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound, C23H24, the dihedral angles formed by the central benzene ring with the peripheral benzene rings are 29.90 (5) and 34.95 (5)°. The crystal packing is stabilized by ππ stacking inter­actions with centroid–centroid distances of 3.815 (4) Å.

Related literature

For the role of terphenyls in organic synthesis, see: Wright & Vinod (2003[Wright, R. S. & Vinod, T. K. (2003). Tetrahedron Lett. 44, 7129-7132.]). For conformational studies on terphenyls, see: Amorim da Costa et al. (1997[Amorim da Costa, A. M., Karger, N., Amado, A. M. & Becucci, M. (1997). Solid State lonics, 97, 115-121.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24

  • Mr = 300.42

  • Monoclinic, P 21 /c

  • a = 14.955 (2) Å

  • b = 7.6081 (12) Å

  • c = 16.207 (2) Å

  • β = 106.839 (2)°

  • V = 1765.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 296 K

  • 0.48 × 0.42 × 0.37 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.977

  • 12155 measured reflections

  • 3087 independent reflections

  • 2485 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.04

  • 3087 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terphenyl compounds play an important role in organic synthesis and as heat exchanger, due to the possibility of a methyl group on the terphenyl core to be oxidized to carboxylic acid (Wright & Vinod, 2003).The conformation of m-terphenyls has been studied under a variety of conditions; because these molecules are formed by three phenyl rings connected by two C—C bonds, characteristic conformational changes occur with the rotations around the C—C bonds (Amorim da Costa et al., 1997). Herein we report the synthesis and crystal structure of a new terphenyl compound.

The molecular structure of the title compound is illustrated in Fig. 1. Bond lengths and bond angles are within normal ranges.The dihedral angle formed by the peripheral C8–C13 and C16–C21 benzene rings with the central C2–C7 benzene ring are 34.95 (5) and 29.90 (5)° respectively. In the crystal packing,the centroid-to centroid distance of 3.815 (4)Å between the planes of adjacent C8–C13 benzene rings suggests that the molecules are engaged in offset face-to-face π-π stacking interactions (Fig. 2).

Related literature top

For the role of terphenyls in organic synthesis, see: Wright & Vinod (2003). For conformational studies on terphenyls, see: Amorim da Costa et al. (1997).

Experimental top

1,3-Dibromo-5-methylbenzene (88.1 mmol, 22.02 g), 3,5-dimethylphenylboronic acid (211.6 mmol, 31.73 g) and triphenylphosphine (17.62 mmol, 4.62 g) were dissolved in 1,2-dimethoxyethane (120 ml), the 240 ml of a 2M K2CO3 (480 mmol) aqueous solution were added and the mixture was purged with nitrogen. Palladium acetate (0.988 g, 0.025 eq.) was added and the mixture was refluxed for 18 h. The two phases were then separated and the aqueous phase was extracted with ethyl acetate (3 x 250 ml). The combined organic phases were washed with water (250 ml) and dried over MgSO4. After evaporation of the solvent, the oily residue was purified by bulb-to-bulb distillation to afford the crude title compound. Recrystallization from ethyl acetate gave colourless crystal after 3 days. Yield: 78.9%. Calcd. for C23H24: C, 92.01%; H, 7.99%; Found: C, 91.87%; H, 8.08%.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis.
1,3-Bis(3,5-dimethylphenyl)-5-methylbenzene top
Crystal data top
C23H24F(000) = 648
Mr = 300.42Dx = 1.131 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4929 reflections
a = 14.955 (2) Åθ = 2.6–27.5°
b = 7.6081 (12) ŵ = 0.06 mm1
c = 16.207 (2) ÅT = 296 K
β = 106.839 (2)°Block, colourless
V = 1765.0 (5) Å30.48 × 0.42 × 0.37 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1715
Tmin = 0.970, Tmax = 0.977k = 99
12155 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.6595P]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H24V = 1765.0 (5) Å3
Mr = 300.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.955 (2) ŵ = 0.06 mm1
b = 7.6081 (12) ÅT = 296 K
c = 16.207 (2) Å0.48 × 0.42 × 0.37 mm
β = 106.839 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2485 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.977Rint = 0.030
12155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3087 reflectionsΔρmin = 0.19 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28892 (13)0.9286 (3)0.18056 (11)0.0430 (5)
H1A0.34790.97570.18220.064*
H1B0.24061.01360.20320.064*
H1C0.27560.82350.21470.064*
C20.29293 (12)0.8859 (2)0.08860 (10)0.0323 (4)
C30.21125 (11)0.8739 (2)0.06402 (10)0.0317 (4)
H3A0.15440.90120.10390.038*
C40.21242 (11)0.8221 (2)0.01890 (10)0.0293 (4)
C50.29861 (11)0.7810 (2)0.07781 (10)0.0289 (4)
H5A0.30040.74320.13280.035*
C60.38219 (11)0.7953 (2)0.05594 (10)0.0292 (4)
C70.37750 (11)0.8499 (2)0.02774 (10)0.0325 (4)
H7A0.43260.86230.04290.039*
C80.12366 (11)0.8067 (2)0.04287 (10)0.0290 (4)
C90.04176 (11)0.7501 (2)0.01771 (10)0.0332 (4)
H9A0.04320.72290.07330.040*
C100.04181 (11)0.7333 (2)0.00311 (11)0.0357 (4)
C110.04208 (11)0.7735 (2)0.08674 (11)0.0357 (4)
H11A0.09720.76090.10170.043*
C120.03733 (11)0.8317 (2)0.14839 (11)0.0329 (4)
C130.12016 (11)0.8473 (2)0.12570 (10)0.0300 (4)
H13A0.17400.88560.16670.036*
C140.12950 (12)0.6743 (3)0.06379 (13)0.0489 (5)
H14A0.11310.60470.10660.073*
H14B0.16450.77530.09060.073*
H14C0.16680.60520.03670.073*
C150.03426 (13)0.8813 (3)0.23773 (12)0.0474 (5)
H15A0.08400.82310.27980.071*
H15B0.02460.84620.24510.071*
H15C0.04141.00630.24510.071*
C160.47339 (11)0.7497 (2)0.11903 (10)0.0286 (4)
C170.48839 (11)0.7751 (2)0.20766 (10)0.0294 (4)
H17A0.44060.82170.22700.035*
C180.57282 (11)0.7322 (2)0.26727 (10)0.0302 (4)
C190.64405 (11)0.6637 (2)0.23696 (11)0.0321 (4)
H19A0.70060.63310.27630.039*
C200.63239 (11)0.6404 (2)0.14940 (11)0.0318 (4)
C210.54670 (11)0.6821 (2)0.09147 (10)0.0310 (4)
H21A0.53790.66460.03290.037*
C220.58804 (12)0.7640 (3)0.36219 (11)0.0404 (4)
H22A0.53340.81790.37080.061*
H22B0.64080.84030.38370.061*
H22C0.59960.65410.39250.061*
C230.71275 (12)0.5809 (3)0.11702 (12)0.0437 (5)
H23A0.75620.51440.16120.066*
H23B0.74370.68180.10260.066*
H23C0.68930.50880.06680.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (11)0.0466 (11)0.0349 (9)0.0097 (9)0.0141 (8)0.0031 (8)
C20.0378 (9)0.0300 (8)0.0302 (8)0.0042 (7)0.0115 (7)0.0003 (7)
C30.0308 (9)0.0306 (8)0.0315 (8)0.0005 (7)0.0057 (7)0.0018 (7)
C40.0273 (8)0.0286 (8)0.0319 (8)0.0007 (6)0.0086 (7)0.0009 (7)
C50.0276 (8)0.0325 (8)0.0279 (8)0.0004 (7)0.0097 (7)0.0009 (6)
C60.0283 (8)0.0296 (8)0.0311 (8)0.0014 (6)0.0107 (7)0.0030 (7)
C70.0313 (9)0.0340 (9)0.0355 (9)0.0052 (7)0.0150 (7)0.0025 (7)
C80.0249 (8)0.0290 (8)0.0321 (8)0.0024 (6)0.0065 (7)0.0045 (6)
C90.0288 (9)0.0364 (9)0.0321 (9)0.0005 (7)0.0054 (7)0.0021 (7)
C100.0264 (9)0.0331 (9)0.0432 (10)0.0004 (7)0.0033 (7)0.0064 (7)
C110.0237 (8)0.0372 (9)0.0482 (10)0.0023 (7)0.0135 (7)0.0081 (8)
C120.0286 (8)0.0336 (9)0.0381 (9)0.0046 (7)0.0121 (7)0.0058 (7)
C130.0236 (8)0.0322 (9)0.0324 (8)0.0005 (6)0.0054 (6)0.0022 (7)
C140.0313 (10)0.0518 (12)0.0549 (12)0.0053 (8)0.0013 (8)0.0052 (9)
C150.0397 (10)0.0610 (13)0.0465 (11)0.0018 (9)0.0208 (9)0.0012 (9)
C160.0245 (8)0.0300 (8)0.0333 (8)0.0033 (6)0.0118 (7)0.0002 (7)
C170.0253 (8)0.0317 (8)0.0349 (9)0.0007 (6)0.0148 (7)0.0000 (7)
C180.0274 (8)0.0311 (8)0.0336 (9)0.0031 (6)0.0110 (7)0.0016 (7)
C190.0244 (8)0.0316 (9)0.0398 (9)0.0001 (6)0.0084 (7)0.0040 (7)
C200.0263 (8)0.0280 (8)0.0445 (10)0.0019 (6)0.0155 (7)0.0024 (7)
C210.0289 (8)0.0340 (9)0.0331 (8)0.0042 (7)0.0138 (7)0.0043 (7)
C220.0355 (10)0.0521 (11)0.0337 (9)0.0029 (8)0.0104 (8)0.0038 (8)
C230.0314 (9)0.0490 (11)0.0554 (11)0.0032 (8)0.0198 (8)0.0073 (9)
Geometric parameters (Å, º) top
C1—C21.509 (2)C13—H13A0.9300
C1—H1A0.9600C14—H14A0.9600
C1—H1B0.9600C14—H14B0.9600
C1—H1C0.9600C14—H14C0.9600
C2—C71.387 (2)C15—H15A0.9600
C2—C31.393 (2)C15—H15B0.9600
C3—C41.396 (2)C15—H15C0.9600
C3—H3A0.9300C16—C211.397 (2)
C4—C51.399 (2)C16—C171.401 (2)
C4—C81.492 (2)C17—C181.388 (2)
C5—C61.399 (2)C17—H17A0.9300
C5—H5A0.9300C18—C191.397 (2)
C6—C71.401 (2)C18—C221.508 (2)
C6—C161.489 (2)C19—C201.390 (2)
C7—H7A0.9300C19—H19A0.9300
C8—C131.393 (2)C20—C211.388 (2)
C8—C91.398 (2)C20—C231.513 (2)
C9—C101.392 (2)C21—H21A0.9300
C9—H9A0.9300C22—H22A0.9600
C10—C111.391 (2)C22—H22B0.9600
C10—C141.508 (2)C22—H22C0.9600
C11—C121.385 (2)C23—H23A0.9600
C11—H11A0.9300C23—H23B0.9600
C12—C131.396 (2)C23—H23C0.9600
C12—C151.510 (2)
C2—C1—H1A109.5C10—C14—H14A109.5
C2—C1—H1B109.5C10—C14—H14B109.5
H1A—C1—H1B109.5H14A—C14—H14B109.5
C2—C1—H1C109.5C10—C14—H14C109.5
H1A—C1—H1C109.5H14A—C14—H14C109.5
H1B—C1—H1C109.5H14B—C14—H14C109.5
C7—C2—C3118.56 (14)C12—C15—H15A109.5
C7—C2—C1120.78 (15)C12—C15—H15B109.5
C3—C2—C1120.60 (15)H15A—C15—H15B109.5
C2—C3—C4121.76 (15)C12—C15—H15C109.5
C2—C3—H3A119.1H15A—C15—H15C109.5
C4—C3—H3A119.1H15B—C15—H15C109.5
C3—C4—C5118.18 (14)C21—C16—C17118.10 (14)
C3—C4—C8120.59 (14)C21—C16—C6120.92 (14)
C5—C4—C8121.21 (14)C17—C16—C6120.97 (14)
C6—C5—C4121.59 (14)C18—C17—C16121.62 (14)
C6—C5—H5A119.2C18—C17—H17A119.2
C4—C5—H5A119.2C16—C17—H17A119.2
C5—C6—C7118.08 (14)C17—C18—C19118.39 (15)
C5—C6—C16121.04 (14)C17—C18—C22120.69 (14)
C7—C6—C16120.86 (14)C19—C18—C22120.90 (15)
C2—C7—C6121.78 (14)C20—C19—C18121.59 (15)
C2—C7—H7A119.1C20—C19—H19A119.2
C6—C7—H7A119.1C18—C19—H19A119.2
C13—C8—C9118.38 (14)C21—C20—C19118.64 (14)
C13—C8—C4121.21 (14)C21—C20—C23120.27 (15)
C9—C8—C4120.41 (14)C19—C20—C23121.00 (15)
C10—C9—C8121.59 (15)C20—C21—C16121.63 (15)
C10—C9—H9A119.2C20—C21—H21A119.2
C8—C9—H9A119.2C16—C21—H21A119.2
C11—C10—C9118.20 (15)C18—C22—H22A109.5
C11—C10—C14121.26 (16)C18—C22—H22B109.5
C9—C10—C14120.54 (16)H22A—C22—H22B109.5
C12—C11—C10121.97 (15)C18—C22—H22C109.5
C12—C11—H11A119.0H22A—C22—H22C109.5
C10—C11—H11A119.0H22B—C22—H22C109.5
C11—C12—C13118.58 (15)C20—C23—H23A109.5
C11—C12—C15120.93 (15)C20—C23—H23B109.5
C13—C12—C15120.48 (15)H23A—C23—H23B109.5
C8—C13—C12121.27 (15)C20—C23—H23C109.5
C8—C13—H13A119.4H23A—C23—H23C109.5
C12—C13—H13A119.4H23B—C23—H23C109.5
C7—C2—C3—C41.9 (2)C10—C11—C12—C131.1 (2)
C1—C2—C3—C4175.21 (15)C10—C11—C12—C15177.55 (17)
C2—C3—C4—C50.3 (2)C9—C8—C13—C120.2 (2)
C2—C3—C4—C8178.69 (15)C4—C8—C13—C12179.50 (15)
C3—C4—C5—C61.7 (2)C11—C12—C13—C80.4 (2)
C8—C4—C5—C6179.86 (14)C15—C12—C13—C8178.23 (16)
C4—C5—C6—C71.0 (2)C5—C6—C16—C21148.88 (16)
C4—C5—C6—C16179.49 (14)C7—C6—C16—C2129.6 (2)
C3—C2—C7—C62.6 (2)C5—C6—C16—C1731.8 (2)
C1—C2—C7—C6174.43 (15)C7—C6—C16—C17149.78 (15)
C5—C6—C7—C21.3 (2)C21—C16—C17—C181.0 (2)
C16—C6—C7—C2177.26 (15)C6—C16—C17—C18179.61 (14)
C3—C4—C8—C13145.64 (16)C16—C17—C18—C190.6 (2)
C5—C4—C8—C1336.0 (2)C16—C17—C18—C22178.76 (15)
C3—C4—C8—C934.7 (2)C17—C18—C19—C200.8 (2)
C5—C4—C8—C9143.73 (16)C22—C18—C19—C20177.33 (15)
C13—C8—C9—C100.2 (2)C18—C19—C20—C211.8 (2)
C4—C8—C9—C10179.53 (15)C18—C19—C20—C23174.69 (16)
C8—C9—C10—C110.5 (2)C19—C20—C21—C161.3 (2)
C8—C9—C10—C14179.17 (16)C23—C20—C21—C16175.17 (16)
C9—C10—C11—C121.1 (2)C17—C16—C21—C200.0 (2)
C14—C10—C11—C12178.51 (16)C6—C16—C21—C20179.43 (15)

Experimental details

Crystal data
Chemical formulaC23H24
Mr300.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.955 (2), 7.6081 (12), 16.207 (2)
β (°) 106.839 (2)
V3)1765.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.48 × 0.42 × 0.37
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.970, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12155, 3087, 2485
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.04
No. of reflections3087
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Talent Fund of Ningbo University (grant No. 2008087) and sponsored by the K. C. Wong Magna Fund in Ningbo University.

References

First citationAmorim da Costa, A. M., Karger, N., Amado, A. M. & Becucci, M. (1997). Solid State lonics, 97, 115–121.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, R. S. & Vinod, T. K. (2003). Tetrahedron Lett. 44, 7129–7132.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds