organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Nitro­pheneth­yl)formamide

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: andrea1985@yahoo.cn

(Received 2 June 2010; accepted 13 June 2010; online 23 June 2010)

The title compound, C9H10N2O3, was synthesized by direct N-formyl­ation of 4-nitro­phenethyl­amine hydro­chloride with formic acid and sodium formate in the absence of catalyst and solvent. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen-bond inter­actions into chains parallel to the a axis.

Related literature

For the applications and synthesis of the title compound, see: Yu et al. (1995[Yu, W. J., Lu, C. H. & Xiao, Z. F. (1995). Chin. J. Publ. Heal. 3, 131-134.]); Rahman et al. (2010[Rahman, M., Kundu, D., Hajra, A. & Majee, A. (2010). Tetrahedron Lett. 51, 2896-2899.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O3

  • Mr = 194.19

  • Monoclinic, P 21 /c

  • a = 4.4754 (1) Å

  • b = 17.6664 (5) Å

  • c = 12.1548 (4) Å

  • β = 93.021 (2)°

  • V = 959.67 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.42 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 1.000

  • 13857 measured reflections

  • 2218 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.01

  • 2218 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3i 0.762 (18) 2.194 (18) 2.8692 (15) 148.1 (16)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-(4-Nitrophenethyl)formamide is used as an intermediate material in the synthesis of artificial chlordimeform antigen, which is applied in the immunity analysis of chlordimeform (Yu et al., 1995). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the ethylformamide group is approximately planar (maximum deviation 0.089 (2) Å for atom C8) and perpendicular to the benzene ring (dihedral angle 89.99 (7) °). The nitro group is substantially coplanar with the benzene ring, forming a dihedral angle of 5.64 (9)°. In the crystal packing, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the a axis.

Related literature top

For the applications and synthesis of the title compound, see: Yu et al. (1995); Rahman et al. (2010).

Experimental top

A mixture of 4-nitrophenethylamine hydrochloride (4.08 g, 0.02mo1), sodium formate (2.08 g, 0.02mo1) and 88% formic acid (20 ml) was heated to reflux and the reaction was monitored by TLC (Rahman et al., 2010.). 50 ml toluene was added and the solution was evaporated under reduced pressure. Dichloromethane was added to dissolve the dry residue and the extract was filtered to remove sodium chloride. The resulting solution was washed with hydrochloric acid followed by water and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to get the crude product. The crude product was recrystallized with dichloromethane, and a light yellow crystalline powder was obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

All H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
N-(4-Nitrophenethyl)formamide top
Crystal data top
C9H10N2O3F(000) = 408
Mr = 194.19Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3623 reflections
a = 4.4754 (1) Åθ = 2.9–26.8°
b = 17.6664 (5) ŵ = 0.10 mm1
c = 12.1548 (4) ÅT = 296 K
β = 93.021 (2)°Block, colourless
V = 959.67 (5) Å30.42 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2218 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 55
Tmin = 0.681, Tmax = 1.000k = 2323
13857 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.120P]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H10N2O3V = 959.67 (5) Å3
Mr = 194.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.4754 (1) ŵ = 0.10 mm1
b = 17.6664 (5) ÅT = 296 K
c = 12.1548 (4) Å0.42 × 0.30 × 0.28 mm
β = 93.021 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1407 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 1.000Rint = 0.042
13857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.157All H-atom parameters refined
S = 1.01Δρmax = 0.14 e Å3
2218 reflectionsΔρmin = 0.18 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5315 (4)0.72237 (8)0.42543 (13)0.1333 (6)
O20.4550 (3)0.60396 (8)0.40908 (10)0.1023 (5)
O30.9148 (2)0.59710 (8)1.14237 (8)0.0752 (4)
N10.5726 (4)0.65789 (9)0.45577 (11)0.0761 (4)
N21.3195 (3)0.60193 (8)1.04270 (10)0.0584 (3)
H2B1.490 (4)0.6035 (9)1.0442 (13)0.070 (5)*
C10.7721 (3)0.64453 (9)0.55324 (11)0.0543 (4)
C20.8835 (4)0.70538 (9)0.61230 (13)0.0663 (4)
H2A0.822 (4)0.7538 (11)0.5958 (13)0.081 (5)*
C31.0705 (4)0.69170 (9)0.70433 (12)0.0630 (4)
H3A1.147 (4)0.7334 (10)0.7418 (12)0.073 (5)*
C41.1450 (3)0.61872 (8)0.73625 (10)0.0506 (4)
C51.0275 (3)0.55894 (8)0.67502 (11)0.0548 (4)
H5A1.082 (3)0.5077 (9)0.6967 (12)0.071 (5)*
C60.8387 (3)0.57117 (9)0.58309 (11)0.0564 (4)
H6A0.757 (3)0.5311 (9)0.5390 (13)0.067 (4)*
C71.3374 (3)0.60491 (10)0.84010 (12)0.0580 (4)
H7B1.495 (4)0.6414 (9)0.8473 (12)0.072 (5)*
H7A1.423 (4)0.5531 (10)0.8403 (13)0.076 (5)*
C81.1484 (3)0.61015 (11)0.93831 (12)0.0632 (5)
H8B1.046 (4)0.6620 (10)0.9389 (14)0.088 (5)*
H8A0.986 (4)0.5736 (10)0.9354 (14)0.080 (5)*
C91.1853 (3)0.59714 (9)1.13538 (12)0.0564 (4)
H9A1.322 (3)0.5926 (8)1.1993 (13)0.058 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1864 (15)0.0955 (10)0.1094 (10)0.0058 (11)0.0736 (10)0.0306 (8)
O20.1260 (11)0.1099 (10)0.0660 (7)0.0225 (8)0.0411 (7)0.0019 (7)
O30.0479 (6)0.1188 (9)0.0581 (6)0.0041 (6)0.0059 (5)0.0155 (6)
N10.0876 (10)0.0875 (10)0.0510 (7)0.0011 (9)0.0159 (7)0.0113 (7)
N20.0391 (6)0.0883 (9)0.0464 (6)0.0004 (6)0.0107 (5)0.0035 (6)
C10.0570 (8)0.0655 (9)0.0397 (6)0.0022 (7)0.0033 (6)0.0050 (6)
C20.0838 (11)0.0552 (9)0.0585 (9)0.0023 (8)0.0116 (8)0.0093 (7)
C30.0735 (10)0.0592 (9)0.0548 (8)0.0111 (8)0.0107 (7)0.0028 (7)
C40.0462 (7)0.0644 (9)0.0412 (6)0.0000 (6)0.0013 (5)0.0016 (6)
C50.0587 (8)0.0552 (8)0.0502 (7)0.0058 (7)0.0001 (6)0.0028 (6)
C60.0620 (9)0.0601 (9)0.0463 (7)0.0029 (7)0.0025 (6)0.0040 (6)
C70.0467 (8)0.0772 (10)0.0490 (8)0.0034 (8)0.0064 (6)0.0016 (7)
C80.0449 (8)0.0979 (12)0.0456 (7)0.0021 (8)0.0109 (6)0.0008 (8)
C90.0497 (8)0.0704 (9)0.0474 (7)0.0032 (7)0.0149 (6)0.0069 (7)
Geometric parameters (Å, º) top
O1—N11.208 (2)C3—H3A0.922 (17)
O2—N11.2147 (19)C4—C51.380 (2)
O3—C91.2182 (18)C4—C71.5099 (19)
N1—C11.4647 (18)C5—C61.382 (2)
N2—C91.3070 (19)C5—H5A0.971 (16)
N2—C81.4542 (18)C6—H6A0.950 (16)
N2—H2B0.762 (18)C7—C81.502 (2)
C1—C21.372 (2)C7—H7B0.957 (17)
C1—C61.374 (2)C7—H7A0.993 (17)
C2—C31.382 (2)C8—H8B1.025 (18)
C2—H2A0.917 (18)C8—H8A0.971 (18)
C3—C41.382 (2)C9—H9A0.967 (15)
O1—N1—O2122.79 (15)C6—C5—H5A120.0 (9)
O1—N1—C1118.37 (15)C1—C6—C5118.40 (14)
O2—N1—C1118.83 (14)C1—C6—H6A118.9 (9)
C9—N2—C8120.92 (13)C5—C6—H6A122.7 (9)
C9—N2—H2B119.1 (13)C8—C7—C4109.53 (12)
C8—N2—H2B119.8 (13)C8—C7—H7B109.3 (10)
C2—C1—C6122.21 (13)C4—C7—H7B110.7 (10)
C2—C1—N1119.10 (14)C8—C7—H7A106.8 (9)
C6—C1—N1118.69 (13)C4—C7—H7A110.7 (9)
C1—C2—C3118.31 (14)H7B—C7—H7A109.7 (14)
C1—C2—H2A121.4 (11)N2—C8—C7113.25 (12)
C3—C2—H2A120.0 (10)N2—C8—H8B107.4 (10)
C4—C3—C2121.13 (14)C7—C8—H8B109.4 (10)
C4—C3—H3A121.9 (10)N2—C8—H8A108.9 (10)
C2—C3—H3A116.9 (10)C7—C8—H8A112.4 (10)
C5—C4—C3118.88 (13)H8B—C8—H8A105.1 (15)
C5—C4—C7120.77 (13)O3—C9—N2124.31 (13)
C3—C4—C7120.26 (13)O3—C9—H9A122.2 (9)
C4—C5—C6121.06 (14)N2—C9—H9A113.5 (9)
C4—C5—H5A118.9 (9)
O1—N1—C1—C25.8 (2)C7—C4—C5—C6176.62 (13)
O2—N1—C1—C2173.98 (16)C2—C1—C6—C50.8 (2)
O1—N1—C1—C6174.89 (17)N1—C1—C6—C5179.90 (13)
O2—N1—C1—C65.3 (2)C4—C5—C6—C10.5 (2)
C6—C1—C2—C30.5 (3)C5—C4—C7—C896.40 (17)
N1—C1—C2—C3179.72 (14)C3—C4—C7—C880.06 (18)
C1—C2—C3—C40.2 (3)C9—N2—C8—C7172.75 (15)
C2—C3—C4—C50.5 (2)C4—C7—C8—N2176.62 (13)
C2—C3—C4—C7177.03 (15)C8—N2—C9—O32.0 (2)
C3—C4—C5—C60.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.762 (18)2.194 (18)2.8692 (15)148.1 (16)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O3
Mr194.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.4754 (1), 17.6664 (5), 12.1548 (4)
β (°) 93.021 (2)
V3)959.67 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.681, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13857, 2218, 1407
Rint0.042
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.01
No. of reflections2218
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.762 (18)2.194 (18)2.8692 (15)148.1 (16)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Mr Zhi-Yuan Zhou of the Hong Kong Polytechnic University for the X-ray data collection.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRahman, M., Kundu, D., Hajra, A. & Majee, A. (2010). Tetrahedron Lett. 51, 2896–2899.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, W. J., Lu, C. H. & Xiao, Z. F. (1995). Chin. J. Publ. Heal. 3, 131–134.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds