organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hy­droxy-4-aza-1-azoniabi­cyclo[2.2.2]octane picrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xjm_cool@163.com

(Received 7 June 2010; accepted 18 June 2010; online 23 June 2010)

In the crystal structure of the title compound, C6H13N2O+·C6H2N3O7, the anions and cations are linked by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. The O atoms of a nitro group of the picrate anion are disordered over two positions of equal occupancy.

Related literature

For the dielectric properties of N-protonated compounds, see: Szafranski & Katrusiak (2008[Szafranski, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 6779-6785.]); Katrusiak & Szafranski (1999[Katrusiak, A. & Szafranski, M. (1999). Phys. Rev. Lett. 82, 576-579.]); Chen et al. (2009[Chen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2009). Cryst. Growth Des. 9, 3828-3831.]); Mihailovic et al. (1990[Mihailovic, P., Bassoul, P. & Simon, J. (1990). J. Phys. Chem. 94, 2815-2820.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C6H2N3O7

  • Mr = 357.29

  • Monoclinic, P 21 /c

  • a = 11.521 (2) Å

  • b = 19.230 (4) Å

  • c = 6.9921 (14) Å

  • β = 98.73 (3)°

  • V = 1531.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.176, Tmax = 0.298

  • 15623 measured reflections

  • 3495 independent reflections

  • 2111 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.176

  • S = 0.83

  • 3495 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1⋯O7 0.88 (3) 1.74 (4) 2.602 (3) 167 (3)
O8—H1⋯O6′ 0.88 (3) 2.50 (4) 2.973 (15) 115 (3)
C7—H7B⋯O1 0.97 2.59 3.486 (4) 153
C9—H9A⋯O7 0.97 2.42 3.102 (3) 127
C5—H5⋯N5i 0.93 2.61 3.536 (3) 171
C11—H11A⋯O6′ii 0.97 2.54 3.342 (15) 139
C12—H12A⋯O5′iii 0.97 2.31 3.176 (9) 149
C12—H12B⋯O5iv 0.97 2.55 3.137 (7) 119
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z+2; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions in which there is a dielectric anomaly at the transition temperature (Szafranski & Katrusiak, 2008; Katrusiak & Szafranski, 1999; Chen et al., 2009; Mihailovic et al., 1990). As part of a study on phase transitions of N-protonated compounds, the title compound has been synthesized and its dielectric properties measured. The title compound (m. p. = 405-410 K), however, showed no dielectric disuniformity in the range 93–395 K.

The asymmetric unit of the title compound (Fig. 1) contains one protonated triethylenediamine-N-oxide cation and one picrate anion. In the anion, the oxygen atoms of the nitro group including atom N3 are disordered over two positions with site occupancies of 0.5. The N1/O1/O2, N2/O3/O4, N3/O5/O6 and N3/O5'/O6' nitro groups are tilted with respect to the plane of the benzene ring by 31.6 (2), 4.8 (2), 23.8 (4) and 30.2 (6)° respectively. In the crystal structure (Fig. 2), anions and cations are linked by O—H···O, C—H···O and C—H···O hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For the dielectric properties of N-protonated compounds, see: Szafranski & Katrusiak (2008); Katrusiak & Szafranski (1999); Chen et al. (2009); Mihailovic et al. (1990).

Experimental top

To a solution of triethylenediamine (50 mmol, 5.6 g) in benzene (500 ml) was added rapidly H202 (30%, 6.3 g) with stirring at room temperature. A precipitate formed at once. Water was removed from the reaction mixture by means of P2O5 drying in a vacuum oven at room temperature. The solid was washed with three 100 ml portions of ether. The crude product (10 mmol, 1.28 g) was dissolved in 10 ml methanol. Then 20 ml of an ethanol solution of picric acid (10 mmol, 2.29 g) was dropped slowly with stirring, and a yellow precipitate formed at once. The suspension was filtered and dissolved in water. After a few weeks, yellow block crystals were obtained by slow evaporation of the solvent.

Refinement top

Atom H1 was located in adifference Fourier map and refined isotropically. All other H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93-0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Dashed lines indicate hydrogen bonds.
1-Hydroxy-4-aza-1-azoniabicyclo[2.2.2]octane picrate top
Crystal data top
C6H13N2O+·C6H2N3O7F(000) = 744
Mr = 357.29Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5732 reflections
a = 11.521 (2) Åθ = 3.8–27.5°
b = 19.230 (4) ŵ = 0.13 mm1
c = 6.9921 (14) ÅT = 293 K
β = 98.73 (3)°Prism, yellow
V = 1531.2 (5) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3495 independent reflections
Radiation source: fine-focus sealed tube2111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
CCD Profile fitting scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1414
Tmin = 0.176, Tmax = 0.298k = 2424
15623 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0905P)2 + 1.2925P]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
3495 reflectionsΔρmax = 0.18 e Å3
249 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
C6H13N2O+·C6H2N3O7V = 1531.2 (5) Å3
Mr = 357.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.521 (2) ŵ = 0.13 mm1
b = 19.230 (4) ÅT = 293 K
c = 6.9921 (14) Å0.3 × 0.25 × 0.2 mm
β = 98.73 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3495 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2111 reflections with I > 2σ(I)
Tmin = 0.176, Tmax = 0.298Rint = 0.064
15623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.18 e Å3
3495 reflectionsΔρmin = 0.17 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.30226 (19)0.18175 (13)0.6927 (3)0.0374 (5)
C20.3052 (2)0.25659 (13)0.7118 (3)0.0395 (6)
C30.2105 (2)0.29629 (13)0.7377 (3)0.0413 (6)
H30.21600.34450.74030.050*
C40.1062 (2)0.26361 (13)0.7599 (3)0.0392 (6)
C50.0965 (2)0.19198 (14)0.7588 (3)0.0403 (6)
H50.02710.17060.77940.048*
C60.1917 (2)0.15287 (13)0.7266 (3)0.0387 (5)
C70.6393 (2)0.10824 (17)0.9188 (4)0.0584 (8)
H7A0.62860.08211.03350.070*
H7B0.58520.14720.90550.070*
C80.7660 (3)0.1343 (2)0.9351 (6)0.0926 (13)
H8A0.76580.18470.93190.111*
H8B0.80910.11981.05870.111*
C90.6332 (2)0.10287 (15)0.5683 (4)0.0510 (7)
H9A0.57980.14210.55110.061*
H9B0.61770.07340.45470.061*
C100.7612 (3)0.1282 (2)0.5971 (6)0.0763 (10)
H10A0.80010.10930.49510.092*
H10B0.76190.17850.58620.092*
C110.7006 (2)0.00311 (16)0.7672 (5)0.0630 (8)
H11A0.68630.02690.65450.076*
H11B0.69070.02400.88060.076*
C120.8254 (3)0.03364 (19)0.7890 (7)0.0869 (12)
H12A0.86930.01860.91140.104*
H12B0.86490.01560.68640.104*
N10.41469 (19)0.29372 (12)0.6998 (3)0.0490 (6)
N20.00623 (19)0.30586 (13)0.7894 (3)0.0510 (6)
N30.1777 (2)0.07762 (13)0.7258 (4)0.0558 (6)
N40.61729 (16)0.06299 (10)0.7448 (3)0.0406 (5)
N50.8256 (2)0.10837 (14)0.7815 (4)0.0641 (7)
O10.50786 (17)0.26560 (12)0.7614 (4)0.0752 (7)
O20.40780 (19)0.35263 (11)0.6338 (3)0.0678 (6)
O30.0149 (2)0.36879 (12)0.7812 (4)0.0798 (7)
O40.08245 (17)0.27652 (12)0.8233 (3)0.0684 (6)
O50.0766 (4)0.0514 (3)0.6742 (11)0.0852 (18)0.50
O60.2617 (12)0.0371 (7)0.7403 (19)0.066 (2)0.50
O5'0.1080 (6)0.0591 (3)0.8345 (12)0.100 (2)0.50
O6'0.2427 (13)0.0432 (7)0.670 (2)0.109 (5)0.50
O70.38528 (15)0.14793 (9)0.6419 (3)0.0523 (5)
O80.50320 (16)0.03390 (10)0.7282 (3)0.0545 (5)
H10.457 (3)0.0704 (19)0.712 (5)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (12)0.0454 (13)0.0352 (12)0.0040 (10)0.0038 (9)0.0017 (10)
C20.0347 (13)0.0486 (14)0.0352 (12)0.0032 (10)0.0054 (10)0.0010 (10)
C30.0445 (14)0.0450 (14)0.0329 (12)0.0040 (11)0.0011 (10)0.0022 (10)
C40.0326 (12)0.0512 (15)0.0335 (12)0.0090 (10)0.0038 (9)0.0019 (10)
C50.0312 (12)0.0570 (15)0.0329 (12)0.0011 (11)0.0055 (9)0.0020 (11)
C60.0351 (12)0.0457 (14)0.0356 (12)0.0018 (10)0.0068 (9)0.0032 (10)
C70.0515 (17)0.073 (2)0.0507 (16)0.0038 (14)0.0083 (13)0.0132 (14)
C80.061 (2)0.121 (3)0.095 (3)0.024 (2)0.0081 (19)0.046 (2)
C90.0486 (15)0.0561 (16)0.0494 (15)0.0041 (12)0.0104 (12)0.0049 (13)
C100.0558 (19)0.083 (2)0.094 (3)0.0133 (17)0.0259 (18)0.020 (2)
C110.0495 (17)0.0467 (16)0.092 (2)0.0080 (13)0.0076 (15)0.0077 (15)
C120.0439 (18)0.071 (2)0.144 (4)0.0117 (16)0.0082 (19)0.012 (2)
N10.0454 (13)0.0509 (14)0.0521 (13)0.0051 (10)0.0120 (10)0.0065 (11)
N20.0424 (13)0.0605 (15)0.0482 (13)0.0137 (11)0.0005 (10)0.0046 (11)
N30.0387 (12)0.0511 (14)0.0797 (17)0.0007 (11)0.0161 (12)0.0093 (13)
N40.0302 (10)0.0398 (11)0.0521 (12)0.0012 (8)0.0069 (8)0.0013 (9)
N50.0356 (12)0.0671 (17)0.0889 (19)0.0035 (11)0.0072 (12)0.0048 (14)
O10.0361 (11)0.0724 (15)0.115 (2)0.0041 (10)0.0032 (11)0.0038 (13)
O20.0672 (14)0.0541 (13)0.0866 (16)0.0109 (10)0.0263 (11)0.0066 (11)
O30.0601 (14)0.0561 (14)0.123 (2)0.0194 (11)0.0128 (13)0.0058 (13)
O40.0412 (11)0.0803 (15)0.0881 (16)0.0105 (10)0.0235 (10)0.0057 (12)
O50.039 (3)0.054 (3)0.163 (6)0.011 (2)0.018 (3)0.014 (4)
O60.046 (3)0.047 (3)0.104 (5)0.004 (2)0.008 (3)0.015 (3)
O5'0.080 (4)0.072 (4)0.160 (6)0.005 (3)0.059 (4)0.040 (4)
O6'0.086 (8)0.051 (6)0.204 (15)0.005 (5)0.071 (9)0.045 (8)
O70.0383 (10)0.0505 (11)0.0712 (13)0.0069 (8)0.0187 (9)0.0019 (9)
O80.0354 (10)0.0458 (11)0.0828 (14)0.0078 (8)0.0108 (9)0.0026 (10)
Geometric parameters (Å, º) top
C1—O71.252 (3)C10—N51.438 (4)
C1—C61.442 (3)C10—H10A0.9700
C1—C21.445 (4)C10—H10B0.9700
C2—C31.365 (3)C11—N41.492 (3)
C2—N11.463 (3)C11—C121.540 (4)
C3—C41.386 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.382 (4)C12—N51.438 (4)
C4—N21.450 (3)C12—H12A0.9700
C5—C61.376 (3)C12—H12B0.9700
C5—H50.9300N1—O11.221 (3)
C6—N31.456 (3)N1—O21.221 (3)
C7—N41.486 (3)N2—O31.216 (3)
C7—C81.531 (4)N2—O41.222 (3)
C7—H7A0.9700N3—O6'1.114 (14)
C7—H7B0.9700N3—O61.235 (13)
C8—N51.447 (5)N3—O5'1.239 (6)
C8—H8A0.9700N3—O51.271 (5)
C8—H8B0.9700N4—O81.417 (2)
C9—N41.488 (3)O5—O5'1.134 (8)
C9—C101.537 (4)O6—O6'0.52 (2)
C9—H9A0.9700O8—H10.88 (3)
C9—H9B0.9700
O7—C1—C6125.4 (2)N4—C11—C12107.0 (2)
O7—C1—C2122.4 (2)N4—C11—H11A110.3
C6—C1—C2112.1 (2)C12—C11—H11A110.3
C3—C2—C1124.1 (2)N4—C11—H11B110.3
C3—C2—N1116.6 (2)C12—C11—H11B110.3
C1—C2—N1119.3 (2)H11A—C11—H11B108.6
C2—C3—C4119.0 (2)N5—C12—C11112.6 (3)
C2—C3—H3120.5N5—C12—H12A109.1
C4—C3—H3120.5C11—C12—H12A109.1
C5—C4—C3121.5 (2)N5—C12—H12B109.1
C5—C4—N2119.6 (2)C11—C12—H12B109.1
C3—C4—N2118.9 (2)H12A—C12—H12B107.8
C6—C5—C4118.7 (2)O1—N1—O2123.2 (2)
C6—C5—H5120.7O1—N1—C2118.9 (2)
C4—C5—H5120.7O2—N1—C2117.8 (2)
C5—C6—C1124.2 (2)O3—N2—O4123.1 (2)
C5—C6—N3117.0 (2)O3—N2—C4118.6 (2)
C1—C6—N3118.8 (2)O4—N2—C4118.3 (2)
N4—C7—C8107.1 (2)O6'—N3—O5'125.3 (8)
N4—C7—H7A110.3O6—N3—O5'110.0 (7)
C8—C7—H7A110.3O6'—N3—O5107.5 (9)
N4—C7—H7B110.3O6—N3—O5116.5 (8)
C8—C7—H7B110.3O5'—N3—O553.7 (4)
H7A—C7—H7B108.5O6'—N3—C6120.9 (8)
N5—C8—C7112.7 (3)O6—N3—C6122.9 (7)
N5—C8—H8A109.0O5'—N3—C6111.4 (4)
C7—C8—H8A109.0O5—N3—C6119.4 (3)
N5—C8—H8B109.0O8—N4—C7109.82 (19)
C7—C8—H8B109.0O8—N4—C9111.43 (18)
H8A—C8—H8B107.8C7—N4—C9110.5 (2)
N4—C9—C10106.9 (2)O8—N4—C11106.12 (19)
N4—C9—H9A110.3C7—N4—C11109.8 (2)
C10—C9—H9A110.3C9—N4—C11109.0 (2)
N4—C9—H9B110.3C12—N5—C10107.1 (3)
C10—C9—H9B110.3C12—N5—C8108.3 (3)
H9A—C9—H9B108.6C10—N5—C8109.6 (3)
N5—C10—C9112.8 (2)O5'—O5—N361.7 (4)
N5—C10—H10A109.0O6'—O6—N364 (3)
C9—C10—H10A109.0O5—O5'—N364.6 (4)
N5—C10—H10B109.0O6—O6'—N391 (3)
C9—C10—H10B109.0N4—O8—H1103 (2)
H10A—C10—H10B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O70.88 (3)1.74 (4)2.602 (3)167 (3)
O8—H1···O60.88 (3)2.50 (4)2.973 (15)115 (3)
C7—H7B···O10.972.593.486 (4)153
C9—H9A···O70.972.423.102 (3)127
C5—H5···N5i0.932.613.536 (3)171
C11—H11A···O6ii0.972.543.342 (15)139
C12—H12A···O5iii0.972.313.176 (9)149
C12—H12B···O5iv0.972.553.137 (7)119
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H13N2O+·C6H2N3O7
Mr357.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.521 (2), 19.230 (4), 6.9921 (14)
β (°) 98.73 (3)
V3)1531.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.176, 0.298
No. of measured, independent and
observed [I > 2σ(I)] reflections
15623, 3495, 2111
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.176, 0.83
No. of reflections3495
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O70.88 (3)1.74 (4)2.602 (3)167 (3)
O8—H1···O6'0.88 (3)2.50 (4)2.973 (15)115 (3)
C7—H7B···O10.972.593.486 (4)153
C9—H9A···O70.972.423.102 (3)127
C5—H5···N5i0.932.613.536 (3)171
C11—H11A···O6'ii0.972.543.342 (15)139
C12—H12A···O5'iii0.972.313.176 (9)149
C12—H12B···O5iv0.972.553.137 (7)119
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationChen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2009). Cryst. Growth Des. 9, 3828–3831.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafranski, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationMihailovic, P., Bassoul, P. & Simon, J. (1990). J. Phys. Chem. 94, 2815–2820.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafranski, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 6779–6785.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds