organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

p-Phenyl­enedimethanaminium dibromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhangshelley86@hotmail.com

(Received 14 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title salt, C8H14N22+·2Br, the cation has a crystallographically imposed centre of symmetry. The compound is isostructural with the chloride analogue. In the crystal structure, the cations and anions are connected via N—H⋯Br hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For the synthesis, structures and properties of ferroelectric organic or inorganic compounds, see: Haertling (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]); Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]). For the structure of the isostructural chloride salt, see: Arkenbout et al. (2007[Arkenbout, A. H., Meetsma, A. & Palstra, T. T. M. (2007). Acta Cryst. E63, o869-o870.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N22+·2Br

  • Mr = 298.01

  • Triclinic, [P \overline 1]

  • a = 4.4462 (9) Å

  • b = 6.0331 (12) Å

  • c = 10.347 (2) Å

  • α = 101.90 (3)°

  • β = 99.79 (3)°

  • γ = 94.29 (3)°

  • V = 265.89 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.58 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.837, Tmax = 1.000

  • 2767 measured reflections

  • 1213 independent reflections

  • 1107 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.10

  • 1213 reflections

  • 56 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.89 2.49 3.359 (3) 167
N1—H1B⋯Br1ii 0.88 2.59 3.363 (3) 146
N1—H1C⋯Br1iii 0.89 2.55 3.422 (3) 167
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x+1, y+1, z; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling, 1999; Homes et al., 2001). Recently we have reported the synthesis of a variety of compounds (Fu et al., 2009; Hang et al., 2009), which have potential piezoelectric and ferroelectric properties. In order to develop new materials of this kind, we investigated the physical properties of the title compound. Its dielectric constant as a function of temperature (93-440 K) indicates that the permittivity is basically temperature-independent (dielectric constant ranging from 3.2 to 4.4), suggesting that this compound should be not a real ferroelectrics or that no distinct phase transition occurred within the measured temperature range. Herein, we report the synthesis and crystal structure of the title compound (Fig. 1).

The cation of the title compound possesses crystallographically imposed centre of symmetry. The compound is isostructural to the chloride analogue (Arkenbout et al., 2007). Bond lengths and angles are within their normal ranges. In the crystal packing (Fig. 2), cations and anions are connected via intermolecular N—H···Br hydrogen bonds (Table 1) to form layers parallel to the bc plane. Contrary to what observed in the chloride salt, the separation between the centroids of stacked aromatic rings (4.446 (2) Å) suggests that no π···π stacking interactions are present.

Related literature top

For the synthesis, structures and properties of ferroelectric pure organic or inorganic compounds, see: Haertling (1999); Homes et al. (2001); Fu et al. (2009); Hang et al. (2009). For the structure of the isostructural chloride salt, see: Arkenbout et al. (2007).

Experimental top

Hydrobromic acid (4.05 g, 40%) was added slowly to a solution of 1,4-phenylenedimethanamine (2.72 g, 0.02 mol) in methanol. After several days, colourless prismatic crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvent.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2eq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are related by the symmetry code (1-x, 1-y, 1-z).
[Figure 2] Fig. 2. Crystal packing of the title compound approximately viewed along the b axis, showing the hydrogen bondings network.
p-Phenylenedimethanaminium dibromide top
Crystal data top
C8H14N22+·2BrZ = 1
Mr = 298.01F(000) = 146
Triclinic, P1Dx = 1.861 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4462 (9) ÅCell parameters from 1213 reflections
b = 6.0331 (12) Åθ = 2.6–27.5°
c = 10.347 (2) ŵ = 7.58 mm1
α = 101.90 (3)°T = 293 K
β = 99.79 (3)°Prism, colorless
γ = 94.29 (3)°0.20 × 0.20 × 0.20 mm
V = 265.89 (9) Å3
Data collection top
Rigaku Mercury2
diffractometer
1213 independent reflections
Radiation source: fine-focus sealed tube1107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD_Profile_fitting scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.837, Tmax = 1.000l = 1313
2767 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1213 reflectionsΔρmax = 0.59 e Å3
56 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.102 (8)
Crystal data top
C8H14N22+·2Brγ = 94.29 (3)°
Mr = 298.01V = 265.89 (9) Å3
Triclinic, P1Z = 1
a = 4.4462 (9) ÅMo Kα radiation
b = 6.0331 (12) ŵ = 7.58 mm1
c = 10.347 (2) ÅT = 293 K
α = 101.90 (3)°0.20 × 0.20 × 0.20 mm
β = 99.79 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1213 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1107 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.053
2767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.10Δρmax = 0.59 e Å3
1213 reflectionsΔρmin = 0.68 e Å3
56 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5050 (7)0.6880 (4)0.8667 (3)0.0352 (6)
H1A0.42700.73940.93930.042*
H1B0.66280.78450.86460.042*
H1C0.56680.55250.86980.042*
C20.2679 (7)0.6652 (6)0.7437 (3)0.0354 (8)
H2D0.19430.81210.74170.042*
H2E0.09520.55930.74660.042*
C50.3474 (8)0.3493 (5)0.5579 (3)0.0345 (7)
H5A0.24470.24760.59650.041*
C70.3911 (7)0.5816 (5)0.6174 (3)0.0293 (7)
C100.4567 (8)0.2702 (6)0.4418 (3)0.0353 (8)
H10A0.42760.11500.40280.042*
Br10.14338 (7)0.20342 (5)0.87105 (3)0.03667 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0523 (17)0.0363 (15)0.0199 (14)0.0134 (12)0.0156 (11)0.0027 (12)
C20.0390 (17)0.0412 (19)0.0265 (17)0.0107 (14)0.0140 (13)0.0005 (15)
C50.0451 (18)0.0314 (17)0.0300 (19)0.0020 (13)0.0145 (14)0.0088 (15)
C70.0343 (16)0.0345 (17)0.0197 (16)0.0071 (12)0.0074 (12)0.0040 (14)
C100.055 (2)0.0265 (16)0.0249 (18)0.0067 (14)0.0131 (15)0.0013 (14)
Br10.0478 (3)0.0329 (3)0.0303 (3)0.00763 (15)0.01254 (16)0.00384 (18)
Geometric parameters (Å, º) top
N1—C21.483 (4)C5—C101.380 (4)
N1—H1A0.8880C5—C71.394 (4)
N1—H1B0.8839C5—H5A0.9300
N1—H1C0.8865C7—C10i1.382 (5)
C2—C71.509 (4)C10—C7i1.382 (5)
C2—H2D0.9700C10—H10A0.9300
C2—H2E0.9700
C2—N1—H1A109.9H2D—C2—H2E107.9
C2—N1—H1B109.6C10—C5—C7120.0 (3)
H1A—N1—H1B109.3C10—C5—H5A120.0
C2—N1—H1C109.0C7—C5—H5A120.0
H1A—N1—H1C109.4C10i—C7—C5119.1 (3)
H1B—N1—H1C109.6C10i—C7—C2121.7 (3)
N1—C2—C7111.9 (2)C5—C7—C2119.3 (3)
N1—C2—H2D109.2C5—C10—C7i120.9 (3)
C7—C2—H2D109.2C5—C10—H10A119.5
N1—C2—H2E109.2C7i—C10—H10A119.5
C7—C2—H2E109.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.892.493.359 (3)167
N1—H1B···Br1iii0.882.593.363 (3)146
N1—H1C···Br1iv0.892.553.422 (3)167
Symmetry codes: (ii) x, y+1, z+2; (iii) x+1, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H14N22+·2Br
Mr298.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.4462 (9), 6.0331 (12), 10.347 (2)
α, β, γ (°)101.90 (3), 99.79 (3), 94.29 (3)
V3)265.89 (9)
Z1
Radiation typeMo Kα
µ (mm1)7.58
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2767, 1213, 1107
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.10
No. of reflections1213
No. of parameters56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.68

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.493.359 (3)167.1
N1—H1B···Br1ii0.882.593.363 (3)146.2
N1—H1C···Br1iii0.892.553.422 (3)167.3
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationArkenbout, A. H., Meetsma, A. & Palstra, T. T. M. (2007). Acta Cryst. E63, o869–o870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797–810.  CrossRef CAS Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds