organic compounds
1-Nitro-4-(2-nitroprop-1-enyl)benzene
aHangzhou Zhongmei Huadong Pharmaceutical Co. Ltd, Hangzhou, 310000, People's Republic of China, and bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: boyzb@163.com
The 9H8N2O4, contains two crystallographically independent molecules, both of which adopt an E configuration about the C=C bond. In the crystal, the molecules stack into columns along the c axis through π–π interactions, with centroid–centroid distances of 3.695 (3) and 3.804 (3) Å. The columns are further connected into a three-dimensional network by C—H⋯O hydrogen bonds.
of the title compound, CRelated literature
For background to the chemistry of nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810023676/rz2463sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023676/rz2463Isup2.hkl
To a solution of 3-nitro-benzaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc (10:1 v/v) solution.
All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H8N2O4 | F(000) = 864 |
Mr = 208.17 | Dx = 1.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9423 reflections |
a = 13.3621 (11) Å | θ = 3.0–27.5° |
b = 9.7648 (7) Å | µ = 0.11 mm−1 |
c = 14.8835 (11) Å | T = 296 K |
β = 91.290 (2)° | Chunk, yellow |
V = 1941.5 (3) Å3 | 0.38 × 0.29 × 0.20 mm |
Z = 8 |
Rigaku R-AXIS RAPID diffractometer | 4430 independent reflections |
Radiation source: rolling anode | 1883 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→11 |
Tmin = 0.947, Tmax = 0.978 | l = −19→19 |
18620 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4203P] where P = (Fo2 + 2Fc2)/3 |
4430 reflections | (Δ/σ)max = 0.001 |
273 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C9H8N2O4 | V = 1941.5 (3) Å3 |
Mr = 208.17 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.3621 (11) Å | µ = 0.11 mm−1 |
b = 9.7648 (7) Å | T = 296 K |
c = 14.8835 (11) Å | 0.38 × 0.29 × 0.20 mm |
β = 91.290 (2)° |
Rigaku R-AXIS RAPID diffractometer | 4430 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1883 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.978 | Rint = 0.042 |
18620 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
4430 reflections | Δρmin = −0.17 e Å−3 |
273 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.91640 (18) | 0.3305 (3) | 0.05652 (17) | 0.0806 (6) | |
O2A | 0.98875 (16) | 0.3688 (2) | 0.10125 (17) | 0.1116 (8) | |
O1A | 0.90989 (18) | 0.2158 (2) | 0.02430 (17) | 0.1120 (8) | |
C4A | 0.77860 (18) | 0.6710 (2) | 0.05586 (16) | 0.0625 (6) | |
O1B | 0.96098 (19) | 0.2340 (2) | 0.31850 (17) | 0.1199 (8) | |
N1B | 0.8836 (2) | 0.2846 (3) | 0.29171 (18) | 0.0892 (7) | |
C3A | 0.84789 (17) | 0.5546 (3) | 0.06249 (16) | 0.0678 (7) | |
H3 | 0.9118 | 0.5744 | 0.0849 | 0.081* | |
C8B | 0.59839 (19) | 0.7663 (3) | 0.31450 (16) | 0.0679 (7) | |
C2A | 0.83112 (17) | 0.4254 (3) | 0.04069 (16) | 0.0658 (6) | |
C2B | 0.86722 (19) | 0.4327 (2) | 0.30718 (17) | 0.0673 (6) | |
C3B | 0.77664 (18) | 0.4791 (2) | 0.28873 (17) | 0.0692 (7) | |
H12 | 0.7304 | 0.4142 | 0.2686 | 0.083* | |
C9A | 0.67661 (18) | 0.6603 (2) | 0.06964 (16) | 0.0650 (6) | |
H9 | 0.6480 | 0.5753 | 0.0809 | 0.078* | |
O2B | 0.8201 (2) | 0.2192 (2) | 0.2511 (2) | 0.1380 (11) | |
C4B | 0.73898 (18) | 0.6202 (2) | 0.29576 (16) | 0.0617 (6) | |
C5B | 0.7965 (2) | 0.7370 (3) | 0.28421 (18) | 0.0723 (7) | |
H14 | 0.8646 | 0.7281 | 0.2739 | 0.087* | |
C9B | 0.63788 (18) | 0.6371 (2) | 0.31073 (16) | 0.0654 (6) | |
H18 | 0.5970 | 0.5611 | 0.3182 | 0.078* | |
C5A | 0.8177 (2) | 0.8007 (3) | 0.04022 (18) | 0.0761 (7) | |
H5 | 0.8861 | 0.8103 | 0.0316 | 0.091* | |
C6B | 0.7547 (2) | 0.8658 (3) | 0.28776 (19) | 0.0815 (8) | |
H15 | 0.7948 | 0.9426 | 0.2798 | 0.098* | |
N2B | 0.4902 (2) | 0.7794 (3) | 0.32987 (19) | 0.0929 (8) | |
N2A | 0.51053 (19) | 0.7625 (3) | 0.08429 (18) | 0.0910 (7) | |
C8A | 0.6181 (2) | 0.7759 (3) | 0.06654 (17) | 0.0702 (7) | |
O3A | 0.47832 (17) | 0.6518 (3) | 0.0982 (3) | 0.1743 (15) | |
O4A | 0.45844 (19) | 0.8608 (3) | 0.0844 (2) | 0.1402 (10) | |
O3B | 0.4434 (2) | 0.6811 (3) | 0.3488 (3) | 0.1726 (14) | |
C7B | 0.6543 (2) | 0.8819 (3) | 0.30301 (18) | 0.0791 (8) | |
H16 | 0.6254 | 0.9685 | 0.3054 | 0.095* | |
C1B | 0.9567 (2) | 0.5036 (3) | 0.3453 (2) | 0.0955 (9) | |
H10A | 1.0044 | 0.5176 | 0.2989 | 0.143* | |
H10B | 0.9864 | 0.4486 | 0.3923 | 0.143* | |
H10C | 0.9373 | 0.5906 | 0.3694 | 0.143* | |
C7A | 0.6564 (2) | 0.9036 (3) | 0.05062 (18) | 0.0830 (8) | |
H7 | 0.6152 | 0.9804 | 0.0489 | 0.100* | |
C6A | 0.7576 (2) | 0.9148 (3) | 0.0372 (2) | 0.0894 (9) | |
H6 | 0.7855 | 1.0002 | 0.0261 | 0.107* | |
C1A | 0.7418 (2) | 0.3607 (3) | −0.0012 (2) | 0.0956 (10) | |
H1A | 0.6986 | 0.4302 | −0.0261 | 0.143* | |
H1B | 0.7067 | 0.3097 | 0.0433 | 0.143* | |
H1C | 0.7621 | 0.3000 | −0.0482 | 0.143* | |
O4B | 0.45068 (18) | 0.8883 (3) | 0.3199 (2) | 0.1367 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0647 (15) | 0.0786 (16) | 0.0986 (17) | 0.0075 (12) | 0.0091 (13) | 0.0115 (14) |
O2A | 0.0697 (14) | 0.1051 (16) | 0.159 (2) | 0.0148 (12) | −0.0217 (14) | 0.0049 (14) |
O1A | 0.1112 (18) | 0.0803 (14) | 0.144 (2) | 0.0245 (12) | 0.0023 (15) | −0.0107 (14) |
C4A | 0.0590 (15) | 0.0640 (14) | 0.0643 (15) | −0.0041 (12) | −0.0004 (11) | −0.0001 (12) |
O1B | 0.1121 (19) | 0.1086 (17) | 0.139 (2) | 0.0557 (14) | −0.0007 (15) | −0.0028 (14) |
N1B | 0.0780 (18) | 0.0757 (16) | 0.115 (2) | 0.0129 (14) | 0.0161 (15) | −0.0010 (14) |
C3A | 0.0511 (14) | 0.0744 (17) | 0.0777 (16) | −0.0019 (12) | 0.0001 (12) | 0.0052 (13) |
C8B | 0.0631 (16) | 0.0704 (16) | 0.0707 (16) | 0.0113 (13) | 0.0084 (12) | 0.0049 (13) |
C2A | 0.0531 (14) | 0.0678 (15) | 0.0768 (16) | 0.0032 (12) | 0.0079 (12) | 0.0024 (13) |
C2B | 0.0622 (16) | 0.0583 (14) | 0.0819 (17) | 0.0033 (12) | 0.0101 (13) | 0.0052 (12) |
C3B | 0.0590 (16) | 0.0599 (14) | 0.0889 (18) | −0.0035 (12) | 0.0080 (13) | 0.0000 (13) |
C9A | 0.0589 (16) | 0.0623 (14) | 0.0737 (16) | −0.0003 (12) | −0.0039 (12) | 0.0008 (12) |
O2B | 0.1084 (19) | 0.0716 (14) | 0.233 (3) | 0.0038 (13) | −0.014 (2) | −0.0303 (16) |
C4B | 0.0582 (15) | 0.0591 (14) | 0.0679 (15) | 0.0006 (11) | 0.0022 (11) | 0.0044 (11) |
C5B | 0.0627 (16) | 0.0686 (17) | 0.0855 (18) | −0.0032 (13) | 0.0017 (13) | 0.0030 (13) |
C9B | 0.0623 (16) | 0.0596 (14) | 0.0746 (16) | 0.0002 (12) | 0.0100 (12) | 0.0079 (12) |
C5A | 0.0719 (17) | 0.0695 (17) | 0.0874 (18) | −0.0088 (14) | 0.0090 (14) | 0.0009 (14) |
C6B | 0.085 (2) | 0.0610 (16) | 0.099 (2) | −0.0130 (14) | 0.0015 (16) | 0.0029 (14) |
N2B | 0.0783 (18) | 0.0790 (17) | 0.122 (2) | 0.0212 (15) | 0.0218 (15) | 0.0153 (15) |
N2A | 0.0680 (17) | 0.0898 (18) | 0.115 (2) | 0.0143 (15) | −0.0088 (14) | 0.0025 (15) |
C8A | 0.0630 (17) | 0.0761 (17) | 0.0713 (16) | 0.0042 (13) | −0.0036 (13) | −0.0032 (13) |
O3A | 0.0603 (15) | 0.124 (2) | 0.339 (5) | 0.0037 (15) | 0.001 (2) | 0.063 (3) |
O4A | 0.0951 (17) | 0.1155 (19) | 0.211 (3) | 0.0362 (15) | 0.0182 (17) | −0.0182 (18) |
O3B | 0.0914 (19) | 0.124 (2) | 0.306 (4) | 0.0254 (16) | 0.081 (2) | 0.067 (2) |
C7B | 0.091 (2) | 0.0597 (15) | 0.0869 (19) | 0.0108 (15) | 0.0042 (16) | 0.0013 (13) |
C1B | 0.0658 (18) | 0.090 (2) | 0.130 (3) | −0.0040 (15) | −0.0178 (17) | 0.0151 (18) |
C7A | 0.095 (2) | 0.0683 (18) | 0.0855 (19) | 0.0133 (16) | 0.0029 (16) | 0.0008 (14) |
C6A | 0.104 (2) | 0.0625 (17) | 0.103 (2) | −0.0088 (16) | 0.0148 (18) | 0.0029 (15) |
C1A | 0.0722 (19) | 0.085 (2) | 0.130 (3) | 0.0024 (15) | −0.0080 (17) | −0.0250 (18) |
O4B | 0.0992 (18) | 0.0986 (17) | 0.213 (3) | 0.0340 (14) | 0.0132 (17) | 0.0055 (17) |
N1A—O2A | 1.220 (3) | C5B—C6B | 1.378 (4) |
N1A—O1A | 1.220 (3) | C5B—H14 | 0.9300 |
N1A—C2A | 1.484 (3) | C9B—H18 | 0.9300 |
C4A—C9A | 1.387 (3) | C5A—C6A | 1.374 (4) |
C4A—C5A | 1.392 (3) | C5A—H5 | 0.9300 |
C4A—C3A | 1.468 (3) | C6B—C7B | 1.375 (4) |
O1B—N1B | 1.206 (3) | C6B—H15 | 0.9300 |
N1B—O2B | 1.212 (3) | N2B—O3B | 1.183 (3) |
N1B—C2B | 1.482 (3) | N2B—O4B | 1.195 (3) |
C3A—C2A | 1.320 (3) | N2A—O3A | 1.184 (3) |
C3A—H3 | 0.9300 | N2A—O4A | 1.186 (3) |
C8B—C7B | 1.366 (4) | N2A—C8A | 1.474 (4) |
C8B—C9B | 1.369 (3) | C8A—C7A | 1.370 (4) |
C8B—N2B | 1.474 (4) | C7B—H16 | 0.9300 |
C2A—C1A | 1.476 (3) | C1B—H10A | 0.9600 |
C2B—C3B | 1.315 (3) | C1B—H10B | 0.9600 |
C2B—C1B | 1.484 (3) | C1B—H10C | 0.9600 |
C3B—C4B | 1.471 (3) | C7A—C6A | 1.376 (4) |
C3B—H12 | 0.9300 | C7A—H7 | 0.9300 |
C9A—C8A | 1.373 (3) | C6A—H6 | 0.9300 |
C9A—H9 | 0.9300 | C1A—H1A | 0.9600 |
C4B—C9B | 1.384 (3) | C1A—H1B | 0.9600 |
C4B—C5B | 1.388 (3) | C1A—H1C | 0.9600 |
O2A—N1A—O1A | 123.0 (2) | C6A—C5A—C4A | 121.4 (3) |
O2A—N1A—C2A | 119.4 (2) | C6A—C5A—H5 | 119.3 |
O1A—N1A—C2A | 117.6 (2) | C4A—C5A—H5 | 119.3 |
C9A—C4A—C5A | 117.9 (2) | C7B—C6B—C5B | 120.6 (3) |
C9A—C4A—C3A | 123.5 (2) | C7B—C6B—H15 | 119.7 |
C5A—C4A—C3A | 118.5 (2) | C5B—C6B—H15 | 119.7 |
O1B—N1B—O2B | 122.2 (3) | O3B—N2B—O4B | 121.1 (3) |
O1B—N1B—C2B | 118.5 (3) | O3B—N2B—C8B | 119.4 (3) |
O2B—N1B—C2B | 119.2 (3) | O4B—N2B—C8B | 119.4 (3) |
C2A—C3A—C4A | 128.3 (2) | O3A—N2A—O4A | 121.6 (3) |
C2A—C3A—H3 | 115.8 | O3A—N2A—C8A | 118.2 (3) |
C4A—C3A—H3 | 115.8 | O4A—N2A—C8A | 120.2 (3) |
C7B—C8B—C9B | 123.0 (2) | C7A—C8A—C9A | 122.7 (3) |
C7B—C8B—N2B | 119.2 (2) | C7A—C8A—N2A | 118.7 (3) |
C9B—C8B—N2B | 117.8 (2) | C9A—C8A—N2A | 118.5 (3) |
C3A—C2A—C1A | 130.1 (2) | C8B—C7B—C6B | 117.7 (2) |
C3A—C2A—N1A | 115.6 (2) | C8B—C7B—H16 | 121.2 |
C1A—C2A—N1A | 114.2 (2) | C6B—C7B—H16 | 121.2 |
C3B—C2B—N1B | 116.2 (2) | C2B—C1B—H10A | 109.5 |
C3B—C2B—C1B | 130.5 (2) | C2B—C1B—H10B | 109.5 |
N1B—C2B—C1B | 113.2 (2) | H10A—C1B—H10B | 109.5 |
C2B—C3B—C4B | 128.5 (2) | C2B—C1B—H10C | 109.5 |
C2B—C3B—H12 | 115.8 | H10A—C1B—H10C | 109.5 |
C4B—C3B—H12 | 115.8 | H10B—C1B—H10C | 109.5 |
C8A—C9A—C4A | 119.5 (2) | C8A—C7A—C6A | 118.0 (3) |
C8A—C9A—H9 | 120.2 | C8A—C7A—H7 | 121.0 |
C4A—C9A—H9 | 120.2 | C6A—C7A—H7 | 121.0 |
C9B—C4B—C5B | 117.8 (2) | C7A—C6A—C5A | 120.5 (3) |
C9B—C4B—C3B | 117.4 (2) | C7A—C6A—H6 | 119.8 |
C5B—C4B—C3B | 124.7 (2) | C5A—C6A—H6 | 119.8 |
C6B—C5B—C4B | 121.3 (3) | C2A—C1A—H1A | 109.5 |
C6B—C5B—H14 | 119.4 | C2A—C1A—H1B | 109.5 |
C4B—C5B—H14 | 119.4 | H1A—C1A—H1B | 109.5 |
C8B—C9B—C4B | 119.7 (2) | C2A—C1A—H1C | 109.5 |
C8B—C9B—H18 | 120.2 | H1A—C1A—H1C | 109.5 |
C4B—C9B—H18 | 120.2 | H1B—C1A—H1C | 109.5 |
C9A—C4A—C3A—C2A | 34.4 (4) | C5B—C4B—C9B—C8B | −0.6 (4) |
C5A—C4A—C3A—C2A | −149.6 (3) | C3B—C4B—C9B—C8B | −177.6 (2) |
C4A—C3A—C2A—C1A | 4.1 (5) | C9A—C4A—C5A—C6A | −0.8 (4) |
C4A—C3A—C2A—N1A | −179.1 (2) | C3A—C4A—C5A—C6A | −177.1 (2) |
O2A—N1A—C2A—C3A | 12.3 (4) | C4B—C5B—C6B—C7B | 0.0 (4) |
O1A—N1A—C2A—C3A | −168.5 (3) | C7B—C8B—N2B—O3B | −172.5 (3) |
O2A—N1A—C2A—C1A | −170.5 (3) | C9B—C8B—N2B—O3B | 8.8 (4) |
O1A—N1A—C2A—C1A | 8.8 (4) | C7B—C8B—N2B—O4B | 10.2 (4) |
O1B—N1B—C2B—C3B | −170.4 (3) | C9B—C8B—N2B—O4B | −168.6 (3) |
O2B—N1B—C2B—C3B | 11.1 (4) | C4A—C9A—C8A—C7A | −0.3 (4) |
O1B—N1B—C2B—C1B | 7.1 (4) | C4A—C9A—C8A—N2A | −178.0 (2) |
O2B—N1B—C2B—C1B | −171.3 (3) | O3A—N2A—C8A—C7A | −179.8 (3) |
N1B—C2B—C3B—C4B | −178.8 (2) | O4A—N2A—C8A—C7A | 0.3 (4) |
C1B—C2B—C3B—C4B | 4.2 (5) | O3A—N2A—C8A—C9A | −2.0 (4) |
C5A—C4A—C9A—C8A | 0.7 (3) | O4A—N2A—C8A—C9A | 178.1 (3) |
C3A—C4A—C9A—C8A | 176.7 (2) | C9B—C8B—C7B—C6B | −0.5 (4) |
C2B—C3B—C4B—C9B | −152.8 (3) | N2B—C8B—C7B—C6B | −179.3 (2) |
C2B—C3B—C4B—C5B | 30.4 (4) | C5B—C6B—C7B—C8B | 0.1 (4) |
C9B—C4B—C5B—C6B | 0.2 (4) | C9A—C8A—C7A—C6A | 0.1 (4) |
C3B—C4B—C5B—C6B | 177.0 (2) | N2A—C8A—C7A—C6A | 177.8 (2) |
C7B—C8B—C9B—C4B | 0.8 (4) | C8A—C7A—C6A—C5A | −0.2 (4) |
N2B—C8B—C9B—C4B | 179.5 (2) | C4A—C5A—C6A—C7A | 0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9B—H18···O4Ai | 0.93 | 2.55 | 3.386 (4) | 149 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8N2O4 |
Mr | 208.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 13.3621 (11), 9.7648 (7), 14.8835 (11) |
β (°) | 91.290 (2) |
V (Å3) | 1941.5 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.38 × 0.29 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.947, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18620, 4430, 1883 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.168, 1.01 |
No. of reflections | 4430 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.17 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C9B—H18···O4Ai | 0.93 | 2.55 | 3.386 (4) | 149 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Mr Jianming Gu for the X-ray single crystal analysis. We are also grateful for financial support from the Natural Science Foundation of Zhejiang Province Education Department (No. Y200803565).
References
Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047. Web of Science CrossRef CAS Google Scholar
Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ono, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH. Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here the crystal structure of the title compound.
The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules. Both molecules adopt an E configuration with respect to the C═C double bond. In the crystal packing (Fig. 2), the molecules interact through π···π interactions (centroid-to-centroid distances of 3.695 (3) and 3.804 (3) Å) to form columns along the c axis. The column are further connected into a three-dimensional network by C—H···O hydrogen bonds (Table 1).