organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Nitro-4-(2-nitro­prop-1-en­yl)benzene

aHangzhou Zhongmei Huadong Pharmaceutical Co. Ltd, Hangzhou, 310000, People's Republic of China, and bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: boyzb@163.com

(Received 3 June 2010; accepted 18 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, C9H8N2O4, contains two crystallographically independent mol­ecules, both of which adopt an E configuration about the C=C bond. In the crystal, the mol­ecules stack into columns along the c axis through ππ inter­actions, with centroid–centroid distances of 3.695 (3) and 3.804 (3) Å. The columns are further connected into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of nitro­alkenes, see: Ballini & Petrini (2004[Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017-1047.]); Berner et al. (2002[Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877-1894.]); Ono (2001[Ono, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O4

  • Mr = 208.17

  • Monoclinic, P 21 /c

  • a = 13.3621 (11) Å

  • b = 9.7648 (7) Å

  • c = 14.8835 (11) Å

  • β = 91.290 (2)°

  • V = 1941.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.978

  • 18620 measured reflections

  • 4430 independent reflections

  • 1883 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.168

  • S = 1.01

  • 4430 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9B—H18⋯O4Ai 0.93 2.55 3.386 (4) 149
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules. Both molecules adopt an E configuration with respect to the CC double bond. In the crystal packing (Fig. 2), the molecules interact through π···π interactions (centroid-to-centroid distances of 3.695 (3) and 3.804 (3) Å) to form columns along the c axis. The column are further connected into a three-dimensional network by C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the chemistry of nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).

Experimental top

To a solution of 3-nitro-benzaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc (10:1 v/v) solution.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound showing the intermolecular hydrogen interaction dash lines. Displacement ellipsoids are drawn at the 50% probability level.
1-Nitro-4-(2-nitroprop-1-enyl)benzene top
Crystal data top
C9H8N2O4F(000) = 864
Mr = 208.17Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9423 reflections
a = 13.3621 (11) Åθ = 3.0–27.5°
b = 9.7648 (7) ŵ = 0.11 mm1
c = 14.8835 (11) ÅT = 296 K
β = 91.290 (2)°Chunk, yellow
V = 1941.5 (3) Å30.38 × 0.29 × 0.20 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4430 independent reflections
Radiation source: rolling anode1883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1211
Tmin = 0.947, Tmax = 0.978l = 1919
18620 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4203P]
where P = (Fo2 + 2Fc2)/3
4430 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H8N2O4V = 1941.5 (3) Å3
Mr = 208.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.3621 (11) ŵ = 0.11 mm1
b = 9.7648 (7) ÅT = 296 K
c = 14.8835 (11) Å0.38 × 0.29 × 0.20 mm
β = 91.290 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4430 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1883 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.978Rint = 0.042
18620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
4430 reflectionsΔρmin = 0.17 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.91640 (18)0.3305 (3)0.05652 (17)0.0806 (6)
O2A0.98875 (16)0.3688 (2)0.10125 (17)0.1116 (8)
O1A0.90989 (18)0.2158 (2)0.02430 (17)0.1120 (8)
C4A0.77860 (18)0.6710 (2)0.05586 (16)0.0625 (6)
O1B0.96098 (19)0.2340 (2)0.31850 (17)0.1199 (8)
N1B0.8836 (2)0.2846 (3)0.29171 (18)0.0892 (7)
C3A0.84789 (17)0.5546 (3)0.06249 (16)0.0678 (7)
H30.91180.57440.08490.081*
C8B0.59839 (19)0.7663 (3)0.31450 (16)0.0679 (7)
C2A0.83112 (17)0.4254 (3)0.04069 (16)0.0658 (6)
C2B0.86722 (19)0.4327 (2)0.30718 (17)0.0673 (6)
C3B0.77664 (18)0.4791 (2)0.28873 (17)0.0692 (7)
H120.73040.41420.26860.083*
C9A0.67661 (18)0.6603 (2)0.06964 (16)0.0650 (6)
H90.64800.57530.08090.078*
O2B0.8201 (2)0.2192 (2)0.2511 (2)0.1380 (11)
C4B0.73898 (18)0.6202 (2)0.29576 (16)0.0617 (6)
C5B0.7965 (2)0.7370 (3)0.28421 (18)0.0723 (7)
H140.86460.72810.27390.087*
C9B0.63788 (18)0.6371 (2)0.31073 (16)0.0654 (6)
H180.59700.56110.31820.078*
C5A0.8177 (2)0.8007 (3)0.04022 (18)0.0761 (7)
H50.88610.81030.03160.091*
C6B0.7547 (2)0.8658 (3)0.28776 (19)0.0815 (8)
H150.79480.94260.27980.098*
N2B0.4902 (2)0.7794 (3)0.32987 (19)0.0929 (8)
N2A0.51053 (19)0.7625 (3)0.08429 (18)0.0910 (7)
C8A0.6181 (2)0.7759 (3)0.06654 (17)0.0702 (7)
O3A0.47832 (17)0.6518 (3)0.0982 (3)0.1743 (15)
O4A0.45844 (19)0.8608 (3)0.0844 (2)0.1402 (10)
O3B0.4434 (2)0.6811 (3)0.3488 (3)0.1726 (14)
C7B0.6543 (2)0.8819 (3)0.30301 (18)0.0791 (8)
H160.62540.96850.30540.095*
C1B0.9567 (2)0.5036 (3)0.3453 (2)0.0955 (9)
H10A1.00440.51760.29890.143*
H10B0.98640.44860.39230.143*
H10C0.93730.59060.36940.143*
C7A0.6564 (2)0.9036 (3)0.05062 (18)0.0830 (8)
H70.61520.98040.04890.100*
C6A0.7576 (2)0.9148 (3)0.0372 (2)0.0894 (9)
H60.78551.00020.02610.107*
C1A0.7418 (2)0.3607 (3)0.0012 (2)0.0956 (10)
H1A0.69860.43020.02610.143*
H1B0.70670.30970.04330.143*
H1C0.76210.30000.04820.143*
O4B0.45068 (18)0.8883 (3)0.3199 (2)0.1367 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0647 (15)0.0786 (16)0.0986 (17)0.0075 (12)0.0091 (13)0.0115 (14)
O2A0.0697 (14)0.1051 (16)0.159 (2)0.0148 (12)0.0217 (14)0.0049 (14)
O1A0.1112 (18)0.0803 (14)0.144 (2)0.0245 (12)0.0023 (15)0.0107 (14)
C4A0.0590 (15)0.0640 (14)0.0643 (15)0.0041 (12)0.0004 (11)0.0001 (12)
O1B0.1121 (19)0.1086 (17)0.139 (2)0.0557 (14)0.0007 (15)0.0028 (14)
N1B0.0780 (18)0.0757 (16)0.115 (2)0.0129 (14)0.0161 (15)0.0010 (14)
C3A0.0511 (14)0.0744 (17)0.0777 (16)0.0019 (12)0.0001 (12)0.0052 (13)
C8B0.0631 (16)0.0704 (16)0.0707 (16)0.0113 (13)0.0084 (12)0.0049 (13)
C2A0.0531 (14)0.0678 (15)0.0768 (16)0.0032 (12)0.0079 (12)0.0024 (13)
C2B0.0622 (16)0.0583 (14)0.0819 (17)0.0033 (12)0.0101 (13)0.0052 (12)
C3B0.0590 (16)0.0599 (14)0.0889 (18)0.0035 (12)0.0080 (13)0.0000 (13)
C9A0.0589 (16)0.0623 (14)0.0737 (16)0.0003 (12)0.0039 (12)0.0008 (12)
O2B0.1084 (19)0.0716 (14)0.233 (3)0.0038 (13)0.014 (2)0.0303 (16)
C4B0.0582 (15)0.0591 (14)0.0679 (15)0.0006 (11)0.0022 (11)0.0044 (11)
C5B0.0627 (16)0.0686 (17)0.0855 (18)0.0032 (13)0.0017 (13)0.0030 (13)
C9B0.0623 (16)0.0596 (14)0.0746 (16)0.0002 (12)0.0100 (12)0.0079 (12)
C5A0.0719 (17)0.0695 (17)0.0874 (18)0.0088 (14)0.0090 (14)0.0009 (14)
C6B0.085 (2)0.0610 (16)0.099 (2)0.0130 (14)0.0015 (16)0.0029 (14)
N2B0.0783 (18)0.0790 (17)0.122 (2)0.0212 (15)0.0218 (15)0.0153 (15)
N2A0.0680 (17)0.0898 (18)0.115 (2)0.0143 (15)0.0088 (14)0.0025 (15)
C8A0.0630 (17)0.0761 (17)0.0713 (16)0.0042 (13)0.0036 (13)0.0032 (13)
O3A0.0603 (15)0.124 (2)0.339 (5)0.0037 (15)0.001 (2)0.063 (3)
O4A0.0951 (17)0.1155 (19)0.211 (3)0.0362 (15)0.0182 (17)0.0182 (18)
O3B0.0914 (19)0.124 (2)0.306 (4)0.0254 (16)0.081 (2)0.067 (2)
C7B0.091 (2)0.0597 (15)0.0869 (19)0.0108 (15)0.0042 (16)0.0013 (13)
C1B0.0658 (18)0.090 (2)0.130 (3)0.0040 (15)0.0178 (17)0.0151 (18)
C7A0.095 (2)0.0683 (18)0.0855 (19)0.0133 (16)0.0029 (16)0.0008 (14)
C6A0.104 (2)0.0625 (17)0.103 (2)0.0088 (16)0.0148 (18)0.0029 (15)
C1A0.0722 (19)0.085 (2)0.130 (3)0.0024 (15)0.0080 (17)0.0250 (18)
O4B0.0992 (18)0.0986 (17)0.213 (3)0.0340 (14)0.0132 (17)0.0055 (17)
Geometric parameters (Å, º) top
N1A—O2A1.220 (3)C5B—C6B1.378 (4)
N1A—O1A1.220 (3)C5B—H140.9300
N1A—C2A1.484 (3)C9B—H180.9300
C4A—C9A1.387 (3)C5A—C6A1.374 (4)
C4A—C5A1.392 (3)C5A—H50.9300
C4A—C3A1.468 (3)C6B—C7B1.375 (4)
O1B—N1B1.206 (3)C6B—H150.9300
N1B—O2B1.212 (3)N2B—O3B1.183 (3)
N1B—C2B1.482 (3)N2B—O4B1.195 (3)
C3A—C2A1.320 (3)N2A—O3A1.184 (3)
C3A—H30.9300N2A—O4A1.186 (3)
C8B—C7B1.366 (4)N2A—C8A1.474 (4)
C8B—C9B1.369 (3)C8A—C7A1.370 (4)
C8B—N2B1.474 (4)C7B—H160.9300
C2A—C1A1.476 (3)C1B—H10A0.9600
C2B—C3B1.315 (3)C1B—H10B0.9600
C2B—C1B1.484 (3)C1B—H10C0.9600
C3B—C4B1.471 (3)C7A—C6A1.376 (4)
C3B—H120.9300C7A—H70.9300
C9A—C8A1.373 (3)C6A—H60.9300
C9A—H90.9300C1A—H1A0.9600
C4B—C9B1.384 (3)C1A—H1B0.9600
C4B—C5B1.388 (3)C1A—H1C0.9600
O2A—N1A—O1A123.0 (2)C6A—C5A—C4A121.4 (3)
O2A—N1A—C2A119.4 (2)C6A—C5A—H5119.3
O1A—N1A—C2A117.6 (2)C4A—C5A—H5119.3
C9A—C4A—C5A117.9 (2)C7B—C6B—C5B120.6 (3)
C9A—C4A—C3A123.5 (2)C7B—C6B—H15119.7
C5A—C4A—C3A118.5 (2)C5B—C6B—H15119.7
O1B—N1B—O2B122.2 (3)O3B—N2B—O4B121.1 (3)
O1B—N1B—C2B118.5 (3)O3B—N2B—C8B119.4 (3)
O2B—N1B—C2B119.2 (3)O4B—N2B—C8B119.4 (3)
C2A—C3A—C4A128.3 (2)O3A—N2A—O4A121.6 (3)
C2A—C3A—H3115.8O3A—N2A—C8A118.2 (3)
C4A—C3A—H3115.8O4A—N2A—C8A120.2 (3)
C7B—C8B—C9B123.0 (2)C7A—C8A—C9A122.7 (3)
C7B—C8B—N2B119.2 (2)C7A—C8A—N2A118.7 (3)
C9B—C8B—N2B117.8 (2)C9A—C8A—N2A118.5 (3)
C3A—C2A—C1A130.1 (2)C8B—C7B—C6B117.7 (2)
C3A—C2A—N1A115.6 (2)C8B—C7B—H16121.2
C1A—C2A—N1A114.2 (2)C6B—C7B—H16121.2
C3B—C2B—N1B116.2 (2)C2B—C1B—H10A109.5
C3B—C2B—C1B130.5 (2)C2B—C1B—H10B109.5
N1B—C2B—C1B113.2 (2)H10A—C1B—H10B109.5
C2B—C3B—C4B128.5 (2)C2B—C1B—H10C109.5
C2B—C3B—H12115.8H10A—C1B—H10C109.5
C4B—C3B—H12115.8H10B—C1B—H10C109.5
C8A—C9A—C4A119.5 (2)C8A—C7A—C6A118.0 (3)
C8A—C9A—H9120.2C8A—C7A—H7121.0
C4A—C9A—H9120.2C6A—C7A—H7121.0
C9B—C4B—C5B117.8 (2)C7A—C6A—C5A120.5 (3)
C9B—C4B—C3B117.4 (2)C7A—C6A—H6119.8
C5B—C4B—C3B124.7 (2)C5A—C6A—H6119.8
C6B—C5B—C4B121.3 (3)C2A—C1A—H1A109.5
C6B—C5B—H14119.4C2A—C1A—H1B109.5
C4B—C5B—H14119.4H1A—C1A—H1B109.5
C8B—C9B—C4B119.7 (2)C2A—C1A—H1C109.5
C8B—C9B—H18120.2H1A—C1A—H1C109.5
C4B—C9B—H18120.2H1B—C1A—H1C109.5
C9A—C4A—C3A—C2A34.4 (4)C5B—C4B—C9B—C8B0.6 (4)
C5A—C4A—C3A—C2A149.6 (3)C3B—C4B—C9B—C8B177.6 (2)
C4A—C3A—C2A—C1A4.1 (5)C9A—C4A—C5A—C6A0.8 (4)
C4A—C3A—C2A—N1A179.1 (2)C3A—C4A—C5A—C6A177.1 (2)
O2A—N1A—C2A—C3A12.3 (4)C4B—C5B—C6B—C7B0.0 (4)
O1A—N1A—C2A—C3A168.5 (3)C7B—C8B—N2B—O3B172.5 (3)
O2A—N1A—C2A—C1A170.5 (3)C9B—C8B—N2B—O3B8.8 (4)
O1A—N1A—C2A—C1A8.8 (4)C7B—C8B—N2B—O4B10.2 (4)
O1B—N1B—C2B—C3B170.4 (3)C9B—C8B—N2B—O4B168.6 (3)
O2B—N1B—C2B—C3B11.1 (4)C4A—C9A—C8A—C7A0.3 (4)
O1B—N1B—C2B—C1B7.1 (4)C4A—C9A—C8A—N2A178.0 (2)
O2B—N1B—C2B—C1B171.3 (3)O3A—N2A—C8A—C7A179.8 (3)
N1B—C2B—C3B—C4B178.8 (2)O4A—N2A—C8A—C7A0.3 (4)
C1B—C2B—C3B—C4B4.2 (5)O3A—N2A—C8A—C9A2.0 (4)
C5A—C4A—C9A—C8A0.7 (3)O4A—N2A—C8A—C9A178.1 (3)
C3A—C4A—C9A—C8A176.7 (2)C9B—C8B—C7B—C6B0.5 (4)
C2B—C3B—C4B—C9B152.8 (3)N2B—C8B—C7B—C6B179.3 (2)
C2B—C3B—C4B—C5B30.4 (4)C5B—C6B—C7B—C8B0.1 (4)
C9B—C4B—C5B—C6B0.2 (4)C9A—C8A—C7A—C6A0.1 (4)
C3B—C4B—C5B—C6B177.0 (2)N2A—C8A—C7A—C6A177.8 (2)
C7B—C8B—C9B—C4B0.8 (4)C8A—C7A—C6A—C5A0.2 (4)
N2B—C8B—C9B—C4B179.5 (2)C4A—C5A—C6A—C7A0.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9B—H18···O4Ai0.932.553.386 (4)149
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2O4
Mr208.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.3621 (11), 9.7648 (7), 14.8835 (11)
β (°) 91.290 (2)
V3)1941.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.29 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
18620, 4430, 1883
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.168, 1.01
No. of reflections4430
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9B—H18···O4Ai0.932.553.386 (4)149
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Jianming Gu for the X-ray single crystal analysis. We are also grateful for financial support from the Natural Science Foundation of Zhejiang Province Education Department (No. Y200803565).

References

First citationBallini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.  Web of Science CrossRef CAS Google Scholar
First citationBerner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOno, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds