organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitroaniline–2,4,6-tri­methoxybenz­aldehyde (1/1)

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2010; accepted 18 June 2010; online 23 June 2010)

In the title co-crystal, C6H6N2O2.C10H12O4, the two components are held together by an N—H⋯Oaldehyde hydrogen bond. Adjacent co-crystals are linked by weaker N—H⋯Onitro hydrogen bonds, forming a linear chain. The two aromatic rings of the components are aligned at 75.2 (1)°. The crystal studied was a non-merohedral twin with a 24% minor component.

Related literature

For some examples of co-crystals of 4-nitro­aniline, see: Bertolasi et al. (2001[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). New J. Chem. 25, 408-415]); Dederer & Gieren (1979[Dederer, B. & Gieren, A. (1979). Naturwissenschaften, 66, 470-471.]); Huang et al. (1996[Huang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868-2871.]); Koshima et al. (1996[Koshima, H., Wang, Y., Matsuura, T., Mizutani, H., Isako, H., Miyahara, I. & Hirostu, K. (1996). Mol. Cryst. Liq. Cryst. 279, 265-274.]); Rashid & Deschamps (2006[Rashid, A. N. & Deschamps, J. R. (2006). J. Mol. Struct. 787, 216-219.]); Singh et al. (2003[Singh, N. B., Pathak, A. & Frohlich, R. (2003). Aust. J. Chem. 56, 329-333.]); Smith et al. (1997[Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 307-317.]); Weber (1981[Weber, G. (1981). Z. Naturforsch. B36, 896-897.]); Zaitu et al. (1995[Zaitu, S., Miwa, Y. & Taga, T. (1995). Acta Cryst. C51, 2390-2392.]). For the treatment of non-merohedral twins, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O2·C10H12O4

  • Mr = 334.32

  • Monoclinic, P 21 /c

  • a = 7.4409 (11) Å

  • b = 30.022 (5) Å

  • c = 6.9400 (11) Å

  • β = 93.237 (3)°

  • V = 1547.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 8127 measured reflections

  • 2722 independent reflections

  • 1834 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 1.01

  • 2722 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O1 0.86 2.16 3.016 (3) 172
N1—H11⋯O5i 0.86 2.50 3.288 (3) 152
N1—H11⋯O6i 0.86 2.50 3.293 (3) 154
Symmetry code: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. Submitted.]).

Supporting information


Comment top

Aromatic aldehydes readily condense with aromatic amines to yield Schiff bases. However, 2,4,6-trimethoxylbenzaldehyde and 4-nitroaniline reactants did not condense but instead co-crystallized in the attempted synthesis. The condensation probably did not proceed owing to the decreased basicity of the amino group, which is situated opposite the electron-withdrawing nitro group in the aromatic ring. The co-crystal (Scheme I, Fig. 1) has the components linked by an H–N···O hydrogen bond; the two aromatic rings aligned at 75.2 (1) °. Adjacent co-crystals are linked by weaker NH···Onitro hydrogen bonds to form a linear chain.

4-Nitroaniline forms a number of co-crystals with other neutral compounds; for their description, see: Bertolasi et al. (2001); Dederer & Gieren (1979); Huang et al. (1996); Koshima et al. (1996); Rashid & Deschamps (2006); Singh et al. (2003); Smith et al. (1997); Weber (1981); Zaitu et al. (1995).

Related literature top

For some examples of co-crystals of 4-nitroaniline, see: Bertolasi et al. (2001); Dederer & Gieren (1979); Huang et al. (1996); Koshima et al. (1996); Rashid & Deschamps (2006); Singh et al. (2003); Smith et al. (1997); Weber (1981); Zaitu et al. (1995). For the treatment of non-merohedral twins, see: Spek (2009).

Experimental top

2,4, 6-Trimethoxybenzaldehyde (0.50 g, 3.3 mmol) and 4-nitroaniline (0.57 g, 3.3 mmol) were heated in methanol (15 ml) for 5 h. Yellow crystals separated from the cool solution after a day.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, N–H 0.86 Å; U(H) 1.2 to 1.5Ueq(C,N)] and were included in the refinement in the riding model approximation.

The crystal studied is a non-merohedral twin; the twin law (1 0 0.121, 0 - 1 0, 0 0 - 1) as given by PLATON (Spek, 2009) was used to de-twin the diffraction data.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the C6H6N2O2–C10H12O4 co-crystal at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Nitroaniline–2,4,6-trimethoxybenzaldehyde (1/1) top
Crystal data top
C6H6N2O2·C10H12O4F(000) = 704
Mr = 334.32Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1019 reflections
a = 7.4409 (11) Åθ = 2.7–24.4°
b = 30.022 (5) ŵ = 0.11 mm1
c = 6.9400 (11) ÅT = 100 K
β = 93.237 (3)°Prism, yellow
V = 1547.9 (4) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
ω scansh = 88
8127 measured reflectionsk = 3235
2722 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.141P]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C6H6N2O2·C10H12O4V = 1547.9 (4) Å3
Mr = 334.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4409 (11) ŵ = 0.11 mm1
b = 30.022 (5) ÅT = 100 K
c = 6.9400 (11) Å0.15 × 0.10 × 0.05 mm
β = 93.237 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1834 reflections with I > 2σ(I)
8127 measured reflectionsRint = 0.059
2722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2722 reflectionsΔρmin = 0.41 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7019 (2)0.57392 (6)0.7861 (3)0.0238 (5)
O20.7670 (2)0.61120 (6)0.4418 (2)0.0182 (4)
O31.3371 (2)0.57367 (6)0.1850 (2)0.0203 (4)
O41.1646 (2)0.51253 (6)0.7725 (2)0.0176 (4)
O50.0363 (2)0.80574 (6)0.5273 (3)0.0266 (5)
O60.0908 (2)0.74324 (7)0.4450 (3)0.0291 (5)
N10.6593 (3)0.67379 (7)0.7727 (3)0.0233 (5)
H110.75050.68840.82090.028*
H120.66310.64520.76700.028*
N20.0398 (3)0.76456 (7)0.5159 (3)0.0193 (5)
C10.8433 (3)0.55435 (8)0.7589 (4)0.0177 (6)
H10.87640.53140.84820.021*
C20.9658 (3)0.56212 (8)0.6066 (3)0.0152 (6)
C30.9285 (3)0.59010 (8)0.4462 (4)0.0154 (6)
C41.0482 (3)0.59515 (8)0.3011 (4)0.0155 (6)
H41.02030.61400.19360.019*
C51.2098 (3)0.57189 (8)0.3175 (4)0.0157 (6)
C61.2542 (3)0.54410 (8)0.4744 (4)0.0170 (6)
H61.36620.52890.48340.020*
C71.1335 (3)0.53914 (8)0.6155 (3)0.0144 (6)
C80.7184 (3)0.63908 (9)0.2781 (4)0.0216 (6)
H8A0.59830.65160.29230.032*
H8B0.71790.62130.15970.032*
H8C0.80610.66330.27090.032*
C91.3034 (3)0.60080 (8)0.0177 (4)0.0198 (6)
H9A1.40390.59800.06690.030*
H9B1.29130.63200.05700.030*
H9C1.19200.59100.05160.030*
C101.3340 (3)0.48903 (9)0.7879 (4)0.0193 (6)
H10A1.34030.47090.90540.029*
H10B1.43320.51060.79340.029*
H10C1.34360.46970.67510.029*
C110.5099 (3)0.69579 (9)0.7057 (3)0.0168 (6)
C120.3577 (3)0.67245 (9)0.6292 (4)0.0189 (6)
H12A0.36220.64090.61830.023*
C130.2034 (3)0.69466 (9)0.5705 (4)0.0186 (6)
H130.10060.67860.52160.022*
C140.1986 (3)0.74094 (8)0.5832 (4)0.0165 (6)
C150.3483 (3)0.76498 (8)0.6542 (3)0.0162 (6)
H150.34400.79660.66100.019*
C160.5015 (3)0.74254 (9)0.7139 (4)0.0176 (6)
H160.60400.75880.76170.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (10)0.0228 (11)0.0302 (11)0.0076 (8)0.0082 (8)0.0052 (9)
O20.0152 (9)0.0201 (10)0.0195 (10)0.0065 (8)0.0028 (7)0.0045 (8)
O30.0188 (10)0.0228 (11)0.0200 (10)0.0060 (8)0.0070 (8)0.0085 (8)
O40.0163 (9)0.0172 (10)0.0195 (10)0.0054 (7)0.0023 (7)0.0049 (8)
O50.0257 (11)0.0204 (12)0.0337 (12)0.0076 (9)0.0015 (8)0.0010 (9)
O60.0173 (10)0.0360 (13)0.0332 (12)0.0005 (9)0.0068 (9)0.0050 (10)
N10.0213 (12)0.0170 (13)0.0311 (13)0.0035 (10)0.0030 (10)0.0009 (11)
N20.0183 (12)0.0219 (14)0.0178 (12)0.0011 (10)0.0028 (9)0.0001 (10)
C10.0207 (14)0.0123 (14)0.0201 (14)0.0010 (12)0.0005 (11)0.0014 (11)
C20.0160 (13)0.0131 (14)0.0165 (13)0.0013 (10)0.0012 (10)0.0016 (11)
C30.0133 (13)0.0136 (14)0.0189 (13)0.0016 (11)0.0017 (10)0.0027 (11)
C40.0157 (13)0.0139 (14)0.0171 (13)0.0008 (10)0.0015 (10)0.0010 (11)
C50.0154 (13)0.0147 (14)0.0174 (13)0.0017 (11)0.0039 (10)0.0015 (11)
C60.0136 (13)0.0142 (14)0.0230 (14)0.0022 (11)0.0003 (11)0.0002 (11)
C70.0190 (14)0.0098 (14)0.0141 (13)0.0002 (10)0.0012 (10)0.0018 (11)
C80.0207 (14)0.0211 (16)0.0227 (14)0.0046 (12)0.0017 (11)0.0062 (12)
C90.0239 (15)0.0173 (15)0.0185 (14)0.0015 (11)0.0035 (11)0.0044 (12)
C100.0148 (13)0.0199 (15)0.0230 (14)0.0057 (11)0.0004 (11)0.0045 (12)
C110.0205 (14)0.0186 (15)0.0118 (13)0.0037 (11)0.0052 (11)0.0005 (11)
C120.0246 (14)0.0121 (14)0.0200 (14)0.0020 (12)0.0025 (11)0.0003 (11)
C130.0175 (14)0.0218 (16)0.0166 (14)0.0044 (12)0.0029 (11)0.0013 (12)
C140.0154 (13)0.0175 (15)0.0168 (13)0.0009 (11)0.0011 (10)0.0009 (11)
C150.0212 (14)0.0122 (14)0.0158 (13)0.0003 (11)0.0056 (11)0.0014 (11)
C160.0165 (13)0.0210 (16)0.0152 (13)0.0000 (11)0.0011 (11)0.0023 (11)
Geometric parameters (Å, º) top
O1—C11.229 (3)C6—C71.374 (3)
O2—C31.357 (3)C6—H60.9500
O2—C81.441 (3)C8—H8A0.9800
O3—C51.358 (3)C8—H8B0.9800
O3—C91.428 (3)C8—H8C0.9800
O4—C71.360 (3)C9—H9A0.9800
O4—C101.444 (3)C9—H9B0.9800
O5—N21.239 (3)C9—H9C0.9800
O6—N21.242 (3)C10—H10A0.9800
N1—C111.352 (3)C10—H10B0.9800
N1—H110.8600C10—H10C0.9800
N1—H120.8600C11—C161.406 (4)
N2—C141.434 (3)C11—C121.410 (3)
C1—C21.454 (3)C12—C131.370 (3)
C1—H10.9500C12—H12A0.9500
C2—C31.409 (3)C13—C141.393 (3)
C2—C71.424 (3)C13—H130.9500
C3—C41.390 (3)C14—C151.394 (3)
C4—C51.389 (3)C15—C161.368 (3)
C4—H40.9500C15—H150.9500
C5—C61.397 (3)C16—H160.9500
C3—O2—C8118.10 (19)O2—C8—H8C109.5
C5—O3—C9118.39 (19)H8A—C8—H8C109.5
C7—O4—C10117.03 (19)H8B—C8—H8C109.5
C11—N1—H11120.0O3—C9—H9A109.5
C11—N1—H12120.0O3—C9—H9B109.5
H11—N1—H12120.0H9A—C9—H9B109.5
O5—N2—O6121.4 (2)O3—C9—H9C109.5
O5—N2—C14119.5 (2)H9A—C9—H9C109.5
O6—N2—C14119.1 (2)H9B—C9—H9C109.5
O1—C1—C2127.8 (2)O4—C10—H10A109.5
O1—C1—H1116.1O4—C10—H10B109.5
C2—C1—H1116.1H10A—C10—H10B109.5
C3—C2—C7117.2 (2)O4—C10—H10C109.5
C3—C2—C1124.5 (2)H10A—C10—H10C109.5
C7—C2—C1118.3 (2)H10B—C10—H10C109.5
O2—C3—C4122.4 (2)N1—C11—C16120.7 (2)
O2—C3—C2115.5 (2)N1—C11—C12120.9 (2)
C4—C3—C2122.1 (2)C16—C11—C12118.3 (2)
C3—C4—C5118.2 (2)C13—C12—C11120.8 (2)
C3—C4—H4120.9C13—C12—H12A119.6
C5—C4—H4120.9C11—C12—H12A119.6
O3—C5—C4123.9 (2)C12—C13—C14119.4 (2)
O3—C5—C6114.1 (2)C12—C13—H13120.3
C4—C5—C6122.0 (2)C14—C13—H13120.3
C7—C6—C5119.0 (2)C15—C14—C13121.1 (2)
C7—C6—H6120.5C15—C14—N2119.1 (2)
C5—C6—H6120.5C13—C14—N2119.7 (2)
O4—C7—C6123.1 (2)C16—C15—C14119.2 (2)
O4—C7—C2115.4 (2)C16—C15—H15120.4
C6—C7—C2121.5 (2)C14—C15—H15120.4
O2—C8—H8A109.5C15—C16—C11121.2 (2)
O2—C8—H8B109.5C15—C16—H16119.4
H8A—C8—H8B109.5C11—C16—H16119.4
O1—C1—C2—C39.3 (4)C5—C6—C7—C20.9 (4)
O1—C1—C2—C7172.5 (2)C3—C2—C7—O4179.9 (2)
C8—O2—C3—C41.2 (3)C1—C2—C7—O41.8 (3)
C8—O2—C3—C2177.9 (2)C3—C2—C7—C60.2 (3)
C7—C2—C3—O2179.5 (2)C1—C2—C7—C6178.6 (2)
C1—C2—C3—O21.3 (4)N1—C11—C12—C13176.7 (2)
C7—C2—C3—C40.5 (3)C16—C11—C12—C132.2 (4)
C1—C2—C3—C4177.7 (2)C11—C12—C13—C141.3 (4)
O2—C3—C4—C5179.5 (2)C12—C13—C14—C150.2 (4)
C2—C3—C4—C50.5 (4)C12—C13—C14—N2177.8 (2)
C9—O3—C5—C40.4 (3)O5—N2—C14—C152.2 (3)
C9—O3—C5—C6179.3 (2)O6—N2—C14—C15176.9 (2)
C3—C4—C5—O3179.4 (2)O5—N2—C14—C13179.9 (2)
C3—C4—C5—C60.2 (4)O6—N2—C14—C130.8 (3)
O3—C5—C6—C7178.8 (2)C13—C14—C15—C160.6 (4)
C4—C5—C6—C70.9 (4)N2—C14—C15—C16178.3 (2)
C10—O4—C7—C60.3 (3)C14—C15—C16—C110.3 (4)
C10—O4—C7—C2179.4 (2)N1—C11—C16—C15177.2 (2)
C5—C6—C7—O4179.5 (2)C12—C11—C16—C151.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O10.862.163.016 (3)172
N1—H11···O5i0.862.503.288 (3)152
N1—H11···O6i0.862.503.293 (3)154
Symmetry code: (i) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O2·C10H12O4
Mr334.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4409 (11), 30.022 (5), 6.9400 (11)
β (°) 93.237 (3)
V3)1547.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8127, 2722, 1834
Rint0.059
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.01
No. of reflections2722
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O10.862.163.016 (3)172
N1—H11···O5i0.862.503.288 (3)152
N1—H11···O6i0.862.503.293 (3)154
Symmetry code: (i) x+1, y+3/2, z+1/2.
 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). New J. Chem. 25, 408–415  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..  Google Scholar
First citationDederer, B. & Gieren, A. (1979). Naturwissenschaften, 66, 470–471.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868–2871.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoshima, H., Wang, Y., Matsuura, T., Mizutani, H., Isako, H., Miyahara, I. & Hirostu, K. (1996). Mol. Cryst. Liq. Cryst. 279, 265–274.  CrossRef CAS Google Scholar
First citationRashid, A. N. & Deschamps, J. R. (2006). J. Mol. Struct. 787, 216–219.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. B., Pathak, A. & Frohlich, R. (2003). Aust. J. Chem. 56, 329–333.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 307–317.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, G. (1981). Z. Naturforsch. B36, 896–897.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. Submitted.  Google Scholar
First citationZaitu, S., Miwa, Y. & Taga, T. (1995). Acta Cryst. C51, 2390–2392.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds