organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carb­­oxy­pyridinium bromide

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wyingchun0107@126.com

(Received 11 May 2010; accepted 28 May 2010; online 5 June 2010)

In the title compound, C6H6NO2+·Br, the hy­droxy and carbonyl groups make torsion angles of 164.8 (4) and −17.6 (6)°, respectively, with the pyridinium ring. Inter­molecular N—H⋯Br, O—H⋯Br and C—H⋯O hydrogen bonds contribute to the stability of the structure and link the mol­ecules into chains along the b axis.

Related literature

For the phase transition of pyridinium tetra­chloro­iodate(III) studied by X-ray analysis and for dielectric and heat capacity measurements, see: Asaji et al. (2007[Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24-28.]). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997[Wasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. & Szepanski, W. (1997). J. Chem. Phys. 107, 576-578.]). For the structure of 3-carb­oxy­pyridinium chloride, see: Slouf (2001[Slouf, M. (2001). Acta Cryst. E57, o61-o62.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·Br

  • Mr = 204.03

  • Monoclinic, P 21 /n

  • a = 7.3179 (15) Å

  • b = 7.3433 (15) Å

  • c = 13.532 (3) Å

  • β = 94.37 (3)°

  • V = 725.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.60 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.326, Tmax = 0.339

  • 7062 measured reflections

  • 1670 independent reflections

  • 1167 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.06

  • 1670 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Br1i 0.82 2.32 3.127 (3) 170
N1—H1A⋯Br1ii 0.86 2.45 3.253 (3) 155
C4—H4A⋯O1iii 0.93 2.39 3.044 (5) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some materials have predominant dielectric-ferroelectric performance and they have much applications in many fields. The study of dielectric-ferroelectric materials has received much attention in recent years. PyHX(X=ICl4,ClO4,IO4,ReO4etc) (Asaji et al.(2007); Wasicki et al.(1997)) are representative. As one part of our continuing studies on finding for dielectric-ferroelectric materials, we synthesized the title compound C6H6NO2+Br- unexpected comparing to PyHX, but it has no phase-transition in dielectric-ferroelectric measurement during 93 K to 470 K (m.p. 483 K).

The asymmetric unit of the title compound contains one 4-Carboxypyridinium basic ion and one bromide negative ion (Fig 1). In contrast to the planar 3-carboxypyridinium chloride (Slouf, 2001), the carboxyl group in the title molecule is slightly rotated with torsion angles of 164.8 (4)° and -17.6 (6)°. In the planar 3-carboxypyridinium chloride structure, N—H···O hydrogen bonds form chains along the c axis, whereas in the title structure, 4-Carboxypyridinium basic ions and bromide ions are linked into chains along b through hydrogen bonds (Table 1, Fig 2). Crystallographic details of the title structure were examined with PLATON (Spek, 2009).

Related literature top

For the phase transition of pyridinium tetrachloroiodate(III) studied by X-ray analysis and for dielectric and heat capacity measurements, see: Asaji et al. (2007). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997). For the structure of 3-carboxypyridinium chloride, see: Slouf (2001).

Experimental top

Methyl benzoate 0.685 g (5 mmol) in ethanol (30 ml), and 1.01 g hydrobromic acid (40%, 5 mmol) was added. The mixed solution was filtrated and the crystals suitable for structure determination were grown by slow evaporation of the solution at room temperature for five days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded,with C—H = 0.93 Å, N—H = 0.75–0.86 Å; with Uiso(H) = 1.2Ueq(C), with Uiso(H) = 1.2–1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a packing section of the title compound. Dashed lines indicate hydrogen bonds.
4-Carboxypyridinium bromide top
Crystal data top
C6H6NO2+·BrF(000) = 400
Mr = 204.03Dx = 1.869 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 0 reflections
a = 7.3179 (15) Åθ = 3.0–27.5°
b = 7.3433 (15) ŵ = 5.60 mm1
c = 13.532 (3) ÅT = 293 K
β = 94.37 (3)°Prism, colorless
V = 725.1 (3) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1670 independent reflections
Radiation source: fine-focus sealed tube1167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.326, Tmax = 0.339l = 1717
7062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
1670 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H6NO2+·BrV = 725.1 (3) Å3
Mr = 204.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3179 (15) ŵ = 5.60 mm1
b = 7.3433 (15) ÅT = 293 K
c = 13.532 (3) Å0.20 × 0.20 × 0.20 mm
β = 94.37 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1670 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1167 reflections with I > 2σ(I)
Tmin = 0.326, Tmax = 0.339Rint = 0.073
7062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.45 e Å3
1670 reflectionsΔρmin = 0.33 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05149 (7)0.81361 (5)0.25911 (3)0.0471 (2)
O20.7136 (4)0.0655 (4)0.06801 (19)0.0495 (8)
H2A0.65810.12790.11070.074*
C20.7434 (6)0.2225 (5)0.0056 (3)0.0351 (9)
O10.5215 (4)0.1518 (4)0.1253 (2)0.0534 (9)
N10.8996 (5)0.4472 (5)0.1454 (3)0.0501 (10)
H1A0.95040.51860.18970.060*
C10.7207 (6)0.4094 (5)0.0030 (3)0.0470 (11)
H1B0.65240.45870.05730.056*
C50.7998 (6)0.5208 (6)0.0693 (3)0.0495 (12)
H5A0.78400.64630.06530.059*
C30.8476 (6)0.1523 (5)0.0853 (3)0.0450 (12)
H3A0.86570.02730.09120.054*
C60.6474 (6)0.0997 (5)0.0713 (3)0.0375 (10)
C40.9248 (7)0.2683 (6)0.1562 (3)0.0498 (12)
H4A0.99380.22260.21130.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0633 (4)0.0335 (2)0.0427 (3)0.0000 (2)0.0077 (2)0.0051 (2)
O20.067 (2)0.0397 (17)0.0395 (17)0.0007 (15)0.0115 (16)0.0047 (14)
C20.034 (2)0.039 (2)0.033 (2)0.0015 (17)0.0009 (18)0.0023 (18)
O10.049 (2)0.061 (2)0.0477 (19)0.0024 (15)0.0130 (17)0.0010 (15)
N10.054 (3)0.050 (2)0.046 (2)0.0040 (19)0.0036 (19)0.0168 (19)
C10.053 (3)0.041 (2)0.046 (3)0.008 (2)0.006 (2)0.004 (2)
C50.053 (3)0.035 (2)0.060 (3)0.000 (2)0.000 (3)0.003 (2)
C30.057 (3)0.038 (2)0.039 (3)0.001 (2)0.006 (2)0.0000 (19)
C60.044 (3)0.041 (2)0.027 (2)0.001 (2)0.001 (2)0.0008 (18)
C40.060 (3)0.048 (3)0.040 (3)0.005 (2)0.012 (2)0.002 (2)
Geometric parameters (Å, º) top
O2—C61.306 (5)N1—H1A0.8600
O2—H2A0.8200C1—C51.369 (6)
C2—C31.373 (5)C1—H1B0.9300
C2—C11.386 (5)C5—H5A0.9300
C2—C61.508 (5)C3—C41.372 (6)
O1—C61.195 (5)C3—H3A0.9300
N1—C51.330 (5)C4—H4A0.9300
N1—C41.333 (5)
C6—O2—H2A109.5N1—C5—H5A120.4
C3—C2—C1119.6 (4)C1—C5—H5A120.4
C3—C2—C6121.2 (3)C4—C3—C2119.4 (4)
C1—C2—C6119.2 (4)C4—C3—H3A120.3
C5—N1—C4123.3 (4)C2—C3—H3A120.3
C5—N1—H1A118.4O1—C6—O2125.8 (4)
C4—N1—H1A118.4O1—C6—C2121.8 (4)
C5—C1—C2119.3 (4)O2—C6—C2112.3 (4)
C5—C1—H1B120.3N1—C4—C3119.2 (4)
C2—C1—H1B120.3N1—C4—H4A120.4
N1—C5—C1119.2 (4)C3—C4—H4A120.4
C3—C2—C1—C51.2 (6)C3—C2—C6—O1160.3 (4)
C6—C2—C1—C5176.6 (4)C1—C2—C6—O117.6 (6)
C4—N1—C5—C11.2 (7)C3—C2—C6—O217.4 (6)
C2—C1—C5—N11.2 (7)C1—C2—C6—O2164.8 (4)
C1—C2—C3—C41.2 (7)C5—N1—C4—C31.2 (7)
C6—C2—C3—C4176.6 (4)C2—C3—C4—N11.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Br1i0.822.323.127 (3)170
N1—H1A···Br1ii0.862.453.253 (3)155
C4—H4A···O1iii0.932.393.044 (5)127
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·Br
Mr204.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.3179 (15), 7.3433 (15), 13.532 (3)
β (°) 94.37 (3)
V3)725.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.60
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.326, 0.339
No. of measured, independent and
observed [I > 2σ(I)] reflections
7062, 1670, 1167
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.06
No. of reflections1670
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Br1i0.822.323.127 (3)170.0
N1—H1A···Br1ii0.862.453.253 (3)155.2
C4—H4A···O1iii0.932.393.044 (5)127.2
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAsaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlouf, M. (2001). Acta Cryst. E57, o61–o62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. & Szepanski, W. (1997). J. Chem. Phys. 107, 576–578.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds