organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­dr­oxy-1-naphth­yl­methyl­idene)-3-meth­­oxy­benzohydrazide

aCollege of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: hangzhx@163.com

(Received 1 June 2010; accepted 8 June 2010; online 16 June 2010)

In the title compound, C19H16N2O3, the dihedral angle between the naphthalene ring system and the benzene ring is 19.8 (3)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazone compounds, see: Arunkumar et al. (2006[Arunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29-32.]); Saxena et al. (2008[Saxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914-3918.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Galal et al. (2009[Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500-1508.]); Bordoloi et al. (2009[Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754-2757.]). For similar hydrazone compounds, see: Han et al. (2010[Han, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085-o1086.]); Wang et al. (2010[Wang, H.-Y., Fan, C.-G. & Yang, Z.-N. (2010). Acta Cryst. E66, o1.]); Qiao et al. (2010[Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Sun et al. (2009[Sun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O3

  • Mr = 320.34

  • Monoclinic, P 21 /n

  • a = 7.1700 (15) Å

  • b = 31.174 (7) Å

  • c = 7.4669 (16) Å

  • β = 109.746 (12)°

  • V = 1570.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.984

  • 9232 measured reflections

  • 3405 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 0.92

  • 3405 reflections

  • 222 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.91 (1) 1.97 (1) 2.842 (3) 163 (2)
O1—H1⋯N1 0.82 1.85 2.574 (2) 146
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Considerable interest has been focused on hydrazone compounds due to their excellent biological activities (Arunkumar et al., 2006; Saxena et al., 2008; Zia-ur-Rehman et al., 2009; Galal et al., 2009; Bordoloi et al., 2009). In the last few years, a great deal of hydrazone compounds have been prepared and characterized by X-ray diffraction (Han et al., 2010; Wang et al., 2010; Qiao et al., 2010; Suleiman Gwaram et al., 2010; Sun et al., 2009). The present paper reports a new hydrazone compound, N'-(2-hydroxynaphthylene)-3-methoxybenzohydrazide.

In the title compound (Fig. 1) the dihedral angle between the naphthalene ring system and the benzene ring is 19.8 (3)°. Bond lengths and angles are comparable to those found in similar hydrazone compounds cited above. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the molecular conformation. The molecules are linked via intermolecular N—H···O hydrogen bonds (Table 1), to form chains along the a axis (Fig. 2).

Related literature top

For the biological activity of hydrazone compounds, see: Arunkumar et al. (2006); Saxena et al. (2008); Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For similar hydrazone compounds, see: Han et al. (2010); Wang et al. (2010); Qiao et al. (2010); Suleiman Gwaram et al. (2010); Sun et al. (2009).

Experimental top

Equimolar quantities (1 mmol) of 3-methoxybenzohydrazide and 2-hydroxy-1-naphthyaldehyde were mixed and stirred in methanol for 2 h at ambient temperature. The resulting mixture was concentrated under recuced pressure. The residue, purified by washing with cold methanol and diethyl ether, afforded the pure product of the hydrazone compound. Colourless single crystals suitable for X-ray diffraction were obtained on slow evaqporation of a methanol solution.

Refinement top

The H2 atom was found from a difference Fourier map and refined with an isotropic displacement parameter of 0.08 Å2, and with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 and 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2 or 1.5Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The intramolecular O–H···N hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
N'-(2-Hydroxy-1-naphthylmethylidene)-3-methoxybenzohydrazide top
Crystal data top
C19H16N2O3F(000) = 672
Mr = 320.34Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1460 reflections
a = 7.1700 (15) Åθ = 2.5–24.0°
b = 31.174 (7) ŵ = 0.09 mm1
c = 7.4669 (16) ÅT = 298 K
β = 109.746 (12)°Block, colourless
V = 1570.9 (6) Å30.18 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3405 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 27.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.984, Tmax = 0.984k = 3935
9232 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C19H16N2O3V = 1570.9 (6) Å3
Mr = 320.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1700 (15) ŵ = 0.09 mm1
b = 31.174 (7) ÅT = 298 K
c = 7.4669 (16) Å0.18 × 0.17 × 0.17 mm
β = 109.746 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1839 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.984Rint = 0.093
9232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.22 e Å3
3405 reflectionsΔρmin = 0.23 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9564 (3)0.21280 (5)0.6283 (3)0.0368 (5)
N20.9265 (3)0.24056 (6)0.4765 (3)0.0377 (5)
O11.0227 (3)0.19610 (5)0.9820 (2)0.0522 (5)
H11.01930.21080.89000.078*
O21.1086 (2)0.29306 (4)0.6668 (2)0.0446 (4)
O30.8581 (3)0.42263 (5)0.2180 (3)0.0610 (5)
C10.9067 (3)0.14315 (6)0.7351 (3)0.0325 (5)
C20.9652 (3)0.15572 (7)0.9238 (3)0.0374 (5)
C30.9684 (4)0.12616 (8)1.0675 (3)0.0448 (6)
H31.00450.13531.19320.054*
C40.9194 (4)0.08463 (8)1.0244 (4)0.0465 (6)
H40.92310.06561.12150.056*
C50.8625 (3)0.06948 (7)0.8351 (3)0.0385 (6)
C60.8142 (4)0.02588 (8)0.7898 (4)0.0512 (7)
H60.81810.00680.88670.061*
C70.7624 (4)0.01126 (8)0.6091 (5)0.0632 (8)
H70.73300.01760.58200.076*
C80.7539 (5)0.04030 (8)0.4638 (4)0.0667 (8)
H80.71710.03050.33900.080*
C90.7981 (4)0.08248 (8)0.5010 (4)0.0521 (7)
H90.79130.10090.40100.063*
C100.8543 (3)0.09898 (7)0.6881 (3)0.0351 (5)
C110.8922 (3)0.17435 (7)0.5871 (3)0.0358 (5)
H110.83540.16640.46010.043*
C121.0051 (3)0.28023 (7)0.5079 (3)0.0330 (5)
C130.9564 (3)0.30824 (7)0.3373 (3)0.0324 (5)
C140.9349 (3)0.35181 (7)0.3628 (3)0.0363 (5)
H140.95280.36240.48390.044*
C150.8871 (3)0.37955 (7)0.2097 (4)0.0417 (6)
C160.8640 (4)0.36340 (9)0.0300 (4)0.0530 (7)
H160.83250.38190.07360.064*
C170.8871 (4)0.32039 (9)0.0040 (4)0.0535 (7)
H170.87260.31000.11670.064*
C180.9320 (3)0.29230 (7)0.1567 (3)0.0417 (6)
H180.94570.26310.13870.050*
C190.8793 (5)0.44027 (8)0.3982 (5)0.0690 (9)
H19A0.78770.42660.44860.104*
H19B0.85250.47050.38530.104*
H19C1.01220.43570.48300.104*
H20.836 (3)0.2332 (9)0.363 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0382 (11)0.0332 (10)0.0349 (11)0.0007 (9)0.0070 (9)0.0046 (9)
N20.0449 (12)0.0303 (10)0.0301 (11)0.0025 (9)0.0024 (9)0.0034 (9)
O10.0689 (12)0.0450 (10)0.0397 (10)0.0084 (10)0.0143 (10)0.0079 (8)
O20.0511 (10)0.0396 (9)0.0309 (9)0.0023 (8)0.0020 (8)0.0008 (7)
O30.0633 (13)0.0403 (10)0.0735 (14)0.0055 (9)0.0154 (11)0.0180 (10)
C10.0297 (12)0.0359 (12)0.0311 (13)0.0015 (10)0.0091 (10)0.0030 (10)
C20.0353 (13)0.0369 (13)0.0390 (14)0.0017 (11)0.0114 (11)0.0016 (11)
C30.0468 (15)0.0558 (16)0.0301 (13)0.0031 (13)0.0108 (12)0.0026 (12)
C40.0460 (15)0.0502 (15)0.0443 (15)0.0037 (13)0.0167 (12)0.0151 (13)
C50.0344 (13)0.0353 (12)0.0469 (15)0.0032 (11)0.0150 (11)0.0058 (11)
C60.0495 (16)0.0413 (14)0.0623 (18)0.0014 (13)0.0184 (14)0.0107 (14)
C70.071 (2)0.0338 (14)0.082 (2)0.0066 (13)0.0229 (18)0.0013 (15)
C80.093 (2)0.0472 (16)0.0570 (19)0.0146 (16)0.0211 (18)0.0146 (15)
C90.0714 (19)0.0417 (14)0.0436 (15)0.0093 (13)0.0199 (14)0.0033 (12)
C100.0328 (12)0.0344 (12)0.0371 (13)0.0016 (10)0.0105 (11)0.0010 (11)
C110.0370 (13)0.0371 (12)0.0296 (12)0.0000 (11)0.0065 (10)0.0002 (10)
C120.0326 (12)0.0318 (12)0.0305 (12)0.0020 (10)0.0054 (10)0.0011 (10)
C130.0285 (11)0.0363 (12)0.0282 (12)0.0034 (10)0.0042 (9)0.0006 (10)
C140.0327 (12)0.0370 (12)0.0368 (13)0.0025 (10)0.0084 (10)0.0009 (11)
C150.0333 (13)0.0387 (13)0.0481 (15)0.0008 (11)0.0073 (11)0.0112 (12)
C160.0485 (16)0.0640 (18)0.0408 (16)0.0083 (14)0.0075 (12)0.0168 (14)
C170.0556 (17)0.0742 (19)0.0307 (14)0.0132 (15)0.0147 (12)0.0008 (14)
C180.0440 (14)0.0447 (13)0.0358 (14)0.0041 (12)0.0126 (11)0.0034 (11)
C190.074 (2)0.0426 (15)0.100 (3)0.0077 (15)0.042 (2)0.0013 (16)
Geometric parameters (Å, º) top
N1—C111.284 (3)C7—C81.398 (4)
N1—N21.384 (2)C7—H70.9300
N2—C121.346 (3)C8—C91.359 (3)
N2—H20.905 (10)C8—H80.9300
O1—C21.350 (2)C9—C101.414 (3)
O1—H10.8200C9—H90.9300
O2—C121.235 (3)C11—H110.9300
O3—C151.364 (3)C12—C131.485 (3)
O3—C191.413 (3)C13—C141.387 (3)
C1—C21.384 (3)C13—C181.391 (3)
C1—C101.439 (3)C14—C151.381 (3)
C1—C111.450 (3)C14—H140.9300
C2—C31.408 (3)C15—C161.390 (3)
C3—C41.351 (3)C16—C171.373 (3)
C3—H30.9300C16—H160.9300
C4—C51.414 (3)C17—C181.387 (3)
C4—H40.9300C17—H170.9300
C5—C61.415 (3)C18—H180.9300
C5—C101.418 (3)C19—H19A0.9600
C6—C71.351 (4)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C11—N1—N2116.33 (18)C9—C10—C5116.9 (2)
C12—N2—N1119.46 (18)C9—C10—C1123.6 (2)
C12—N2—H2121.4 (18)C5—C10—C1119.5 (2)
N1—N2—H2118.1 (18)N1—C11—C1121.1 (2)
C2—O1—H1109.5N1—C11—H11119.5
C15—O3—C19117.2 (2)C1—C11—H11119.5
C2—C1—C10118.92 (19)O2—C12—N2123.04 (19)
C2—C1—C11120.4 (2)O2—C12—C13121.64 (19)
C10—C1—C11120.69 (19)N2—C12—C13115.32 (19)
O1—C2—C1123.1 (2)C14—C13—C18120.0 (2)
O1—C2—C3116.1 (2)C14—C13—C12117.57 (19)
C1—C2—C3120.8 (2)C18—C13—C12122.48 (19)
C4—C3—C2120.6 (2)C15—C14—C13120.5 (2)
C4—C3—H3119.7C15—C14—H14119.7
C2—C3—H3119.7C13—C14—H14119.7
C3—C4—C5121.5 (2)O3—C15—C14125.3 (2)
C3—C4—H4119.3O3—C15—C16115.5 (2)
C5—C4—H4119.3C14—C15—C16119.2 (2)
C4—C5—C6121.6 (2)C17—C16—C15120.6 (2)
C4—C5—C10118.7 (2)C17—C16—H16119.7
C6—C5—C10119.7 (2)C15—C16—H16119.7
C7—C6—C5121.7 (2)C16—C17—C18120.4 (2)
C7—C6—H6119.2C16—C17—H17119.8
C5—C6—H6119.2C18—C17—H17119.8
C6—C7—C8118.8 (2)C17—C18—C13119.3 (2)
C6—C7—H7120.6C17—C18—H18120.4
C8—C7—H7120.6C13—C18—H18120.4
C9—C8—C7121.5 (3)O3—C19—H19A109.5
C9—C8—H8119.3O3—C19—H19B109.5
C7—C8—H8119.3H19A—C19—H19B109.5
C8—C9—C10121.5 (2)O3—C19—H19C109.5
C8—C9—H9119.2H19A—C19—H19C109.5
C10—C9—H9119.2H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.91 (1)1.97 (1)2.842 (3)163 (2)
O1—H1···N10.821.852.574 (2)146
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O3
Mr320.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1700 (15), 31.174 (7), 7.4669 (16)
β (°) 109.746 (12)
V3)1570.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9232, 3405, 1839
Rint0.093
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 0.92
No. of reflections3405
No. of parameters222
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.905 (10)1.965 (13)2.842 (3)163 (2)
O1—H1···N10.821.852.574 (2)146.1
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges the Pivot Construction Subject of Applied Chemistry and the Teaching Group of the Courses Construction on Engineering Course Chemistry for financial support.

References

First citationArunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29–32.  CAS Google Scholar
First citationBordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, Y.-Y., Li, Y.-H. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1085–o1086.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914–3918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-Y., Fan, C.-G. & Yang, Z.-N. (2010). Acta Cryst. E66, o1.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds