organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl­anilinium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: lwx927lh@163.com

(Received 9 May 2010; accepted 11 May 2010; online 5 June 2010)

The crystal packing of the title compound, C8H12N+·ClO4, is stabilized by N—H⋯O hydrogen bonds, the protonated amine group acting as a hydrogen-bond donor with the perchlorate O atoms as acceptors. These connect neighbouring cations and anions, forming a two-dimensional network. Variable-temperature dielectric constant measurements on the salt indicated that no distinct phase transition occurred within the measured temperature range of 80–293 K.

Related literature

For the synthesis and characterization of 2,4-dimethyl­anilinium phosphate, see: Fábry et al. (2001[Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058-o1060.]). For the structure of 2,4,6-trimethyl­anilinium iodide, see: Lemmerer & Billing (2007[Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929-o931.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·ClO4

  • Mr = 221.64

  • Monoclinic, P 21 /c

  • a = 9.3299 (19) Å

  • b = 7.1947 (14) Å

  • c = 15.176 (3) Å

  • β = 97.43 (3)°

  • V = 1010.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.884, Tmax = 0.950

  • 9986 measured reflections

  • 2318 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.09

  • 2318 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.89 2.24 3.002 (3) 143
N1—H1B⋯O4i 0.89 2.53 3.236 (3) 137
N1—H1A⋯O2ii 0.89 2.16 2.983 (3) 153
N1—H1C⋯O3 0.89 2.15 2.994 (3) 159
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Recently, Fábry et al. (2001) reported the synthesis and characterization of the 2,4-dimethylanilinium phosphate. Lemmerer & Billing (2007) researched the crystal structure of the 2,4,6-trimethylanilinium iodide. This paper reports the crystal structure and dielectric properties of the related salt 2,4-dimethylanilinium perchlorate. The asymmetric unit of title compound, C8H12N+.ClO4-, contains a 2,4-dimethylanilinium cation and one perchlorate anion (Fig.1). The ammonium cations stack head-to-tail with no π-π interactions. The crystal packing is stabilized by N—H···O hydrogen bonds, the protonated amine group acting as a hydrogen-bond donor with the perchlorate O atoms as acceptors. These connect neighbouring cations and anions to form a two-dimensional network (Fig.2). In addition, the dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 2.6 to 4.5) from 80k to 293k, suggesting that no distinct phase transition occurred within the measured temperature range.

Related literature top

For the synthesis and characterization of 2,4-dimethylanilinium phosphate, see: Fábry et al. (2001). For the structure of 2,4,6-trimethylanilinium iodide, see: Lemmerer & Billing (2007).

Experimental top

2,4-dimethylbenzenamine (1.21 g, 10 mmol) and perchloric acid (1 g, 10 mmol) were mixed and the 2,4-dimethylbenzenamine perchlorate was obtained, then it was dissolved in water (3 ml), ethanol (20 ml), and the solution was filtered. After slowly evaporating over a period of 3 d, colorless prism crystals of the title compound suitable for diffraction were isolated. CAUTION: Although no problems were encountered in this work, perchlorate compounds are potentially explosive. They should be prepared in small amounts and handled with care.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H = 0.93 to 0.97 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.89 Å, Uiso(H)= 1.5 Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the displacement ellipsoids were drawn at the 30% probability level. A hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the a axis. Hydrogen bonds are shown as dashed lines.
2,4-Dimethylanilinium perchlorate top
Crystal data top
C8H12N+·ClO4F(000) = 464
Mr = 221.64Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1970 reflections
a = 9.3299 (19) Åθ = 3.1–27.5°
b = 7.1947 (14) ŵ = 0.37 mm1
c = 15.176 (3) ÅT = 293 K
β = 97.43 (3)°Prism, colorless
V = 1010.2 (3) Å30.45 × 0.30 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2318 independent reflections
Radiation source: fine-focus sealed tube1970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.884, Tmax = 0.950l = 1919
9986 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.4369P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2318 reflectionsΔρmax = 0.22 e Å3
130 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (1)
Crystal data top
C8H12N+·ClO4V = 1010.2 (3) Å3
Mr = 221.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3299 (19) ŵ = 0.37 mm1
b = 7.1947 (14) ÅT = 293 K
c = 15.176 (3) Å0.45 × 0.30 × 0.15 mm
β = 97.43 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2318 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1970 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.950Rint = 0.030
9986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.09Δρmax = 0.22 e Å3
2318 reflectionsΔρmin = 0.38 e Å3
130 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44022 (5)0.20914 (6)0.11652 (3)0.03993 (17)
N10.37293 (19)0.7004 (2)0.12219 (13)0.0489 (5)
H1A0.42470.69110.17550.073*
H1B0.38880.81070.09860.073*
H1C0.39870.61080.08700.073*
C50.1146 (2)0.7244 (3)0.05939 (13)0.0400 (4)
O20.47637 (18)0.3056 (2)0.19934 (10)0.0576 (4)
C60.0291 (2)0.7058 (3)0.07285 (14)0.0453 (5)
H60.10040.73280.02590.054*
O30.4530 (2)0.3369 (2)0.04594 (11)0.0687 (5)
C10.2174 (2)0.6817 (2)0.13112 (13)0.0374 (4)
C30.0362 (2)0.6056 (3)0.22160 (14)0.0508 (5)
H30.01080.56470.27560.061*
C20.1796 (2)0.6221 (3)0.21116 (14)0.0489 (5)
H20.25080.59310.25790.059*
O10.5376 (2)0.0565 (2)0.11199 (14)0.0717 (5)
C40.0713 (2)0.6491 (3)0.15282 (14)0.0447 (5)
O40.29667 (19)0.1392 (3)0.11030 (13)0.0764 (6)
C80.1543 (3)0.7883 (4)0.02867 (16)0.0648 (7)
H8A0.06870.79570.07110.097*
H8B0.22060.70140.04930.097*
H8C0.19890.90860.02190.097*
C70.2294 (3)0.6367 (5)0.1648 (2)0.0716 (8)
H7A0.25630.74430.19620.107*
H7B0.24550.52690.19810.107*
H7C0.28690.63090.10760.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0472 (3)0.0343 (3)0.0378 (3)0.00671 (19)0.00362 (19)0.00247 (18)
N10.0431 (10)0.0372 (9)0.0668 (12)0.0048 (7)0.0083 (8)0.0034 (8)
C50.0499 (11)0.0324 (9)0.0376 (10)0.0001 (8)0.0056 (8)0.0034 (8)
O20.0645 (10)0.0629 (11)0.0441 (9)0.0085 (8)0.0022 (7)0.0104 (7)
C60.0447 (11)0.0460 (11)0.0425 (11)0.0061 (9)0.0051 (8)0.0041 (9)
O30.1083 (15)0.0501 (9)0.0500 (9)0.0033 (10)0.0185 (9)0.0161 (8)
C10.0360 (9)0.0281 (9)0.0475 (11)0.0009 (7)0.0035 (8)0.0033 (8)
C30.0580 (13)0.0563 (14)0.0386 (10)0.0109 (11)0.0086 (9)0.0008 (10)
C20.0499 (12)0.0486 (12)0.0449 (11)0.0038 (10)0.0067 (9)0.0094 (10)
O10.0846 (13)0.0446 (9)0.0855 (13)0.0141 (9)0.0097 (10)0.0015 (9)
C40.0407 (10)0.0450 (11)0.0490 (11)0.0020 (9)0.0087 (8)0.0127 (10)
O40.0571 (11)0.0905 (14)0.0783 (12)0.0318 (10)0.0041 (9)0.0005 (11)
C80.0829 (18)0.0708 (17)0.0423 (12)0.0117 (14)0.0141 (11)0.0031 (12)
C70.0469 (13)0.090 (2)0.0805 (18)0.0010 (14)0.0197 (12)0.0212 (16)
Geometric parameters (Å, º) top
Cl1—O41.4225 (17)C1—C21.377 (3)
Cl1—O31.4281 (16)C3—C21.373 (3)
Cl1—O11.4326 (18)C3—C41.386 (3)
Cl1—O21.4372 (16)C3—H30.9300
N1—C11.481 (2)C2—H20.9300
N1—H1A0.8900C4—C71.512 (3)
N1—H1B0.8900C8—H8A0.9600
N1—H1C0.8900C8—H8B0.9600
C5—C61.388 (3)C8—H8C0.9600
C5—C11.389 (3)C7—H7A0.9600
C5—C81.504 (3)C7—H7B0.9600
C6—C41.385 (3)C7—H7C0.9600
C6—H60.9300
O4—Cl1—O3110.33 (13)C2—C3—C4121.0 (2)
O4—Cl1—O1108.85 (13)C2—C3—H3119.5
O3—Cl1—O1110.01 (12)C4—C3—H3119.5
O4—Cl1—O2109.96 (11)C3—C2—C1119.57 (19)
O3—Cl1—O2108.19 (11)C3—C2—H2120.2
O1—Cl1—O2109.48 (11)C1—C2—H2120.2
C1—N1—H1A109.5C6—C4—C3117.8 (2)
C1—N1—H1B109.5C6—C4—C7121.0 (2)
H1A—N1—H1B109.5C3—C4—C7121.2 (2)
C1—N1—H1C109.5C5—C8—H8A109.5
H1A—N1—H1C109.5C5—C8—H8B109.5
H1B—N1—H1C109.5H8A—C8—H8B109.5
C6—C5—C1116.46 (18)C5—C8—H8C109.5
C6—C5—C8120.9 (2)H8A—C8—H8C109.5
C1—C5—C8122.6 (2)H8B—C8—H8C109.5
C4—C6—C5123.14 (19)C4—C7—H7A109.5
C4—C6—H6118.4C4—C7—H7B109.5
C5—C6—H6118.4H7A—C7—H7B109.5
C2—C1—C5122.05 (19)C4—C7—H7C109.5
C2—C1—N1118.36 (18)H7A—C7—H7C109.5
C5—C1—N1119.58 (18)H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.892.243.002 (3)143
N1—H1B···O4i0.892.533.236 (3)137
N1—H1A···O2ii0.892.162.983 (3)153
N1—H1C···O30.892.152.994 (3)159
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N+·ClO4
Mr221.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3299 (19), 7.1947 (14), 15.176 (3)
β (°) 97.43 (3)
V3)1010.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.884, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
9986, 2318, 1970
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.09
No. of reflections2318
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.892.243.002 (3)143.1
N1—H1B···O4i0.892.533.236 (3)136.8
N1—H1A···O2ii0.892.162.983 (3)152.8
N1—H1C···O30.892.152.994 (3)158.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationFábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLemmerer, A. & Billing, D. G. (2007). Acta Cryst. E63, o929–o931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds