organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Mesityl-2-oxo-1-oxa­spiro­[4.4]non-3-en-4-yl benzoate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and cInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 18 May 2010; accepted 4 June 2010; online 16 June 2010)

In the title compound, C24H24O4, a derivative of the potent insecticide and miticide spiro­mesifen, one cyclo­pentane C atom is disordered over two positions with occupancies of 0.574 (12) and 0.426 (12), resulting in respective envelope and twisted conformations for the cyclo­pentane ring. The atom at the flap position is 0.620 (5) Å out of the mean plane formed by the other four atoms of the envelope form. The furan ring makes dihedral angles of 68.26 (3) and 69.38 (2)°, respectively, with the 2,4,6-trimethyl­phenyl and benzene rings. The dihedral angle between the two benzene rings is 62.27 (3)°.

Related literature

For the pesticide spiro­mesifen, the central unit of the title compound, see: Bayer Aktiengesellschaft (1995[Bayer Aktiengesellschaft (1995). WO Patent No. 9504719A1.]). For the synthesis and biological activity of spiro­mesifen derivatives, see: Ji et al. (2009[Ji, M.-H., Xia, M., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o705.]); Zhao et al. (2009[Zhao, J. H., Ji, M. H., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. Chem. Lett. 20, 1307-1310.]). For distance restraints, see: Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24O4

  • Mr = 376.43

  • Monoclinic, P 21 /c

  • a = 8.4799 (5) Å

  • b = 15.9912 (9) Å

  • c = 15.9520 (8) Å

  • β = 106.240 (1)°

  • V = 2076.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.57 × 0.45 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.975

  • 19157 measured reflections

  • 4647 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.00

  • 4647 reflections

  • 267 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-hydroxyl-3-(2,4,6-trimethylphenyl)-1-oxaspiro[4,4]non-3-en-2-one (HTPO) is a key intermediate of Spiromesifen, which is an efficient insecticide and miticide, developed by Bayer Aktiengesellschaft (1995), see (Ji et al. 2009). As part of our continuing interest in the design and synthesis of the new insecticide and miticide, we have isolated the title compound (I), by the condensation reaction of benzoyl chloride and HTPO as colorless crystals. The molecule of the title compound (Fig. 1), exhibits a similar conformation and the same double bond characteristics as reported for the chlorobenzoate structure (Ji et al. 2009).

There was an indication of positional disorder in the crystal structure, detected with the checkCIF structure validation Program PLATON (Spek, 2009), which showed in the alert level B section significant Hirshfeld rigid bond test differences, 10.75 s.u. for C23—C24. Atom C23 was split into atoms C23A and C23B, which were refined using SIMU and PART instructions of SHELXL97, and four distance restraints were applied (Watkin, 1994). The C22—C23A, C22—C23B, C24—C23A and C24—C23B bond distance were restrained to 1.510 (2) Å, 1.514 (2) Å, 1.517 (2) Å and 1.5151 (19) Å, respectively.

The cyclopentane ring with C23B displays an envelope conformation with the C24 atom at the flap position 0.620 (5) Å out of the mean plane formed by the other four atoms, whereas the cyclopentane ring with C23A displays a twisted conformation, twisted on C21—C22.

Related literature top

For the pesticide spiromesifen, the central unit of the title compound, see: Bayer Aktiengesellschaft (1995). For the synthesis and biological activity of the spiromesifen derivatives, see: Ji et al. (2009); Zhao et al. (2009). For the distance restraints, see: Watkin (1994).

Experimental top

4-hydroxyl-3-(2,4,6-trimethylphenyl)-1-oxaspiro[4,4]non-3-en-2-one (0.272 g, 1 mmol), 4-dimethylaminopyridine (0.012 g, 0.1 mmol), triethylamine (0.131 g, 1.3 mmol) and dry chloroform (10 ml) were added to a 25 ml round flask. Then the mixture was stirred and cooled to 273 K. Within 30 min benzoyl chloride (0.168 g, 1.2 mmol) was added dropwise to the solution at 273 K. After the reaction mixture was reacted at room temperature for 3 h, 1% HCl was added. The organic layer was washed to neutral with water and dried over Na2SO4 After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petrum (1:3, v/v) to give a white solid (yield 83%, 0.312 g), which was then recrystallized from 95% ethanol to give colourless blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93 Å for aryl H atoms and 0.98Å for the remainder, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and the disordered CH2 group indicated as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
3-Mesityl-2-oxo-1-oxaspiro[4.4]non-3-en-4-yl benzoate top
Crystal data top
C24H24O4F(000) = 800
Mr = 376.43Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10851 reflections
a = 8.4799 (5) Åθ = 3.1–27.4°
b = 15.9912 (9) ŵ = 0.08 mm1
c = 15.9520 (8) ÅT = 296 K
β = 106.240 (1)°Chunk, colorless
V = 2076.8 (2) Å30.57 × 0.45 × 0.32 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4647 independent reflections
Radiation source: rolling anode2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2017
Tmin = 0.955, Tmax = 0.975l = 1720
19157 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.8207P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4647 reflectionsΔρmax = 0.25 e Å3
267 parametersΔρmin = 0.25 e Å3
22 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (3)
Crystal data top
C24H24O4V = 2076.8 (2) Å3
Mr = 376.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4799 (5) ŵ = 0.08 mm1
b = 15.9912 (9) ÅT = 296 K
c = 15.9520 (8) Å0.57 × 0.45 × 0.32 mm
β = 106.240 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4647 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2622 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.975Rint = 0.031
19157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05122 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
4647 reflectionsΔρmin = 0.25 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.59902 (17)0.68318 (9)0.43446 (9)0.0620 (4)
O40.8496 (2)0.73853 (11)0.45217 (12)0.0889 (6)
O10.3476 (2)0.84301 (10)0.30647 (12)0.0840 (5)
O20.3938 (3)0.83890 (14)0.17466 (12)0.1114 (8)
C140.8250 (2)0.61060 (12)0.52516 (12)0.0512 (5)
C30.6519 (3)0.70257 (13)0.24733 (13)0.0598 (5)
C190.7173 (3)0.54964 (13)0.53702 (14)0.0639 (6)
H190.60520.55510.51060.077*
C150.9908 (3)0.60287 (13)0.56565 (13)0.0579 (5)
H151.06320.64400.55830.070*
C130.7675 (3)0.68381 (13)0.46840 (13)0.0566 (5)
C120.5273 (3)0.73987 (13)0.37080 (13)0.0577 (5)
C80.6291 (3)0.61735 (14)0.22738 (13)0.0605 (5)
C70.7338 (3)0.57817 (15)0.18622 (14)0.0668 (6)
H70.71900.52160.17280.080*
C20.5435 (3)0.74710 (13)0.29100 (14)0.0624 (6)
C170.9423 (3)0.47286 (15)0.62716 (15)0.0714 (6)
H170.98210.42570.66060.086*
C50.8798 (3)0.70432 (17)0.18587 (15)0.0743 (7)
H50.96420.73340.17200.089*
C180.7768 (3)0.48087 (15)0.58814 (16)0.0734 (7)
H180.70480.43980.59620.088*
C161.0493 (3)0.53393 (15)0.61723 (14)0.0668 (6)
H161.16090.52890.64510.080*
C200.4067 (3)0.79956 (14)0.38972 (15)0.0645 (6)
C40.7791 (3)0.74694 (15)0.22727 (14)0.0678 (6)
C60.8588 (3)0.62051 (16)0.16464 (15)0.0710 (6)
C10.4252 (3)0.81278 (16)0.24846 (17)0.0796 (7)
C210.4808 (3)0.86271 (16)0.46176 (17)0.0774 (7)
H21A0.57160.83790.50580.093*
H21B0.52060.91150.43780.093*
C90.8105 (4)0.83721 (16)0.25219 (18)0.0909 (8)
H9A0.91000.85500.24020.136*
H9B0.82100.84380.31330.136*
H9C0.72040.87050.21900.136*
C110.4958 (3)0.56714 (16)0.24929 (17)0.0778 (7)
H11A0.52700.55510.31070.117*
H11B0.48010.51570.21700.117*
H11C0.39540.59860.23420.117*
C240.2621 (3)0.76212 (15)0.4166 (2)0.0859 (8)
H24A0.16340.76480.36790.103*
H24B0.28420.70390.43260.103*
C100.9716 (4)0.5763 (2)0.1205 (2)0.1052 (10)
H10A0.99490.52110.14430.158*
H10B1.07220.60720.13030.158*
H10C0.91930.57260.05890.158*
C220.3449 (4)0.8866 (2)0.5007 (2)0.1037 (10)
H22A0.28260.93320.46900.124*
H22B0.38950.90270.56130.124*
C23A0.2365 (12)0.8105 (4)0.4935 (5)0.095 (3)0.426 (12)
H23A0.12230.82660.48290.115*0.426 (12)
H23B0.26900.77740.54650.115*0.426 (12)
C23B0.1941 (4)0.8384 (3)0.4509 (5)0.091 (2)0.574 (12)
H23C0.12700.87160.40330.109*0.574 (12)
H23D0.12830.82220.48920.109*0.574 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0500 (9)0.0678 (9)0.0656 (9)0.0025 (7)0.0116 (7)0.0185 (7)
O40.0676 (11)0.0851 (12)0.1018 (13)0.0220 (9)0.0034 (9)0.0370 (10)
O10.0854 (13)0.0734 (11)0.0842 (11)0.0284 (9)0.0089 (9)0.0066 (9)
O20.1274 (18)0.1159 (16)0.0777 (13)0.0473 (14)0.0069 (11)0.0328 (11)
C140.0498 (12)0.0531 (11)0.0494 (10)0.0009 (9)0.0120 (8)0.0015 (8)
C30.0631 (14)0.0602 (13)0.0522 (11)0.0049 (10)0.0097 (9)0.0130 (9)
C190.0525 (13)0.0618 (13)0.0733 (14)0.0042 (10)0.0110 (10)0.0110 (10)
C150.0499 (12)0.0638 (13)0.0577 (12)0.0023 (10)0.0111 (9)0.0029 (9)
C130.0493 (12)0.0626 (13)0.0546 (11)0.0041 (10)0.0090 (9)0.0063 (9)
C120.0559 (13)0.0528 (12)0.0594 (12)0.0028 (9)0.0081 (9)0.0076 (9)
C80.0583 (13)0.0627 (13)0.0573 (12)0.0021 (10)0.0110 (10)0.0091 (9)
C70.0689 (15)0.0656 (14)0.0642 (13)0.0049 (11)0.0159 (11)0.0052 (10)
C20.0634 (14)0.0563 (12)0.0613 (13)0.0079 (10)0.0074 (10)0.0083 (9)
C170.0786 (17)0.0606 (14)0.0675 (14)0.0115 (12)0.0083 (12)0.0103 (10)
C50.0707 (16)0.0876 (18)0.0652 (14)0.0082 (13)0.0197 (12)0.0191 (12)
C180.0730 (16)0.0621 (14)0.0813 (16)0.0060 (12)0.0152 (12)0.0175 (11)
C160.0598 (14)0.0698 (14)0.0634 (13)0.0083 (11)0.0050 (10)0.0021 (10)
C200.0617 (14)0.0572 (12)0.0703 (14)0.0025 (10)0.0114 (11)0.0010 (10)
C40.0781 (16)0.0649 (14)0.0572 (13)0.0026 (12)0.0135 (11)0.0158 (10)
C60.0692 (16)0.0805 (17)0.0647 (14)0.0046 (13)0.0209 (11)0.0103 (11)
C10.0821 (18)0.0734 (16)0.0718 (16)0.0207 (13)0.0028 (13)0.0111 (12)
C210.0757 (17)0.0659 (15)0.0873 (17)0.0098 (12)0.0176 (13)0.0127 (12)
C90.118 (2)0.0694 (16)0.0866 (18)0.0153 (15)0.0303 (16)0.0134 (13)
C110.0752 (17)0.0737 (16)0.0869 (17)0.0075 (13)0.0268 (13)0.0015 (12)
C240.0620 (16)0.0648 (15)0.132 (2)0.0049 (12)0.0293 (15)0.0144 (15)
C100.095 (2)0.121 (3)0.115 (2)0.0060 (19)0.0548 (19)0.0022 (19)
C220.091 (2)0.122 (3)0.095 (2)0.0028 (19)0.0220 (16)0.0362 (18)
C23A0.096 (3)0.096 (3)0.095 (3)0.0014 (10)0.0283 (13)0.0004 (10)
C23B0.089 (2)0.090 (2)0.093 (2)0.0003 (10)0.0265 (11)0.0017 (10)
Geometric parameters (Å, º) top
O3—C121.370 (2)C16—H160.9300
O3—C131.379 (2)C20—C241.530 (3)
O4—C131.191 (2)C20—C211.527 (3)
O1—C11.365 (3)C4—C91.501 (3)
O1—C201.458 (3)C6—C101.512 (4)
O2—C11.207 (3)C21—C221.503 (4)
C14—C151.379 (3)C21—H21A0.9700
C14—C191.385 (3)C21—H21B0.9700
C14—C131.477 (3)C9—H9A0.9600
C3—C41.401 (3)C9—H9B0.9600
C3—C81.400 (3)C9—H9C0.9600
C3—C21.482 (3)C11—H11A0.9600
C19—C181.378 (3)C11—H11B0.9600
C19—H190.9300C11—H11C0.9600
C15—C161.382 (3)C24—C23B1.5151 (19)
C15—H150.9300C24—C23A1.517 (2)
C12—C21.323 (3)C24—H24A0.9700
C12—C201.490 (3)C24—H24B0.9700
C8—C71.392 (3)C10—H10A0.9600
C8—C111.505 (3)C10—H10B0.9600
C7—C61.380 (3)C10—H10C0.9600
C7—H70.9300C22—C23A1.510 (2)
C2—C11.480 (3)C22—C23B1.514 (2)
C17—C181.372 (3)C22—H22A0.9700
C17—C161.372 (3)C22—H22B0.9700
C17—H170.9300C23A—H23A0.9700
C5—C61.382 (4)C23A—H23B0.9700
C5—C41.395 (3)C23B—H23C0.9700
C5—H50.9300C23B—H23D0.9700
C18—H180.9300
C12—O3—C13118.83 (16)O1—C1—C2109.5 (2)
C1—O1—C20109.94 (17)C22—C21—C20106.1 (2)
C15—C14—C19119.88 (19)C22—C21—H21A110.5
C15—C14—C13118.49 (18)C20—C21—H21A110.5
C19—C14—C13121.62 (18)C22—C21—H21B110.5
C4—C3—C8120.4 (2)C20—C21—H21B110.5
C4—C3—C2118.9 (2)H21A—C21—H21B108.7
C8—C3—C2120.7 (2)C4—C9—H9A109.5
C18—C19—C14119.7 (2)C4—C9—H9B109.5
C18—C19—H19120.1H9A—C9—H9B109.5
C14—C19—H19120.1C4—C9—H9C109.5
C14—C15—C16120.0 (2)H9A—C9—H9C109.5
C14—C15—H15120.0H9B—C9—H9C109.5
C16—C15—H15120.0C8—C11—H11A109.5
O4—C13—O3121.64 (19)C8—C11—H11B109.5
O4—C13—C14127.1 (2)H11A—C11—H11B109.5
O3—C13—C14111.30 (17)C8—C11—H11C109.5
C2—C12—O3128.8 (2)H11A—C11—H11C109.5
C2—C12—C20113.61 (18)H11B—C11—H11C109.5
O3—C12—C20117.45 (18)C23B—C24—C20101.7 (3)
C7—C8—C3118.7 (2)C23A—C24—C20109.5 (2)
C7—C8—C11119.3 (2)C23B—C24—H24A85.6
C3—C8—C11122.1 (2)C23A—C24—H24A109.8
C6—C7—C8122.2 (2)C20—C24—H24A109.8
C6—C7—H7118.9C23B—C24—H24B138.0
C8—C7—H7118.9C23A—C24—H24B109.8
C12—C2—C1105.3 (2)C20—C24—H24B109.8
C12—C2—C3130.94 (19)H24A—C24—H24B108.2
C1—C2—C3123.8 (2)C6—C10—H10A109.5
C18—C17—C16120.4 (2)C6—C10—H10B109.5
C18—C17—H17119.8H10A—C10—H10B109.5
C16—C17—H17119.8C6—C10—H10C109.5
C6—C5—C4122.4 (2)H10A—C10—H10C109.5
C6—C5—H5118.8H10B—C10—H10C109.5
C4—C5—H5118.8C21—C22—C23A106.5 (3)
C17—C18—C19120.1 (2)C21—C22—C23B106.7 (3)
C17—C18—H18119.9C21—C22—H22A110.4
C19—C18—H18119.9C23A—C22—H22A110.4
C17—C16—C15119.8 (2)C23B—C22—H22A82.0
C17—C16—H16120.1C21—C22—H22B110.4
C15—C16—H16120.1C23A—C22—H22B110.4
O1—C20—C12101.61 (17)C23B—C22—H22B134.0
O1—C20—C24110.1 (2)H22A—C22—H22B108.6
C12—C20—C24117.10 (19)C22—C23A—C24104.5 (2)
O1—C20—C21109.55 (19)C22—C23A—H23A110.8
C12—C20—C21114.51 (19)C24—C23A—H23A110.8
C24—C20—C21103.96 (19)C22—C23A—H23B110.8
C5—C4—C3118.2 (2)C24—C23A—H23B110.9
C5—C4—C9120.6 (2)H23A—C23A—H23B108.9
C3—C4—C9121.1 (2)C22—C23B—C24104.4 (2)
C7—C6—C5118.0 (2)C22—C23B—H23C110.9
C7—C6—C10121.1 (3)C24—C23B—H23C110.9
C5—C6—C10120.8 (2)C22—C23B—H23D110.9
O2—C1—O1121.5 (2)C24—C23B—H23D110.9
O2—C1—C2129.0 (3)H23C—C23B—H23D108.9
C15—C14—C19—C181.1 (3)C2—C12—C20—C21116.3 (2)
C13—C14—C19—C18177.7 (2)O3—C12—C20—C2167.0 (3)
C19—C14—C15—C160.7 (3)C6—C5—C4—C30.3 (3)
C13—C14—C15—C16178.18 (19)C6—C5—C4—C9177.6 (2)
C12—O3—C13—O49.7 (3)C8—C3—C4—C51.0 (3)
C12—O3—C13—C14170.80 (17)C2—C3—C4—C5179.77 (19)
C15—C14—C13—O40.7 (3)C8—C3—C4—C9176.9 (2)
C19—C14—C13—O4178.1 (2)C2—C3—C4—C92.3 (3)
C15—C14—C13—O3178.75 (18)C8—C7—C6—C50.6 (3)
C19—C14—C13—O32.4 (3)C8—C7—C6—C10179.6 (2)
C13—O3—C12—C263.9 (3)C4—C5—C6—C70.5 (4)
C13—O3—C12—C20119.9 (2)C4—C5—C6—C10179.4 (2)
C4—C3—C8—C70.9 (3)C20—O1—C1—O2179.0 (3)
C2—C3—C8—C7179.92 (19)C20—O1—C1—C20.7 (3)
C4—C3—C8—C11178.9 (2)C12—C2—C1—O2177.9 (3)
C2—C3—C8—C110.3 (3)C3—C2—C1—O22.1 (5)
C3—C8—C7—C60.1 (3)C12—C2—C1—O11.7 (3)
C11—C8—C7—C6179.8 (2)C3—C2—C1—O1178.3 (2)
O3—C12—C2—C1174.2 (2)O1—C20—C21—C2293.4 (3)
C20—C12—C2—C12.1 (3)C12—C20—C21—C22153.2 (2)
O3—C12—C2—C35.8 (4)C24—C20—C21—C2224.2 (3)
C20—C12—C2—C3177.9 (2)O1—C20—C24—C23B77.9 (3)
C4—C3—C2—C12111.4 (3)C12—C20—C24—C23B166.7 (3)
C8—C3—C2—C1267.8 (3)C21—C20—C24—C23B39.3 (3)
C4—C3—C2—C168.6 (3)O1—C20—C24—C23A109.0 (5)
C8—C3—C2—C1112.2 (3)C12—C20—C24—C23A135.6 (5)
C16—C17—C18—C191.4 (4)C21—C20—C24—C23A8.2 (5)
C14—C19—C18—C170.0 (4)C20—C21—C22—C23A31.8 (5)
C18—C17—C16—C151.8 (4)C20—C21—C22—C23B0.5 (4)
C14—C15—C16—C170.8 (3)C21—C22—C23A—C2425.9 (8)
C1—O1—C20—C120.5 (2)C23B—C22—C23A—C2469.0 (3)
C1—O1—C20—C24125.3 (2)C23B—C24—C23A—C2269.3 (3)
C1—O1—C20—C21121.0 (2)C20—C24—C23A—C2210.7 (8)
C2—C12—C20—O11.7 (2)C21—C22—C23B—C2425.4 (6)
O3—C12—C20—O1175.02 (17)C23A—C22—C23B—C2469.1 (3)
C2—C12—C20—C24121.7 (2)C23A—C24—C23B—C2268.8 (3)
O3—C12—C20—C2455.1 (3)C20—C24—C23B—C2239.8 (5)

Experimental details

Crystal data
Chemical formulaC24H24O4
Mr376.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4799 (5), 15.9912 (9), 15.9520 (8)
β (°) 106.240 (1)
V3)2076.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.45 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.955, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
19157, 4647, 2622
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.00
No. of reflections4647
No. of parameters267
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor Jian-Ming Gu for help with the analysis of the crystal data. This work was supported by the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009 C21014).

References

First citationBayer Aktiengesellschaft (1995). WO Patent No. 9504719A1.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJi, M.-H., Xia, M., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhao, J. H., Ji, M. H., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. Chem. Lett. 20, 1307–1310.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds