organic compounds
9-Ethynyl-1,2-dimethyl-1,2-dicarba-closo-dodecaborane (1,2-Me2-9-HC≡C-closo-1,2-C2B10H9)
aInstitut für Anorganische Chemie und Strukturchemie II, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-duesseldorf.de
The 6H16B10, contains one molecule that is close to possessing a non-crystallographic plane of mirror symmetry in the Pna21. The orientation of the molecules in the orthorhombic cell shows that the structure can not be described in the Pnma, which has the same systematic absence conditions. The long inner-cluster C—C distance of 1.510 (5) Å is typical for {1,2-Me2-closo-1,2-C2B10} derivatives.
of the title compound, CRelated literature
For a general overview of the functionalization of dicarba-closo-dodecaboranes, see: Bregadze (1992); Kalinin & Ol'shevskaya (2008). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981); Himmelspach & Finze (2010a). For structures of related icosahedral boron cages with alkynyl groups bonded to boron, see: Finze (2008); Himmelspach & Finze (2010b). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND Brandenburg, 2010); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810022440/si2268sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022440/si2268Isup2.hkl
1,2-Me2-9-HC≡C-closo-1,2-C2B10H9 was synthesized according to a published procedure and the spectroscopic data have been reported earlier (Himmelspach & Finze, 2010a). The compound was dissolved in acetonitrile and slow evaporation of the solvent resulted in colorless crystals.
All hydrogen atom positions were obtained from difference fourier maps. The hydrogen atoms of the methyl groups were included in the latest stages of the
with a riding model and for each methyl group a common Uiso value was refined. The hydrogen atoms bonded to the carborane cluster were included in the with a riding model (AFIX 153) and their Uiso values were set to 1.2 of the equivalent isotropic displacement parameter of the corresponding parent atom. The hydrogen atom of the ethynyl group was positioned using a riding model (AFIX 163) and its Uiso was refined freely. In the absence of significant effects, Friedel pairs were averaged, resulting in a low reflection to parameter ratio (Shmueli et al., 2008).The interest in functionalized dicarba-closo-dodecaboranes as building blocks for a broad range of applications is steadily increasing because of their high chemical and thermal stability as well as the diversity of their substitution patterns at the boron cage (Bregadze, 1992; Kalinin & Ol'shevskaya, 2008). The synthesis of {closo-C2B10} clusters with alkynyl groups bonded to boron is achieved by Pd-catalyzed Kumada-type cross-coupling reactions using the iodinated clusters and alkynyl ≡C—H unit, crystallizes in the orthorhombic acentric Pna21 with one complete molecule in the The bond lengths and angles of the {closo-1,2-C2B10} cage of 1,2-Me2-9-HC≡C-closo-1,2- C2B10H9 are similar to those reported for the related bis(trimethylsilylalkynyl) substituted derivative 1,2-Me2 -9,12-(Me3SiC≡C)2-closo-1,2-C2B10H9 (Himmelspach & Finze, 2010a). The B—C and C≡C distances are similar to values reported for the diethynyldicarba-closo-dodecaboranes 9,12-(HC≡C)2-closo-1,2-C2B10H10 and 9,10-(HC≡C)2-closo-1,7-C2B10H10 (Himmelspach & Finze, 2010a) and the related anionic monocarba-closo-dodecaborate anions [12-HC≡ C-closo-1-CB11H11]- and [7,12-(HC≡C)2–closo-1-CB11H10]- (Himmelspach & Finze, 2010b).
as precursors (Zakharkin et al., 1981; Himmelspach & Finze, 2010a). The title compound 1,2-dimethyl-9-ethynyl-1,2-dicarba-closo-dodecaborane, which is the first structurally characterized monoethynyldicarba-closo-dodecaborane with a Bcluster—CFor a general overview of the functionalization of dicarba-closo-dodecaboranes, see: Bregadze (1992); Kalinin & Ol'shevskaya (2008). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981); Himmelspach & Finze (2010a). For structures of related icosahedral boron cages with alkynyl groups bonded to boron, see: Finze (2008); Himmelspach & Finze (2010b). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C6H16B10 | F(000) = 408 |
Mr = 196.29 | Dx = 1.021 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 6575 reflections |
a = 14.5368 (8) Å | θ = 3.2–27.2° |
b = 7.0085 (3) Å | µ = 0.05 mm−1 |
c = 12.5373 (5) Å | T = 290 K |
V = 1277.32 (10) Å3 | Prism, colourless |
Z = 4 | 0.4 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 1049 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.042 |
Graphite monochromator | θmax = 25.0°, θmin = 3.2° |
Detector resolution: 16.2711 pixels mm-1 | h = −17→17 |
ω scans | k = −8→8 |
11327 measured reflections | l = −14→14 |
1181 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.005P)2 + 0.630P] where P = (Fo2 + 2Fc2)/3 |
1181 reflections | (Δ/σ)max = 0.010 |
150 parameters | Δρmax = 0.14 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C6H16B10 | V = 1277.32 (10) Å3 |
Mr = 196.29 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 14.5368 (8) Å | µ = 0.05 mm−1 |
b = 7.0085 (3) Å | T = 290 K |
c = 12.5373 (5) Å | 0.4 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 1049 reflections with I > 2σ(I) |
11327 measured reflections | Rint = 0.042 |
1181 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 1 restraint |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.14 e Å−3 |
1181 reflections | Δρmin = −0.18 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1554 (3) | 1.0151 (6) | 0.6353 (3) | 0.0654 (11) | |
C3 | 0.0608 (3) | 1.0836 (9) | 0.6036 (4) | 0.1134 (19) | |
H3A | 0.0361 | 1.1629 | 0.6592 | 0.175 (15)* | |
H3B | 0.0211 | 0.9757 | 0.5929 | 0.175 (15)* | |
H3C | 0.0649 | 1.1557 | 0.5387 | 0.175 (15)* | |
C2 | 0.1709 (2) | 0.9362 (5) | 0.7606 (3) | 0.0603 (10) | |
C4 | 0.0899 (3) | 0.9387 (7) | 0.8384 (4) | 0.0973 (16) | |
H4A | 0.1076 | 0.8772 | 0.9037 | 0.171 (14)* | |
H4B | 0.0388 | 0.8721 | 0.8074 | 0.171 (14)* | |
H4C | 0.0726 | 1.0683 | 0.8529 | 0.171 (14)* | |
B3 | 0.1682 (3) | 0.7752 (7) | 0.6574 (3) | 0.0651 (12) | |
H3 | 0.1130 | 0.6699 | 0.6457 | 0.078* | |
B4 | 0.2219 (3) | 0.8917 (6) | 0.5497 (3) | 0.0600 (11) | |
H4 | 0.2023 | 0.8613 | 0.4667 | 0.072* | |
B5 | 0.2525 (3) | 1.1224 (7) | 0.5909 (4) | 0.0641 (12) | |
H5 | 0.2533 | 1.2426 | 0.5346 | 0.077* | |
B6 | 0.2166 (3) | 1.1519 (6) | 0.7254 (4) | 0.0655 (12) | |
H6 | 0.1929 | 1.2898 | 0.7573 | 0.079* | |
B7 | 0.2479 (3) | 0.7542 (7) | 0.7621 (4) | 0.0641 (11) | |
H7 | 0.2458 | 0.6335 | 0.8182 | 0.077* | |
B8 | 0.2840 (3) | 0.7257 (6) | 0.6277 (4) | 0.0618 (11) | |
H8 | 0.3061 | 0.5870 | 0.5957 | 0.074* | |
B9 | 0.3368 (3) | 0.9424 (6) | 0.5869 (3) | 0.0569 (10) | |
B10 | 0.3323 (3) | 1.1052 (7) | 0.6967 (4) | 0.0641 (12) | |
H10 | 0.3859 | 1.2134 | 0.7098 | 0.077* | |
B11 | 0.2770 (3) | 0.9867 (7) | 0.8032 (4) | 0.0634 (11) | |
H11 | 0.2940 | 1.0175 | 0.8869 | 0.076* | |
B12 | 0.3516 (3) | 0.8587 (7) | 0.7199 (4) | 0.0654 (12) | |
H12 | 0.4185 | 0.8061 | 0.7485 | 0.078* | |
C5 | 0.4156 (3) | 0.9438 (6) | 0.5044 (4) | 0.0741 (11) | |
C6 | 0.4772 (3) | 0.9437 (7) | 0.4438 (5) | 0.1044 (17) | |
H1 | 0.5260 | 0.9435 | 0.3958 | 0.15 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.061 (2) | 0.078 (3) | 0.058 (2) | 0.009 (2) | −0.0032 (19) | 0.000 (2) |
C3 | 0.082 (3) | 0.156 (5) | 0.102 (4) | 0.045 (3) | −0.009 (3) | 0.001 (4) |
C2 | 0.063 (2) | 0.066 (2) | 0.052 (2) | −0.0107 (18) | 0.0106 (19) | −0.007 (2) |
C4 | 0.090 (3) | 0.120 (4) | 0.082 (3) | −0.026 (3) | 0.033 (3) | −0.013 (3) |
B3 | 0.072 (3) | 0.062 (3) | 0.061 (3) | −0.020 (2) | 0.001 (2) | −0.012 (2) |
B4 | 0.067 (2) | 0.070 (3) | 0.044 (2) | −0.003 (2) | −0.005 (2) | −0.007 (2) |
B5 | 0.086 (3) | 0.056 (2) | 0.051 (2) | 0.002 (2) | 0.005 (2) | 0.004 (2) |
B6 | 0.081 (3) | 0.053 (2) | 0.062 (3) | −0.006 (2) | 0.015 (2) | −0.010 (2) |
B7 | 0.091 (3) | 0.053 (2) | 0.048 (2) | −0.006 (2) | 0.002 (2) | 0.007 (2) |
B8 | 0.082 (3) | 0.047 (2) | 0.057 (2) | 0.005 (2) | 0.005 (2) | −0.001 (2) |
B9 | 0.059 (2) | 0.062 (2) | 0.050 (2) | −0.003 (2) | 0.003 (2) | −0.001 (2) |
B10 | 0.065 (3) | 0.067 (3) | 0.061 (3) | −0.023 (2) | 0.002 (2) | −0.007 (3) |
B11 | 0.075 (3) | 0.070 (3) | 0.045 (2) | −0.014 (2) | −0.002 (2) | −0.006 (2) |
B12 | 0.061 (2) | 0.080 (3) | 0.056 (3) | 0.005 (2) | −0.009 (2) | 0.001 (2) |
C5 | 0.072 (2) | 0.081 (3) | 0.070 (3) | −0.002 (2) | 0.015 (2) | −0.002 (2) |
C6 | 0.094 (3) | 0.119 (4) | 0.101 (3) | −0.004 (3) | 0.042 (3) | −0.003 (3) |
C1—C3 | 1.510 (5) | B5—B9 | 1.759 (6) |
C1—C2 | 1.680 (5) | B5—B10 | 1.766 (6) |
C1—B4 | 1.684 (6) | B5—B6 | 1.778 (6) |
C1—B5 | 1.693 (6) | B5—H5 | 1.1000 |
C1—B3 | 1.714 (6) | B6—B11 | 1.750 (7) |
C1—B6 | 1.728 (6) | B6—B10 | 1.751 (6) |
C3—H3A | 0.9600 | B6—H6 | 1.1000 |
C3—H3B | 0.9600 | B7—B11 | 1.760 (6) |
C3—H3C | 0.9600 | B7—B12 | 1.757 (6) |
C2—C4 | 1.529 (5) | B7—B8 | 1.776 (6) |
C2—B11 | 1.670 (6) | B7—H7 | 1.1000 |
C2—B7 | 1.697 (6) | B8—B9 | 1.777 (6) |
C2—B6 | 1.709 (6) | B8—B12 | 1.781 (6) |
C2—B3 | 1.717 (5) | B8—H8 | 1.1000 |
C4—H4A | 0.9600 | B9—C5 | 1.544 (5) |
C4—H4B | 0.9600 | B9—B12 | 1.780 (6) |
C4—H4C | 0.9600 | B9—B10 | 1.789 (6) |
B3—B7 | 1.758 (6) | B10—B11 | 1.765 (7) |
B3—B8 | 1.758 (6) | B10—B12 | 1.774 (7) |
B3—B4 | 1.760 (6) | B10—H10 | 1.1000 |
B3—H3 | 1.1000 | B11—B12 | 1.752 (6) |
B4—B5 | 1.755 (6) | B11—H11 | 1.1000 |
B4—B8 | 1.767 (6) | B12—H12 | 1.1000 |
B4—B9 | 1.769 (6) | C5—C6 | 1.175 (6) |
B4—H4 | 1.1000 | C6—H1 | 0.9300 |
C3—C1—C2 | 118.2 (3) | C2—B6—H6 | 124.2 |
C3—C1—B4 | 121.2 (4) | C1—B6—H6 | 124.3 |
C2—C1—B4 | 110.5 (3) | B11—B6—H6 | 122.4 |
C3—C1—B5 | 122.1 (4) | B10—B6—H6 | 122.6 |
C2—C1—B5 | 110.0 (3) | B5—B6—H6 | 122.6 |
B4—C1—B5 | 62.6 (2) | C2—B7—B11 | 57.7 (2) |
C3—C1—B3 | 116.9 (4) | C2—B7—B3 | 59.6 (2) |
C2—C1—B3 | 60.8 (2) | B11—B7—B3 | 107.4 (3) |
B4—C1—B3 | 62.4 (3) | C2—B7—B12 | 104.4 (3) |
B5—C1—B3 | 113.5 (3) | B11—B7—B12 | 59.7 (3) |
C3—C1—B6 | 117.7 (4) | B3—B7—B12 | 107.8 (3) |
C2—C1—B6 | 60.2 (2) | C2—B7—B8 | 105.6 (3) |
B4—C1—B6 | 114.0 (3) | B11—B7—B8 | 108.1 (3) |
B5—C1—B6 | 62.6 (3) | B3—B7—B8 | 59.7 (3) |
B3—C1—B6 | 112.5 (3) | B12—B7—B8 | 60.5 (3) |
C1—C3—H3A | 109.5 | C2—B7—H7 | 124.5 |
C1—C3—H3B | 109.5 | B11—B7—H7 | 122.1 |
H3A—C3—H3B | 109.5 | B3—B7—H7 | 121.6 |
C1—C3—H3C | 109.5 | B12—B7—H7 | 122.4 |
H3A—C3—H3C | 109.5 | B8—B7—H7 | 121.9 |
H3B—C3—H3C | 109.5 | B3—B8—B4 | 59.9 (3) |
C4—C2—B11 | 120.3 (3) | B3—B8—B9 | 107.8 (3) |
C4—C2—C1 | 119.3 (3) | B4—B8—B9 | 59.9 (2) |
B11—C2—C1 | 110.7 (3) | B3—B8—B7 | 59.6 (2) |
C4—C2—B7 | 120.6 (4) | B4—B8—B7 | 107.5 (3) |
B11—C2—B7 | 63.0 (2) | B9—B8—B7 | 107.7 (3) |
C1—C2—B7 | 110.3 (3) | B3—B8—B12 | 106.7 (3) |
C4—C2—B6 | 116.9 (3) | B4—B8—B12 | 107.2 (3) |
B11—C2—B6 | 62.4 (3) | B9—B8—B12 | 60.1 (2) |
C1—C2—B6 | 61.3 (2) | B7—B8—B12 | 59.2 (3) |
B7—C2—B6 | 114.3 (3) | B3—B8—H8 | 122.2 |
C4—C2—B3 | 118.0 (3) | B4—B8—H8 | 122.0 |
B11—C2—B3 | 113.7 (3) | B9—B8—H8 | 121.6 |
C1—C2—B3 | 60.6 (2) | B7—B8—H8 | 122.1 |
B7—C2—B3 | 62.0 (2) | B12—B8—H8 | 122.5 |
B6—C2—B3 | 113.3 (3) | C5—B9—B5 | 122.1 (3) |
C2—C4—H4A | 109.5 | C5—B9—B4 | 121.7 (3) |
C2—C4—H4B | 109.5 | B5—B9—B4 | 59.7 (2) |
H4A—C4—H4B | 109.5 | C5—B9—B8 | 121.3 (3) |
C2—C4—H4C | 109.5 | B5—B9—B8 | 107.7 (3) |
H4A—C4—H4C | 109.5 | B4—B9—B8 | 59.8 (3) |
H4B—C4—H4C | 109.5 | C5—B9—B12 | 122.6 (3) |
C1—B3—C2 | 58.6 (2) | B5—B9—B12 | 107.1 (3) |
C1—B3—B7 | 105.9 (3) | B4—B9—B12 | 107.1 (3) |
C2—B3—B7 | 58.4 (2) | B8—B9—B12 | 60.1 (2) |
C1—B3—B8 | 105.3 (3) | C5—B9—B10 | 122.6 (3) |
C2—B3—B8 | 105.5 (3) | B5—B9—B10 | 59.7 (3) |
B7—B3—B8 | 60.7 (3) | B4—B9—B10 | 107.3 (3) |
C1—B3—B4 | 58.0 (2) | B8—B9—B10 | 107.9 (3) |
C2—B3—B4 | 105.2 (3) | B12—B9—B10 | 59.6 (3) |
B7—B3—B4 | 108.6 (3) | B6—B10—B5 | 60.7 (3) |
B8—B3—B4 | 60.3 (2) | B6—B10—B11 | 59.7 (3) |
C1—B3—H3 | 123.9 | B5—B10—B11 | 107.5 (3) |
C2—B3—H3 | 124.0 | B6—B10—B12 | 107.5 (3) |
B7—B3—H3 | 121.6 | B5—B10—B12 | 107.0 (3) |
B8—B3—H3 | 122.5 | B11—B10—B12 | 59.3 (3) |
B4—B3—H3 | 122.2 | B6—B10—B9 | 108.2 (3) |
C1—B4—B5 | 59.0 (2) | B5—B10—B9 | 59.3 (3) |
C1—B4—B3 | 59.6 (3) | B11—B10—B9 | 107.4 (3) |
B5—B4—B3 | 108.3 (3) | B12—B10—B9 | 60.0 (2) |
C1—B4—B8 | 106.2 (3) | B6—B10—H10 | 121.4 |
B5—B4—B8 | 108.3 (3) | B5—B10—H10 | 122.0 |
B3—B4—B8 | 59.8 (3) | B11—B10—H10 | 122.3 |
C1—B4—B9 | 105.7 (3) | B12—B10—H10 | 122.3 |
B5—B4—B9 | 59.9 (3) | B9—B10—H10 | 121.9 |
B3—B4—B9 | 108.1 (3) | C2—B11—B6 | 59.9 (2) |
B8—B4—B9 | 60.3 (2) | C2—B11—B7 | 59.2 (3) |
C1—B4—H4 | 123.6 | B6—B11—B7 | 109.2 (3) |
B5—B4—H4 | 121.5 | C2—B11—B12 | 105.8 (3) |
B3—B4—H4 | 121.4 | B6—B11—B12 | 108.5 (3) |
B8—B4—H4 | 121.9 | B7—B11—B12 | 60.0 (3) |
B9—B4—H4 | 122.2 | C2—B11—B10 | 106.2 (3) |
C1—B5—B4 | 58.4 (2) | B6—B11—B10 | 59.8 (3) |
C1—B5—B9 | 105.8 (3) | B7—B11—B10 | 108.9 (3) |
B4—B5—B9 | 60.5 (2) | B12—B11—B10 | 60.6 (3) |
C1—B5—B10 | 105.7 (3) | C2—B11—H11 | 123.6 |
B4—B5—B10 | 109.0 (3) | B6—B11—H11 | 121.0 |
B9—B5—B10 | 61.0 (3) | B7—B11—H11 | 121.0 |
C1—B5—B6 | 59.7 (3) | B12—B11—H11 | 122.0 |
B4—B5—B6 | 108.2 (3) | B10—B11—H11 | 121.8 |
B9—B5—B6 | 108.4 (3) | B11—B12—B7 | 60.2 (3) |
B10—B5—B6 | 59.2 (3) | B11—B12—B10 | 60.1 (3) |
C1—B5—H5 | 124.1 | B7—B12—B10 | 108.6 (3) |
B4—B5—H5 | 121.3 | B11—B12—B9 | 108.3 (3) |
B9—B5—H5 | 121.6 | B7—B12—B9 | 108.4 (3) |
B10—B5—H5 | 121.9 | B10—B12—B9 | 60.4 (3) |
B6—B5—H5 | 121.5 | B11—B12—B8 | 108.2 (3) |
C2—B6—C1 | 58.5 (2) | B7—B12—B8 | 60.3 (2) |
C2—B6—B11 | 57.7 (2) | B10—B12—B8 | 108.4 (3) |
C1—B6—B11 | 104.8 (3) | B9—B12—B8 | 59.9 (2) |
C2—B6—B10 | 105.1 (3) | B11—B12—H12 | 121.6 |
C1—B6—B10 | 104.8 (3) | B7—B12—H12 | 121.3 |
B11—B6—B10 | 60.5 (3) | B10—B12—H12 | 121.3 |
C2—B6—B5 | 104.8 (3) | B9—B12—H12 | 121.5 |
C1—B6—B5 | 57.7 (3) | B8—B12—H12 | 121.6 |
B11—B6—B5 | 107.7 (3) | C6—C5—B9 | 178.2 (5) |
B10—B6—B5 | 60.0 (3) | C5—C6—H1 | 180.0 |
Experimental details
Crystal data | |
Chemical formula | C6H16B10 |
Mr | 196.29 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 290 |
a, b, c (Å) | 14.5368 (8), 7.0085 (3), 12.5373 (5) |
V (Å3) | 1277.32 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.05 |
Crystal size (mm) | 0.4 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11327, 1181, 1049 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.104, 1.06 |
No. of reflections | 1181 |
No. of parameters | 150 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND Brandenburg, 2010).
C1—C3 | 1.510 (5) | B5—B9 | 1.759 (6) |
C1—C2 | 1.680 (5) | B5—B10 | 1.766 (6) |
C1—B4 | 1.684 (6) | B5—B6 | 1.778 (6) |
C1—B5 | 1.693 (6) | B6—B11 | 1.750 (7) |
C1—B3 | 1.714 (6) | B6—B10 | 1.751 (6) |
C1—B6 | 1.728 (6) | B7—B11 | 1.760 (6) |
C2—C4 | 1.529 (5) | B7—B12 | 1.757 (6) |
C2—B11 | 1.670 (6) | B7—B8 | 1.776 (6) |
C2—B7 | 1.697 (6) | B8—B9 | 1.777 (6) |
C2—B6 | 1.709 (6) | B8—B12 | 1.781 (6) |
C2—B3 | 1.717 (5) | B9—C5 | 1.544 (5) |
B3—B7 | 1.758 (6) | B9—B12 | 1.780 (6) |
B3—B8 | 1.758 (6) | B9—B10 | 1.789 (6) |
B3—B4 | 1.760 (6) | B10—B11 | 1.765 (7) |
B4—B5 | 1.755 (6) | B10—B12 | 1.774 (7) |
B4—B8 | 1.767 (6) | B11—B12 | 1.752 (6) |
B4—B9 | 1.769 (6) | C5—C6 | 1.175 (6) |
C6—C5—B9 | 178.2 (5) |
Acknowledgements
Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bregadze, V. I. (1992). Chem. Rev. 92, 209–223. CrossRef CAS Web of Science Google Scholar
Finze, M. (2008). Inorg. Chem. 47, 11857–11867. Web of Science CSD CrossRef PubMed CAS Google Scholar
Himmelspach, A. & Finze, M. (2010a). Eur. J. Inorg. Chem. pp. 2012–2024. CrossRef Google Scholar
Himmelspach, A. & Finze, M. (2010b). J. Organomet. Chem. 695, 1337–1345. Web of Science CSD CrossRef CAS Google Scholar
Kalinin, V. N. & Ol'shevskaya, V. A. (2008). Russ. Chem. Bull. 57, 815–836. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shmueli, U., Schiltz, M. & Flack, H. D. (2008). Acta Cryst. A64, 476–483. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zakharkin, L. I., Kovredov, A. I. & Ol'shevskaya, V. A. (1981). Russ. J. Gen. Chem. 51, 2422 Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interest in functionalized dicarba-closo-dodecaboranes as building blocks for a broad range of applications is steadily increasing because of their high chemical and thermal stability as well as the diversity of their substitution patterns at the boron cage (Bregadze, 1992; Kalinin & Ol'shevskaya, 2008). The synthesis of {closo-C2B10} clusters with alkynyl groups bonded to boron is achieved by Pd-catalyzed Kumada-type cross-coupling reactions using the iodinated clusters and alkynyl Grignard reagents as precursors (Zakharkin et al., 1981; Himmelspach & Finze, 2010a). The title compound 1,2-dimethyl-9-ethynyl-1,2-dicarba-closo-dodecaborane, which is the first structurally characterized monoethynyldicarba-closo-dodecaborane with a Bcluster—C≡C—H unit, crystallizes in the orthorhombic acentric space group Pna21 with one complete molecule in the asymmetric unit. The bond lengths and angles of the {closo-1,2-C2B10} cage of 1,2-Me2-9-HC≡C-closo-1,2- C2B10H9 are similar to those reported for the related bis(trimethylsilylalkynyl) substituted derivative 1,2-Me2 -9,12-(Me3SiC≡C)2-closo-1,2-C2B10H9 (Himmelspach & Finze, 2010a). The B—C and C≡C distances are similar to values reported for the diethynyldicarba-closo-dodecaboranes 9,12-(HC≡C)2-closo-1,2-C2B10H10 and 9,10-(HC≡C)2-closo-1,7-C2B10H10 (Himmelspach & Finze, 2010a) and the related anionic monocarba-closo-dodecaborate anions [12-HC≡ C-closo-1-CB11H11]- and [7,12-(HC≡C)2–closo-1-CB11H10]- (Himmelspach & Finze, 2010b).