organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-Oxo-5-(tri­fluoro­meth­­oxy)indolin-3-yl­­idene]-4-[4-(tri­fluoro­methyl)­phen­yl]thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 June 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, C17H10F6N4O2S, an intra­molecular N—H⋯N hydrogen bonds forms an S(5) ring whereas N—H⋯O and C—H⋯S inter­actions complete S(6) ring motifs. The dihedral angle between the fused ring system and the phenyl ring is 6.68 (8)°. In the crystal, the mol­ecules are dimerized due to N—H⋯O inter­actions. ππ inter­actions are present between the benzene rings [centroid–centroid distance = 3.6913 (15) Å] and between the five membered ring and the trifluoro­meth­yl)phenyl ring [centroids–centroid distance = 3.7827 (16) Å]. One of the trifluoro­meth­oxy F atoms is disordered over two sites with occupancy ratio of 0.76 (3):0.24 (3). The F atoms of the p-trifluoro­methyl substituent are disordered over three sets of sites with an occupancy ratio of 0.70 (2):0.152 (11):0.147 (13).

Related literature

For background to the synthesis, see: Pervez et al. (2009[Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.], 2010b[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010b). Lett. Drug Des. Discov. 7, 102-108.],c[Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010c). Acta Cryst. E66, o1609.]). For a related structure, see: Pervez et al. (2010a[Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1169-o1170.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10F6N4O2S

  • Mr = 448.35

  • Triclinic, [P \overline 1]

  • a = 7.5452 (11) Å

  • b = 8.3177 (13) Å

  • c = 16.048 (2) Å

  • α = 104.452 (6)°

  • β = 94.752 (7)°

  • γ = 103.606 (7)°

  • V = 937.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.952

  • 13964 measured reflections

  • 3351 independent reflections

  • 2191 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.02

  • 3351 reflections

  • 302 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.829 (3) 168
N3—H3A⋯O1 0.86 2.01 2.716 (3) 138
N4—H4A⋯N2 0.86 2.19 2.627 (3) 111
C12—H12⋯S1 0.93 2.56 3.210 (3) 128
Symmetry code: (i) -x+2, -y+3, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our earlier studies on the synthesis of biologically important N4-arylsubstituted isatins-3-thiosemicarbazones (Pervez et al., 2009, 2010b, 2010c), here we report the synthesis and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(5-chloro-2-methylphenyl)-1-(2-oxo-5-(trifluoromethoxy) indolin-3-ylidene) thiosemicarbazide has been published (Pervez et al., 2010a). The title compound (I) differs from (II) due to the presence of trifluoromethyl group at position-4 instead of methyl and chloro functions at position-2 and -5, respectively, of the phenyl ring substituted at N4- of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazone moiety B (N2/N3/C10/S1/N4) and the phenyl ring C (C11—C16) having p-trifluoromethyl function are planar with r. m. s. deviations of 0.0402, 0.0184 and 0.0119 Å, respectively. The dihedral angle between A/B, A/C and B/C is 6.78 (9), 6.68 (8) and 13.42 (10)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerized (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. The dimers are interlinked through C—H···F type of H-bonding. There exist π···π interaction at a distance of 3.6913 (15) Å between the centroids of phenyl rings (C2—C7) and (C11—C16). Similarly, π···π interaction between the centroids of the heterocyclic ring (N1/C1/C8/C7/C2) and the phenyl ring (C11—C16) is 3.7827 (16) Å.

One of the F-atom of trifluoromethoxy group is disordered over two set of sites with occupancy ratio of 0.76 (3):0.24 (3). The F-atoms of p-trifluoromethyl function are disordered over three groups with occupancy ratio of 0.70 (2):0.152 (11):0.147 (13).

Related literature top

For background to the synthesis, see: Pervez et al. (2009, 2010b,c). For a related structure, see: Pervez et al. (2010a). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

4-(4-Trifluoromethylphenyl)thiosemicarbazide (0.94 g, 4.0 mmol) dissolved in ethanol (10 ml) was added to a hot solution of 5-(trifluoromethoxy)indolin-2,3-dione (0.92 g, 4.0 mmol) in 50% aqueous ethanol (20 ml) containing a catalytic quantity of glacial acetic acid. The reaction mixture was then refluxed for 2 h. The yellow powder formed during refluxing was collected by suction filtration. Thorough washing with hot aqueous ethanol afforded the title compound (I) in pure form (1.34 g, 75%), m.p. 513 K. The yellow crystals of the title compound for x-ray analysis were obtained from the solution of ethyl acetate-petroleum ether (2:5) at room temperature by diffusion method.

Refinement top

The refinement dictated that only one F-atom of trifluoromethoxy group and all F-atoms of p-trifluoromethyl function are disordered. The best result is obtained if F-atom of trifluoromethoxy group is refined over two set of sites with occupancy ratio of 0.76 (3):0.24 (3) with equal anisotropic thermal parameters. Similarly to get the best result F-atoms of p-trifluoromethyl function are treated disordered over three set of sites with occupancy ratio of 0.70 (2):0.152 (11):0.147 (13). In these sets, the minor groups are treated anisotropically with equal thermal parameters and the major group as anisotropic having different thermal parameters.

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intra-molecular H-bondings. Only the majority group of F-atoms are shown for clarity.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized and interlinked.
1-[2-Oxo-5-(trifluoromethoxy)indolin-3-ylidene]-4-[4- (trifluoromethyl)phenyl]thiosemicarbazide top
Crystal data top
C17H10F6N4O2SZ = 2
Mr = 448.35F(000) = 452
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5452 (11) ÅCell parameters from 2191 reflections
b = 8.3177 (13) Åθ = 2.6–25.3°
c = 16.048 (2) ŵ = 0.25 mm1
α = 104.452 (6)°T = 296 K
β = 94.752 (7)°Prism, yellow
γ = 103.606 (7)°0.32 × 0.24 × 0.22 mm
V = 937.1 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3351 independent reflections
Radiation source: fine-focus sealed tube2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.2 pixels mm-1θmax = 25.3°, θmin = 2.6°
ω scansh = 96
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.942, Tmax = 0.952l = 1919
13964 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.24 e Å3
11 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H10F6N4O2Sγ = 103.606 (7)°
Mr = 448.35V = 937.1 (2) Å3
Triclinic, P1Z = 2
a = 7.5452 (11) ÅMo Kα radiation
b = 8.3177 (13) ŵ = 0.25 mm1
c = 16.048 (2) ÅT = 296 K
α = 104.452 (6)°0.32 × 0.24 × 0.22 mm
β = 94.752 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3351 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2191 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.952Rint = 0.045
13964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04311 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
3351 reflectionsΔρmin = 0.24 e Å3
302 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.59532 (11)0.73584 (9)0.47879 (5)0.0642 (3)
F1A0.786 (2)1.3866 (16)0.0060 (4)0.113 (2)0.76 (3)
F20.5218 (3)1.2388 (3)0.08045 (11)0.1050 (9)
F30.6805 (3)1.1403 (3)0.00024 (13)0.1212 (11)
F4A0.1431 (7)0.0888 (4)0.1803 (6)0.091 (2)0.70 (2)
F5A0.0432 (14)0.0301 (5)0.0936 (4)0.110 (3)0.70 (2)
F6A0.1071 (10)0.0475 (4)0.2190 (6)0.107 (2)0.70 (2)
O10.8661 (2)1.2725 (2)0.48040 (11)0.0593 (7)
O20.5300 (3)1.3270 (2)0.05819 (12)0.0636 (7)
N10.8671 (3)1.4593 (3)0.39550 (13)0.0496 (7)
N20.5938 (3)1.0294 (2)0.32681 (12)0.0455 (7)
N30.6239 (3)0.9659 (3)0.39467 (13)0.0512 (7)
N40.4128 (3)0.7152 (2)0.32184 (13)0.0496 (7)
C10.8144 (3)1.3071 (3)0.41361 (16)0.0466 (9)
C20.7898 (3)1.4494 (3)0.31108 (16)0.0446 (8)
C30.8150 (3)1.5752 (3)0.26892 (17)0.0536 (9)
C40.7282 (3)1.5321 (3)0.18411 (18)0.0565 (10)
C50.6218 (3)1.3664 (3)0.14478 (16)0.0502 (9)
C60.5918 (3)1.2393 (3)0.18672 (15)0.0469 (8)
C70.6774 (3)1.2829 (3)0.27192 (15)0.0414 (8)
C80.6832 (3)1.1869 (3)0.33561 (15)0.0423 (8)
C90.6260 (5)1.2776 (5)0.0049 (2)0.0792 (14)
C100.5363 (3)0.8008 (3)0.39415 (15)0.0454 (8)
C110.3131 (3)0.5405 (3)0.29085 (16)0.0446 (8)
C120.2921 (4)0.4258 (3)0.34125 (17)0.0564 (9)
C130.1977 (4)0.2559 (3)0.30334 (18)0.0588 (10)
C140.1225 (3)0.1981 (3)0.21696 (18)0.0523 (9)
C150.1373 (3)0.3133 (3)0.16787 (18)0.0579 (9)
C160.2315 (3)0.4828 (3)0.20459 (17)0.0543 (9)
C170.0301 (5)0.0118 (4)0.1773 (2)0.0696 (13)
F6B0.128 (2)0.001 (2)0.1300 (17)0.084 (4)0.152 (11)
F6C0.055 (4)0.041 (2)0.0970 (13)0.084 (4)0.147 (13)
F4C0.1510 (19)0.023 (3)0.1788 (19)0.084 (4)0.147 (13)
F1B0.727 (4)1.432 (4)0.0021 (14)0.113 (2)0.24 (3)
F4B0.023 (4)0.061 (2)0.2404 (11)0.084 (4)0.152 (11)
F5B0.143 (3)0.071 (2)0.138 (2)0.084 (4)0.152 (11)
F5C0.096 (3)0.087 (2)0.2206 (18)0.084 (4)0.147 (13)
H3A0.700521.030890.439800.0615*
H150.083400.276340.109760.0695*
H160.240600.559880.171000.0652*
H40.741551.614600.153570.0679*
H4A0.391150.777940.289000.0595*
H60.517451.129140.159110.0563*
H120.341200.463230.400010.0676*
H130.184650.178790.337020.0704*
H10.939111.550960.431120.0594*
H30.888051.685940.296400.0643*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0831 (5)0.0563 (5)0.0494 (4)0.0101 (4)0.0045 (4)0.0202 (3)
F1A0.091 (5)0.147 (5)0.0733 (15)0.016 (4)0.027 (2)0.021 (2)
F20.1342 (17)0.1161 (16)0.0486 (11)0.0132 (13)0.0175 (11)0.0230 (11)
F30.178 (2)0.136 (2)0.0743 (14)0.0873 (18)0.0274 (13)0.0277 (13)
F4A0.105 (3)0.0511 (18)0.113 (5)0.0310 (18)0.026 (3)0.004 (2)
F5A0.134 (8)0.064 (2)0.089 (3)0.012 (3)0.033 (4)0.002 (2)
F6A0.086 (4)0.0480 (19)0.175 (6)0.009 (2)0.059 (4)0.023 (3)
O10.0684 (12)0.0488 (11)0.0473 (11)0.0009 (9)0.0120 (9)0.0116 (9)
O20.0700 (12)0.0651 (13)0.0498 (12)0.0093 (10)0.0072 (10)0.0186 (10)
N10.0535 (12)0.0370 (12)0.0440 (13)0.0028 (10)0.0063 (10)0.0041 (10)
N20.0528 (12)0.0378 (12)0.0411 (12)0.0051 (10)0.0037 (9)0.0097 (10)
N30.0637 (13)0.0373 (12)0.0429 (12)0.0005 (10)0.0051 (10)0.0099 (10)
N40.0601 (13)0.0369 (12)0.0454 (13)0.0016 (10)0.0052 (10)0.0149 (10)
C10.0455 (14)0.0414 (15)0.0454 (16)0.0046 (12)0.0004 (12)0.0074 (12)
C20.0440 (13)0.0374 (14)0.0451 (15)0.0033 (11)0.0033 (11)0.0063 (12)
C30.0578 (16)0.0373 (14)0.0562 (18)0.0004 (12)0.0018 (13)0.0098 (13)
C40.0645 (17)0.0438 (16)0.0597 (18)0.0063 (13)0.0051 (14)0.0204 (14)
C50.0522 (15)0.0489 (16)0.0448 (16)0.0082 (13)0.0023 (12)0.0125 (13)
C60.0493 (14)0.0387 (14)0.0456 (15)0.0047 (11)0.0006 (12)0.0077 (12)
C70.0415 (13)0.0363 (13)0.0399 (14)0.0037 (11)0.0015 (10)0.0067 (11)
C80.0432 (13)0.0363 (14)0.0402 (14)0.0036 (11)0.0006 (10)0.0061 (11)
C90.102 (3)0.077 (2)0.051 (2)0.007 (2)0.0007 (19)0.0236 (18)
C100.0521 (14)0.0402 (14)0.0410 (15)0.0097 (12)0.0049 (12)0.0092 (12)
C110.0472 (14)0.0373 (14)0.0460 (15)0.0052 (11)0.0046 (11)0.0120 (12)
C120.0705 (17)0.0460 (16)0.0491 (16)0.0049 (14)0.0042 (13)0.0185 (13)
C130.0663 (17)0.0435 (16)0.066 (2)0.0047 (14)0.0098 (15)0.0235 (14)
C140.0462 (14)0.0398 (15)0.0637 (18)0.0012 (12)0.0083 (13)0.0111 (14)
C150.0589 (16)0.0521 (17)0.0497 (16)0.0004 (13)0.0030 (13)0.0086 (14)
C160.0620 (16)0.0464 (16)0.0490 (16)0.0010 (13)0.0004 (13)0.0186 (13)
C170.069 (2)0.0494 (18)0.081 (3)0.0013 (17)0.0123 (19)0.0147 (17)
F6B0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
F6C0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
F4C0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
F1B0.091 (5)0.147 (5)0.0733 (15)0.016 (4)0.027 (2)0.021 (2)
F4B0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
F5B0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
F5C0.080 (6)0.053 (4)0.097 (8)0.003 (3)0.026 (5)0.007 (4)
Geometric parameters (Å, º) top
S1—C101.648 (3)N3—H3A0.8600
F1A—C91.333 (15)N4—H4A0.8600
F1B—C91.32 (3)C1—C81.500 (3)
F2—C91.311 (4)C2—C71.399 (4)
F3—C91.318 (5)C2—C31.367 (4)
F4A—C171.334 (6)C3—C41.381 (4)
F4B—C171.346 (18)C4—C51.380 (4)
F4C—C171.332 (17)C5—C61.375 (4)
F5A—C171.336 (7)C6—C71.384 (3)
F5B—C171.32 (2)C7—C81.449 (3)
F5C—C171.35 (2)C11—C161.383 (4)
F6A—C171.342 (8)C11—C121.387 (4)
F6B—C171.33 (2)C12—C131.378 (4)
F6C—C171.30 (2)C13—C141.372 (4)
O1—C11.233 (3)C14—C151.376 (4)
O2—C91.331 (4)C14—C171.489 (4)
O2—C51.423 (3)C15—C161.373 (4)
N1—C11.346 (4)C3—H30.9300
N1—C21.405 (3)C4—H40.9300
N2—N31.349 (3)C6—H60.9300
N2—C81.291 (3)C12—H120.9300
N3—C101.374 (4)C13—H130.9300
N4—C101.348 (3)C15—H150.9300
N4—C111.410 (3)C16—H160.9300
N1—H10.8600
S1···N1i3.524 (3)N3···O12.716 (3)
S1···C123.210 (3)N4···N22.627 (3)
S1···C13ii3.687 (3)N2···H4A2.1900
S1···C1iii3.652 (3)C1···C13vi3.568 (4)
S1···C12ii3.597 (3)C1···S1iii3.652 (3)
S1···H122.5600C3···F6Axii3.362 (5)
S1···H12ii2.9300C3···F4Bxii3.147 (18)
S1···H13ii3.1000C3···C16vi3.579 (3)
F1A···C43.097 (8)C3···C10xi3.558 (3)
F1A···F5Biv3.12 (3)C4···F6Axii3.309 (5)
F1B···C42.89 (2)C4···F4Bxii3.316 (19)
F2···F4Cv3.01 (2)C4···F1A3.097 (8)
F2···F6Bv3.071 (17)C4···F1B2.89 (2)
F3···C63.080 (3)C5···C16xi3.446 (3)
F3···F6Bvi3.06 (2)C6···F6Bvi3.270 (17)
F3···F5Biv2.68 (3)C6···C14xi3.562 (3)
F3···F6Civ2.78 (3)C6···F4Cvi3.23 (2)
F4B···C3vii3.147 (18)C6···F33.080 (3)
F4B···C4vii3.316 (19)C7···F4Cvi3.22 (2)
F4C···C8viii3.21 (3)C7···C12xi3.550 (4)
F4C···C6viii3.23 (2)C8···F6Avi3.151 (8)
F4C···C7viii3.22 (2)C8···F4Cvi3.21 (3)
F4C···N2viii3.19 (2)C9···F5Biv3.28 (3)
F4C···F2v3.01 (2)C10···C3i3.558 (3)
F5B···F1Aiv3.12 (3)C12···C7i3.550 (4)
F5B···F3iv2.68 (3)C12···S13.210 (3)
F5B···C9iv3.28 (3)C12···S1ii3.597 (3)
F6A···C3vii3.362 (5)C12···N1viii3.447 (4)
F6A···C8viii3.151 (8)C13···S1ii3.687 (3)
F6A···N2viii3.045 (8)C13···C1viii3.568 (4)
F6A···C4vii3.309 (5)C14···C6i3.562 (3)
F6B···F2v3.071 (17)C16···C5i3.446 (3)
F6B···C6viii3.270 (17)C16···C3viii3.579 (3)
F6B···F3viii3.06 (2)C1···H1x2.7900
F6C···F3iv2.78 (3)C1···H3A2.4100
F1A···H16ix2.7900C10···H122.8800
F1B···H42.5600H1···O1x1.9800
F1B···H16ix2.7600H1···C1x2.7900
F4A···H132.8500H3···F4Bxii2.4600
F4B···H3vii2.4600H3···F6Axii2.7900
F4B···H4vii2.8000H3···F5Cxii2.7500
F4B···H132.3300H3A···C12.4100
F4C···H4vii2.8500H3A···O12.0100
F5A···H152.4400H4···F1B2.5600
F5B···H6i2.8700H4···F6Axii2.6700
F5C···H132.4200H4···F4Bxii2.8000
F5C···H3vii2.7500H4···F4Cxii2.8500
F6A···H3vii2.7900H4A···N22.1900
F6A···H132.7500H4A···H162.2600
F6A···H4vii2.6700H6···F5Bxi2.8700
F6B···H152.5900H12···C102.8800
F6C···H152.5500H12···S12.5600
O1···N23.017 (3)H12···S1ii2.9300
O1···N1x2.829 (3)H13···F6A2.7500
O1···N32.716 (3)H13···F4A2.8500
O1···H3A2.0100H13···S1ii3.1000
O1···H1x1.9800H13···F4B2.3300
N1···O1x2.829 (3)H13···F5C2.4200
N1···C12vi3.447 (4)H15···F6C2.5500
N1···S1xi3.524 (3)H15···F6B2.5900
N2···O13.017 (3)H15···F5A2.4400
N2···N42.627 (3)H16···F1Aix2.7900
N2···F4Cvi3.19 (2)H16···F1Bix2.7600
N2···F6Avi3.045 (8)H16···H4A2.2600
C5—O2—C9115.9 (2)N4—C11—C16116.8 (2)
C1—N1—C2111.5 (2)N4—C11—C12124.2 (2)
N3—N2—C8116.3 (2)C11—C12—C13119.3 (2)
N2—N3—C10122.3 (2)C12—C13—C14121.4 (2)
C10—N4—C11131.0 (2)C13—C14—C15119.2 (2)
C2—N1—H1124.00C13—C14—C17119.8 (2)
C1—N1—H1124.00C15—C14—C17121.0 (3)
N2—N3—H3A119.00C14—C15—C16120.1 (3)
C10—N3—H3A119.00C11—C16—C15120.9 (2)
C10—N4—H4A114.00F4A—C17—C14113.1 (4)
C11—N4—H4A114.00F4A—C17—F5A105.1 (6)
O1—C1—N1126.9 (2)F4A—C17—F6A104.2 (4)
N1—C1—C8106.3 (2)F5C—C17—C14111.4 (10)
O1—C1—C8126.8 (2)F6B—C17—C14108.0 (8)
N1—C2—C7109.2 (2)F6C—C17—C14112.3 (9)
N1—C2—C3128.5 (2)F4B—C17—F5B107.0 (15)
C3—C2—C7122.3 (2)F4B—C17—F6B103.6 (16)
C2—C3—C4117.7 (2)F4C—C17—F5C106.9 (15)
C3—C4—C5119.9 (2)F4C—C17—F6C107.7 (18)
C4—C5—C6123.2 (2)F5B—C17—F6B116.9 (16)
O2—C5—C4118.6 (2)F5C—C17—F6C106.5 (15)
O2—C5—C6118.1 (2)F5A—C17—F6A106.0 (6)
C5—C6—C7116.9 (2)F5A—C17—C14115.0 (3)
C2—C7—C8106.7 (2)F6A—C17—C14112.5 (4)
C6—C7—C8133.3 (2)F4B—C17—C14109.2 (8)
C2—C7—C6120.0 (2)F4C—C17—C14111.7 (12)
C1—C8—C7106.2 (2)F5B—C17—C14111.7 (9)
N2—C8—C1127.0 (2)C2—C3—H3121.00
N2—C8—C7126.9 (2)C4—C3—H3121.00
F1A—C9—F3100.9 (7)C3—C4—H4120.00
F1A—C9—F2109.0 (4)C5—C4—H4120.00
F1B—C9—O297.3 (12)C5—C6—H6122.00
F1A—C9—O2117.2 (5)C7—C6—H6122.00
F2—C9—F3107.5 (3)C11—C12—H12120.00
F2—C9—O2109.1 (3)C13—C12—H12120.00
F1B—C9—F2100.0 (11)C12—C13—H13119.00
F3—C9—O2112.6 (3)C14—C13—H13119.00
F1B—C9—F3128.7 (14)C14—C15—H15120.00
S1—C10—N3117.20 (18)C16—C15—H15120.00
S1—C10—N4129.66 (19)C11—C16—H16120.00
N3—C10—N4113.1 (2)C15—C16—H16120.00
C12—C11—C16119.0 (2)
C9—O2—C5—C488.2 (3)C2—C3—C4—C50.5 (4)
C9—O2—C5—C695.3 (3)C3—C4—C5—O2178.3 (2)
C5—O2—C9—F1A58.3 (7)C3—C4—C5—C61.9 (4)
C5—O2—C9—F2177.3 (2)O2—C5—C6—C7177.7 (2)
C5—O2—C9—F358.1 (4)C4—C5—C6—C71.3 (4)
C2—N1—C1—O1176.1 (2)C5—C6—C7—C20.6 (3)
C2—N1—C1—C82.7 (3)C5—C6—C7—C8178.4 (2)
C1—N1—C2—C3178.1 (2)C2—C7—C8—N2177.6 (2)
C1—N1—C2—C71.2 (3)C2—C7—C8—C12.6 (3)
C8—N2—N3—C10179.4 (2)C6—C7—C8—N24.4 (4)
N3—N2—C8—C11.0 (4)C6—C7—C8—C1175.4 (3)
N3—N2—C8—C7178.8 (2)N4—C11—C12—C13177.5 (3)
N2—N3—C10—S1176.33 (19)C16—C11—C12—C132.9 (4)
N2—N3—C10—N43.3 (3)N4—C11—C16—C15177.6 (2)
C11—N4—C10—S18.8 (4)C12—C11—C16—C152.7 (4)
C11—N4—C10—N3170.8 (2)C11—C12—C13—C140.6 (4)
C10—N4—C11—C1215.8 (4)C12—C13—C14—C151.9 (4)
C10—N4—C11—C16164.5 (2)C12—C13—C14—C17176.8 (3)
O1—C1—C8—N24.2 (4)C13—C14—C15—C162.1 (4)
O1—C1—C8—C7175.6 (2)C17—C14—C15—C16176.6 (3)
N1—C1—C8—N2176.9 (2)C13—C14—C17—F4A61.2 (5)
N1—C1—C8—C73.3 (3)C13—C14—C17—F5A178.1 (6)
N1—C2—C3—C4177.7 (2)C13—C14—C17—F6A56.5 (5)
C7—C2—C3—C41.5 (4)C15—C14—C17—F4A117.4 (5)
N1—C2—C7—C6177.3 (2)C15—C14—C17—F5A3.3 (6)
N1—C2—C7—C81.0 (3)C15—C14—C17—F6A124.9 (4)
C3—C2—C7—C62.1 (4)C14—C15—C16—C110.2 (4)
C3—C2—C7—C8179.7 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x1, y2, z; (viii) x1, y1, z; (ix) x+1, y+2, z; (x) x+2, y+3, z+1; (xi) x, y+1, z; (xii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1x0.86001.98002.829 (3)168.00
N3—H3A···O10.86002.01002.716 (3)138.00
N4—H4A···N20.86002.19002.627 (3)111.00
C12—H12···S10.93002.56003.210 (3)128.00
C15—H15···F5A0.93002.44002.763 (6)100.00
Symmetry code: (x) x+2, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC17H10F6N4O2S
Mr448.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5452 (11), 8.3177 (13), 16.048 (2)
α, β, γ (°)104.452 (6), 94.752 (7), 103.606 (7)
V3)937.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
13964, 3351, 2191
Rint0.045
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.02
No. of reflections3351
No. of parameters302
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86001.98002.829 (3)168.00
N3—H3A···O10.86002.01002.716 (3)138.00
N4—H4A···N20.86002.19002.627 (3)111.00
C12—H12···S10.93002.56003.210 (3)128.00
C15—H15···F5A0.93002.44002.763 (6)100.00
Symmetry code: (i) x+2, y+3, z+1.
 

Acknowledgements

This work was supported by the Higher Education Commission (HEC), Pakistan (project No. 20–873/R&D/07/452).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1169–o1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010b). Lett. Drug Des. Discov. 7, 102–108.  CrossRef CAS Google Scholar
First citationPervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010c). Acta Cryst. E66, o1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds