organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1709-o1710

9-Ethynyl-1,2-di­methyl-1,2-dicarba-closo-dodeca­borane (1,2-Me2-9-HC≡C-closo-1,2-C2B10H9)

aInstitut für Anorganische Chemie und Strukturchemie II, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-duesseldorf.de

(Received 8 June 2010; accepted 11 June 2010; online 18 June 2010)

The asymmetric unit of the title compound, C6H16B10, contains one mol­ecule that is close to possessing a non-crystallographic plane of mirror symmetry in the space group Pna21. The orientation of the mol­ecules in the ortho­rhom­bic cell shows that the structure can not be described in the space group Pnma, which has the same systematic absence conditions. The long inner-cluster C—C distance of 1.510 (5) Å is typical for {1,2-Me2-closo-1,2-C2B10} derivatives.

Related literature

For a general overview of the functionalization of dicarba-closo-dodeca­boranes, see: Bregadze (1992[Bregadze, V. I. (1992). Chem. Rev. 92, 209-223.]); Kalinin & Ol'shevskaya (2008[Kalinin, V. N. & Ol'shevskaya, V. A. (2008). Russ. Chem. Bull. 57, 815-836.]). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981[Zakharkin, L. I., Kovredov, A. I. & Ol'shevskaya, V. A. (1981). Russ. J. Gen. Chem. 51, 2422]); Himmelspach & Finze (2010a[Himmelspach, A. & Finze, M. (2010a). Eur. J. Inorg. Chem. pp. 2012-2024.]). For structures of related icosa­hedral boron cages with alkynyl groups bonded to boron, see: Finze (2008[Finze, M. (2008). Inorg. Chem. 47, 11857-11867.]); Himmelspach & Finze (2010b[Himmelspach, A. & Finze, M. (2010b). J. Organomet. Chem. 695, 1337-1345.]). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008[Shmueli, U., Schiltz, M. & Flack, H. D. (2008). Acta Cryst. A64, 476-483.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16B10

  • Mr = 196.29

  • Orthorhombic, P n a 21

  • a = 14.5368 (8) Å

  • b = 7.0085 (3) Å

  • c = 12.5373 (5) Å

  • V = 1277.32 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.05 mm−1

  • T = 290 K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 11327 measured reflections

  • 1181 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.104

  • S = 1.06

  • 1181 reflections

  • 150 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C3 1.510 (5)
C1—C2 1.680 (5)
C1—B4 1.684 (6)
C1—B5 1.693 (6)
C1—B3 1.714 (6)
C1—B6 1.728 (6)
C2—C4 1.529 (5)
C2—B11 1.670 (6)
C2—B7 1.697 (6)
C2—B6 1.709 (6)
C2—B3 1.717 (5)
B3—B7 1.758 (6)
B3—B8 1.758 (6)
B3—B4 1.760 (6)
B4—B5 1.755 (6)
B4—B8 1.767 (6)
B4—B9 1.769 (6)
B5—B9 1.759 (6)
B5—B10 1.766 (6)
B5—B6 1.778 (6)
B6—B11 1.750 (7)
B6—B10 1.751 (6)
B7—B11 1.760 (6)
B7—B12 1.757 (6)
B7—B8 1.776 (6)
B8—B9 1.777 (6)
B8—B12 1.781 (6)
B9—C5 1.544 (5)
B9—B12 1.780 (6)
B9—B10 1.789 (6)
B10—B11 1.765 (7)
B10—B12 1.774 (7)
B11—B12 1.752 (6)
C5—C6 1.175 (6)
C6—C5—B9 178.2 (5)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interest in functionalized dicarba-closo-dodecaboranes as building blocks for a broad range of applications is steadily increasing because of their high chemical and thermal stability as well as the diversity of their substitution patterns at the boron cage (Bregadze, 1992; Kalinin & Ol'shevskaya, 2008). The synthesis of {closo-C2B10} clusters with alkynyl groups bonded to boron is achieved by Pd-catalyzed Kumada-type cross-coupling reactions using the iodinated clusters and alkynyl Grignard reagents as precursors (Zakharkin et al., 1981; Himmelspach & Finze, 2010a). The title compound 1,2-dimethyl-9-ethynyl-1,2-dicarba-closo-dodecaborane, which is the first structurally characterized monoethynyldicarba-closo-dodecaborane with a Bcluster—CC—H unit, crystallizes in the orthorhombic acentric space group Pna21 with one complete molecule in the asymmetric unit. The bond lengths and angles of the {closo-1,2-C2B10} cage of 1,2-Me2-9-HCC-closo-1,2- C2B10H9 are similar to those reported for the related bis(trimethylsilylalkynyl) substituted derivative 1,2-Me2 -9,12-(Me3SiCC)2-closo-1,2-C2B10H9 (Himmelspach & Finze, 2010a). The B—C and CC distances are similar to values reported for the diethynyldicarba-closo-dodecaboranes 9,12-(HCC)2-closo-1,2-C2B10H10 and 9,10-(HCC)2-closo-1,7-C2B10H10 (Himmelspach & Finze, 2010a) and the related anionic monocarba-closo-dodecaborate anions [12-HC C-closo-1-CB11H11]- and [7,12-(HCC)2closo-1-CB11H10]- (Himmelspach & Finze, 2010b).

Related literature top

For a general overview of the functionalization of dicarba-closo-dodecaboranes, see: Bregadze (1992); Kalinin & Ol'shevskaya (2008). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981); Himmelspach & Finze (2010a). For structures of related icosahedral boron cages with alkynyl groups bonded to boron, see: Finze (2008); Himmelspach & Finze (2010b). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008).

Experimental top

1,2-Me2-9-HCC-closo-1,2-C2B10H9 was synthesized according to a published procedure and the spectroscopic data have been reported earlier (Himmelspach & Finze, 2010a). The compound was dissolved in acetonitrile and slow evaporation of the solvent resulted in colorless crystals.

Refinement top

All hydrogen atom positions were obtained from difference fourier maps. The hydrogen atoms of the methyl groups were included in the latest stages of the refinement with a riding model and for each methyl group a common Uiso value was refined. The hydrogen atoms bonded to the carborane cluster were included in the refinement with a riding model (AFIX 153) and their Uiso values were set to 1.2 of the equivalent isotropic displacement parameter of the corresponding parent atom. The hydrogen atom of the ethynyl group was positioned using a riding model (AFIX 163) and its Uiso was refined freely. In the absence of significant anomalous scattering effects, Friedel pairs were averaged, resulting in a low reflection to parameter ratio (Shmueli et al., 2008).

Structure description top

The interest in functionalized dicarba-closo-dodecaboranes as building blocks for a broad range of applications is steadily increasing because of their high chemical and thermal stability as well as the diversity of their substitution patterns at the boron cage (Bregadze, 1992; Kalinin & Ol'shevskaya, 2008). The synthesis of {closo-C2B10} clusters with alkynyl groups bonded to boron is achieved by Pd-catalyzed Kumada-type cross-coupling reactions using the iodinated clusters and alkynyl Grignard reagents as precursors (Zakharkin et al., 1981; Himmelspach & Finze, 2010a). The title compound 1,2-dimethyl-9-ethynyl-1,2-dicarba-closo-dodecaborane, which is the first structurally characterized monoethynyldicarba-closo-dodecaborane with a Bcluster—CC—H unit, crystallizes in the orthorhombic acentric space group Pna21 with one complete molecule in the asymmetric unit. The bond lengths and angles of the {closo-1,2-C2B10} cage of 1,2-Me2-9-HCC-closo-1,2- C2B10H9 are similar to those reported for the related bis(trimethylsilylalkynyl) substituted derivative 1,2-Me2 -9,12-(Me3SiCC)2-closo-1,2-C2B10H9 (Himmelspach & Finze, 2010a). The B—C and CC distances are similar to values reported for the diethynyldicarba-closo-dodecaboranes 9,12-(HCC)2-closo-1,2-C2B10H10 and 9,10-(HCC)2-closo-1,7-C2B10H10 (Himmelspach & Finze, 2010a) and the related anionic monocarba-closo-dodecaborate anions [12-HC C-closo-1-CB11H11]- and [7,12-(HCC)2closo-1-CB11H10]- (Himmelspach & Finze, 2010b).

For a general overview of the functionalization of dicarba-closo-dodecaboranes, see: Bregadze (1992); Kalinin & Ol'shevskaya (2008). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981); Himmelspach & Finze (2010a). For structures of related icosahedral boron cages with alkynyl groups bonded to boron, see: Finze (2008); Himmelspach & Finze (2010b). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Hydrogen atoms are drawn with arbitrary radii and the displacement ellipsoids are shown at the 35% probability level.
[Figure 2] Fig. 2. : Packing of the title compound along [0–10] showing that the non-crystallographic mirror symmetry of the molecule is not consistent with the metric and the symmetry of the true space group Pna21.
9-Ethynyl-1,2-dimethyl-1,2-dicarba-closo-dodecaborane top
Crystal data top
C6H16B10F(000) = 408
Mr = 196.29Dx = 1.021 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6575 reflections
a = 14.5368 (8) Åθ = 3.2–27.2°
b = 7.0085 (3) ŵ = 0.05 mm1
c = 12.5373 (5) ÅT = 290 K
V = 1277.32 (10) Å3Prism, colourless
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1049 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 16.2711 pixels mm-1h = 1717
ω scansk = 88
11327 measured reflectionsl = 1414
1181 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.005P)2 + 0.630P]
where P = (Fo2 + 2Fc2)/3
1181 reflections(Δ/σ)max = 0.010
150 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C6H16B10V = 1277.32 (10) Å3
Mr = 196.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.5368 (8) ŵ = 0.05 mm1
b = 7.0085 (3) ÅT = 290 K
c = 12.5373 (5) Å0.4 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1049 reflections with I > 2σ(I)
11327 measured reflectionsRint = 0.042
1181 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
1181 reflectionsΔρmin = 0.18 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1554 (3)1.0151 (6)0.6353 (3)0.0654 (11)
C30.0608 (3)1.0836 (9)0.6036 (4)0.1134 (19)
H3A0.03611.16290.65920.175 (15)*
H3B0.02110.97570.59290.175 (15)*
H3C0.06491.15570.53870.175 (15)*
C20.1709 (2)0.9362 (5)0.7606 (3)0.0603 (10)
C40.0899 (3)0.9387 (7)0.8384 (4)0.0973 (16)
H4A0.10760.87720.90370.171 (14)*
H4B0.03880.87210.80740.171 (14)*
H4C0.07261.06830.85290.171 (14)*
B30.1682 (3)0.7752 (7)0.6574 (3)0.0651 (12)
H30.11300.66990.64570.078*
B40.2219 (3)0.8917 (6)0.5497 (3)0.0600 (11)
H40.20230.86130.46670.072*
B50.2525 (3)1.1224 (7)0.5909 (4)0.0641 (12)
H50.25331.24260.53460.077*
B60.2166 (3)1.1519 (6)0.7254 (4)0.0655 (12)
H60.19291.28980.75730.079*
B70.2479 (3)0.7542 (7)0.7621 (4)0.0641 (11)
H70.24580.63350.81820.077*
B80.2840 (3)0.7257 (6)0.6277 (4)0.0618 (11)
H80.30610.58700.59570.074*
B90.3368 (3)0.9424 (6)0.5869 (3)0.0569 (10)
B100.3323 (3)1.1052 (7)0.6967 (4)0.0641 (12)
H100.38591.21340.70980.077*
B110.2770 (3)0.9867 (7)0.8032 (4)0.0634 (11)
H110.29401.01750.88690.076*
B120.3516 (3)0.8587 (7)0.7199 (4)0.0654 (12)
H120.41850.80610.74850.078*
C50.4156 (3)0.9438 (6)0.5044 (4)0.0741 (11)
C60.4772 (3)0.9437 (7)0.4438 (5)0.1044 (17)
H10.52600.94350.39580.15 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.078 (3)0.058 (2)0.009 (2)0.0032 (19)0.000 (2)
C30.082 (3)0.156 (5)0.102 (4)0.045 (3)0.009 (3)0.001 (4)
C20.063 (2)0.066 (2)0.052 (2)0.0107 (18)0.0106 (19)0.007 (2)
C40.090 (3)0.120 (4)0.082 (3)0.026 (3)0.033 (3)0.013 (3)
B30.072 (3)0.062 (3)0.061 (3)0.020 (2)0.001 (2)0.012 (2)
B40.067 (2)0.070 (3)0.044 (2)0.003 (2)0.005 (2)0.007 (2)
B50.086 (3)0.056 (2)0.051 (2)0.002 (2)0.005 (2)0.004 (2)
B60.081 (3)0.053 (2)0.062 (3)0.006 (2)0.015 (2)0.010 (2)
B70.091 (3)0.053 (2)0.048 (2)0.006 (2)0.002 (2)0.007 (2)
B80.082 (3)0.047 (2)0.057 (2)0.005 (2)0.005 (2)0.001 (2)
B90.059 (2)0.062 (2)0.050 (2)0.003 (2)0.003 (2)0.001 (2)
B100.065 (3)0.067 (3)0.061 (3)0.023 (2)0.002 (2)0.007 (3)
B110.075 (3)0.070 (3)0.045 (2)0.014 (2)0.002 (2)0.006 (2)
B120.061 (2)0.080 (3)0.056 (3)0.005 (2)0.009 (2)0.001 (2)
C50.072 (2)0.081 (3)0.070 (3)0.002 (2)0.015 (2)0.002 (2)
C60.094 (3)0.119 (4)0.101 (3)0.004 (3)0.042 (3)0.003 (3)
Geometric parameters (Å, º) top
C1—C31.510 (5)B5—B91.759 (6)
C1—C21.680 (5)B5—B101.766 (6)
C1—B41.684 (6)B5—B61.778 (6)
C1—B51.693 (6)B5—H51.1000
C1—B31.714 (6)B6—B111.750 (7)
C1—B61.728 (6)B6—B101.751 (6)
C3—H3A0.9600B6—H61.1000
C3—H3B0.9600B7—B111.760 (6)
C3—H3C0.9600B7—B121.757 (6)
C2—C41.529 (5)B7—B81.776 (6)
C2—B111.670 (6)B7—H71.1000
C2—B71.697 (6)B8—B91.777 (6)
C2—B61.709 (6)B8—B121.781 (6)
C2—B31.717 (5)B8—H81.1000
C4—H4A0.9600B9—C51.544 (5)
C4—H4B0.9600B9—B121.780 (6)
C4—H4C0.9600B9—B101.789 (6)
B3—B71.758 (6)B10—B111.765 (7)
B3—B81.758 (6)B10—B121.774 (7)
B3—B41.760 (6)B10—H101.1000
B3—H31.1000B11—B121.752 (6)
B4—B51.755 (6)B11—H111.1000
B4—B81.767 (6)B12—H121.1000
B4—B91.769 (6)C5—C61.175 (6)
B4—H41.1000C6—H10.9300
C3—C1—C2118.2 (3)C2—B6—H6124.2
C3—C1—B4121.2 (4)C1—B6—H6124.3
C2—C1—B4110.5 (3)B11—B6—H6122.4
C3—C1—B5122.1 (4)B10—B6—H6122.6
C2—C1—B5110.0 (3)B5—B6—H6122.6
B4—C1—B562.6 (2)C2—B7—B1157.7 (2)
C3—C1—B3116.9 (4)C2—B7—B359.6 (2)
C2—C1—B360.8 (2)B11—B7—B3107.4 (3)
B4—C1—B362.4 (3)C2—B7—B12104.4 (3)
B5—C1—B3113.5 (3)B11—B7—B1259.7 (3)
C3—C1—B6117.7 (4)B3—B7—B12107.8 (3)
C2—C1—B660.2 (2)C2—B7—B8105.6 (3)
B4—C1—B6114.0 (3)B11—B7—B8108.1 (3)
B5—C1—B662.6 (3)B3—B7—B859.7 (3)
B3—C1—B6112.5 (3)B12—B7—B860.5 (3)
C1—C3—H3A109.5C2—B7—H7124.5
C1—C3—H3B109.5B11—B7—H7122.1
H3A—C3—H3B109.5B3—B7—H7121.6
C1—C3—H3C109.5B12—B7—H7122.4
H3A—C3—H3C109.5B8—B7—H7121.9
H3B—C3—H3C109.5B3—B8—B459.9 (3)
C4—C2—B11120.3 (3)B3—B8—B9107.8 (3)
C4—C2—C1119.3 (3)B4—B8—B959.9 (2)
B11—C2—C1110.7 (3)B3—B8—B759.6 (2)
C4—C2—B7120.6 (4)B4—B8—B7107.5 (3)
B11—C2—B763.0 (2)B9—B8—B7107.7 (3)
C1—C2—B7110.3 (3)B3—B8—B12106.7 (3)
C4—C2—B6116.9 (3)B4—B8—B12107.2 (3)
B11—C2—B662.4 (3)B9—B8—B1260.1 (2)
C1—C2—B661.3 (2)B7—B8—B1259.2 (3)
B7—C2—B6114.3 (3)B3—B8—H8122.2
C4—C2—B3118.0 (3)B4—B8—H8122.0
B11—C2—B3113.7 (3)B9—B8—H8121.6
C1—C2—B360.6 (2)B7—B8—H8122.1
B7—C2—B362.0 (2)B12—B8—H8122.5
B6—C2—B3113.3 (3)C5—B9—B5122.1 (3)
C2—C4—H4A109.5C5—B9—B4121.7 (3)
C2—C4—H4B109.5B5—B9—B459.7 (2)
H4A—C4—H4B109.5C5—B9—B8121.3 (3)
C2—C4—H4C109.5B5—B9—B8107.7 (3)
H4A—C4—H4C109.5B4—B9—B859.8 (3)
H4B—C4—H4C109.5C5—B9—B12122.6 (3)
C1—B3—C258.6 (2)B5—B9—B12107.1 (3)
C1—B3—B7105.9 (3)B4—B9—B12107.1 (3)
C2—B3—B758.4 (2)B8—B9—B1260.1 (2)
C1—B3—B8105.3 (3)C5—B9—B10122.6 (3)
C2—B3—B8105.5 (3)B5—B9—B1059.7 (3)
B7—B3—B860.7 (3)B4—B9—B10107.3 (3)
C1—B3—B458.0 (2)B8—B9—B10107.9 (3)
C2—B3—B4105.2 (3)B12—B9—B1059.6 (3)
B7—B3—B4108.6 (3)B6—B10—B560.7 (3)
B8—B3—B460.3 (2)B6—B10—B1159.7 (3)
C1—B3—H3123.9B5—B10—B11107.5 (3)
C2—B3—H3124.0B6—B10—B12107.5 (3)
B7—B3—H3121.6B5—B10—B12107.0 (3)
B8—B3—H3122.5B11—B10—B1259.3 (3)
B4—B3—H3122.2B6—B10—B9108.2 (3)
C1—B4—B559.0 (2)B5—B10—B959.3 (3)
C1—B4—B359.6 (3)B11—B10—B9107.4 (3)
B5—B4—B3108.3 (3)B12—B10—B960.0 (2)
C1—B4—B8106.2 (3)B6—B10—H10121.4
B5—B4—B8108.3 (3)B5—B10—H10122.0
B3—B4—B859.8 (3)B11—B10—H10122.3
C1—B4—B9105.7 (3)B12—B10—H10122.3
B5—B4—B959.9 (3)B9—B10—H10121.9
B3—B4—B9108.1 (3)C2—B11—B659.9 (2)
B8—B4—B960.3 (2)C2—B11—B759.2 (3)
C1—B4—H4123.6B6—B11—B7109.2 (3)
B5—B4—H4121.5C2—B11—B12105.8 (3)
B3—B4—H4121.4B6—B11—B12108.5 (3)
B8—B4—H4121.9B7—B11—B1260.0 (3)
B9—B4—H4122.2C2—B11—B10106.2 (3)
C1—B5—B458.4 (2)B6—B11—B1059.8 (3)
C1—B5—B9105.8 (3)B7—B11—B10108.9 (3)
B4—B5—B960.5 (2)B12—B11—B1060.6 (3)
C1—B5—B10105.7 (3)C2—B11—H11123.6
B4—B5—B10109.0 (3)B6—B11—H11121.0
B9—B5—B1061.0 (3)B7—B11—H11121.0
C1—B5—B659.7 (3)B12—B11—H11122.0
B4—B5—B6108.2 (3)B10—B11—H11121.8
B9—B5—B6108.4 (3)B11—B12—B760.2 (3)
B10—B5—B659.2 (3)B11—B12—B1060.1 (3)
C1—B5—H5124.1B7—B12—B10108.6 (3)
B4—B5—H5121.3B11—B12—B9108.3 (3)
B9—B5—H5121.6B7—B12—B9108.4 (3)
B10—B5—H5121.9B10—B12—B960.4 (3)
B6—B5—H5121.5B11—B12—B8108.2 (3)
C2—B6—C158.5 (2)B7—B12—B860.3 (2)
C2—B6—B1157.7 (2)B10—B12—B8108.4 (3)
C1—B6—B11104.8 (3)B9—B12—B859.9 (2)
C2—B6—B10105.1 (3)B11—B12—H12121.6
C1—B6—B10104.8 (3)B7—B12—H12121.3
B11—B6—B1060.5 (3)B10—B12—H12121.3
C2—B6—B5104.8 (3)B9—B12—H12121.5
C1—B6—B557.7 (3)B8—B12—H12121.6
B11—B6—B5107.7 (3)C6—C5—B9178.2 (5)
B10—B6—B560.0 (3)C5—C6—H1180.0

Experimental details

Crystal data
Chemical formulaC6H16B10
Mr196.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)290
a, b, c (Å)14.5368 (8), 7.0085 (3), 12.5373 (5)
V3)1277.32 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11327, 1181, 1049
Rint0.042
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.104, 1.06
No. of reflections1181
No. of parameters150
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND Brandenburg, 2010).

Selected geometric parameters (Å, º) top
C1—C31.510 (5)B5—B91.759 (6)
C1—C21.680 (5)B5—B101.766 (6)
C1—B41.684 (6)B5—B61.778 (6)
C1—B51.693 (6)B6—B111.750 (7)
C1—B31.714 (6)B6—B101.751 (6)
C1—B61.728 (6)B7—B111.760 (6)
C2—C41.529 (5)B7—B121.757 (6)
C2—B111.670 (6)B7—B81.776 (6)
C2—B71.697 (6)B8—B91.777 (6)
C2—B61.709 (6)B8—B121.781 (6)
C2—B31.717 (5)B9—C51.544 (5)
B3—B71.758 (6)B9—B121.780 (6)
B3—B81.758 (6)B9—B101.789 (6)
B3—B41.760 (6)B10—B111.765 (7)
B4—B51.755 (6)B10—B121.774 (7)
B4—B81.767 (6)B11—B121.752 (6)
B4—B91.769 (6)C5—C61.175 (6)
C6—C5—B9178.2 (5)
 

Acknowledgements

Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBregadze, V. I. (1992). Chem. Rev. 92, 209–223.  CrossRef CAS Web of Science Google Scholar
First citationFinze, M. (2008). Inorg. Chem. 47, 11857–11867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHimmelspach, A. & Finze, M. (2010a). Eur. J. Inorg. Chem. pp. 2012–2024.  CrossRef Google Scholar
First citationHimmelspach, A. & Finze, M. (2010b). J. Organomet. Chem. 695, 1337–1345.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalinin, V. N. & Ol'shevskaya, V. A. (2008). Russ. Chem. Bull. 57, 815–836.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShmueli, U., Schiltz, M. & Flack, H. D. (2008). Acta Cryst. A64, 476–483.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZakharkin, L. I., Kovredov, A. I. & Ol'shevskaya, V. A. (1981). Russ. J. Gen. Chem. 51, 2422  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1709-o1710
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds