organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1604-o1605

Absolute configuration of methyl isoeichlerialactone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Center, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2010; accepted 17 May 2010; online 9 June 2010)

The title compound, C28H44O4·0.56H2O, is a co-crystal of methyl isoeichlerialactone monohydrate as the major component and methyl isoeichlerialactone as the minor component in a 0.55778 (3):0.44222 (3) ratio. The conformations of both components are identical except for that of the –COOCH3 group of the methyl propanoate side chain on the cyclo­hexane ring which is positionally disordered over two orientations. The mol­ecule of methyl isoeichlerialactone has three fused rings and all rings are trans-fused. The two cyclo­hexane rings are in standard chair conformations and the cyclo­pentane ring adopts an envelope conformation. In the crystal, weak C—H⋯O inter­actions link methyl isoeichlerialactone mol­ecules into screw chains along [010]. The crystal structure is further stabilized by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For previous studies on 3,4-secodammarane triterpenes in Aglaia see: Pointinger et al. (2008[Pointinger, S., Promdang, S., Vajrodaya, S., Pannell, C. M., Hofer, O., Mereiter, K. & Greger, H. (2008). Phytochemistry, 69, 2696-2703.]); Seger et al. (2008[Seger, C., Pointinger, S., Greger, H. & Hofer, O. (2008). Tetrahedron Lett. 49, 4313-4315.]); Joycharat et al. (2010[Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B. & Voravuthikunchai, S. P. (2010). Can. J. Chem. In the press.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Joycharat, N., Voravuthikunchai, S. P. & Chantrapromma, S. (2010). Acta Cryst. E66, o879-o880.]); Joycharat et al. (2010[Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B. & Voravuthikunchai, S. P. (2010). Can. J. Chem. In the press.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H44O4·0.56H2O

  • Mr = 454.68

  • Orthorhombic, P 21 21 21

  • a = 7.2246 (2) Å

  • b = 13.3872 (4) Å

  • c = 26.1898 (8) Å

  • V = 2533.00 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.34 × 0.23 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.969

  • 52930 measured reflections

  • 3968 independent reflections

  • 3522 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.05

  • 3968 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1634 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 1.06 1.94 2.912 (4) 151
C2—H2A⋯O4ii 0.97 2.45 3.305 (3) 146
C12—H12B⋯O3 0.97 2.58 3.154 (2) 118
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The accumulation of two different stereochemical types of 3,4-secodammarane triterpenes characterised by linking the tetrahydrofuran ring of the side chain to the cyclopentane ring of the sterane skeleton either towards 20S or 20R configuration in Aglaia species has recently been described (Pointinger et al., 2008; Seger et al., 2008). Recently, we have confirmed an absolute configuration of the antiphytopathogenic fungal agent, isoeichlerialactone, isolated from the ethanolic seed extract of Aglaia forbesii King, family Meliaceae collected in Thailand (Fun et al., 2010; Joycharat et al., 2010). Moreover, from the seed extract of Aglaia forbesii, the title compound, the corresponding ester of isoeichlerialactone, was isolated as a minor component (Joycharat et al., 2010). Herein we reported the absolute configuration of the title seco-dammarane triterpenoid namely methyl isoeichlerialactone [systematic name: methyl 3-((3S,3aR,5aR,6S,7S,9aR, 9bR)-6,9a,9b-trimethyl-3-((R)-2-methyl-5-oxotetrahydrofuran-2-yl)- 7-(prop-1-en-2-yl)dodecahydro-1H-cyclopenta[a]naphthalen-6-yl) propanoate], (I). Its absolute configuration was determined by making use of the anomalous scattering of Cu Kα X-radiation and the Flack parameter is 0.0 (2).

The asymmetric unit of the title compound (Fig. 1) consists of methyl isoeichlerialactone monohydrate as the major component and methyl isoeichlerialactone as the minor component. The refined site-occupancy ratio of the major and minor components is 0.55778 (3)/0.44222 (3). The conformations and absolute configuration of both components are identical except for that of the COOCH3 group of the methyl propanoate side chain (C1–C3/O1–O2/C28) on the cyclohexane ring is positionally disordered over two positions [A and B] with the occupancy ratio given above (Fig. 1). The molecule of methyl isoeichlerialactone, has three fused rings and all rings are trans-fused. The two cyclohexane rings are in standard chair conformations. The cyclopentane (C13–C17) adopts an envelope conformation with the puckered C14 atom having the maximum deviation of 0.259 (2) Å, Q = 0.420 (2) Å and θ = 202.9 (3)° whereas the furan ring (C20–C23/O3) is twisted with the twisted C20 and C21 atoms having the deviation of -0.144 (2) and 0.162 (3) Å, respectively from the C22/C23/O3 plane with Q = 0.259 (3) Å and θ = 64.2 (5)° (Cremer & Pople, 1975). Atoms C2, C3, C28, O1 and O2 of the methyl propanoate group are lie almost on the same plane with the r.m.s. deviation 0.0138 (2) and 0.0296 (2) Å for major and minor component, respectively and the torsion angles C28A–O2A–C3–O1A = -4.2 (16)° whereas C28B–O2B–C3–O1B = -4(3)°. The orientation of this disordered side chain is described by the torsion angles C10–C1–C2–C3 = -175.99 (17)°, C1–C2–C3–O1A = 88.7 (12)° and C1–C2–C3–O2A = -92.9 (5)°; C1–C2–C3–O1B = -96.4 (6) and C1–C2–C3–O2B = 75.3 (14)°. The bond angles around C4 and C25 atoms are indicative of sp2 hybridization for these atoms and the bond length of 1.398 (3) Å confirmed the C4 C25 bond. The configurations at atoms C5, C8, C9, C10, C13, C14, C17 and C20 are in S, R, R, S, R, R, S and R, respectively. The bond distances have normal values (Allen et al., 1987) and comparable with the closely related compound (Fun et al., 2010).

The crystal packing of the major component is shown in Fig. 2, with the methyl isoeichlerialactone molecules being linked through weak C—H···O interactions (Table 1) into screw chains along the b axis. The packing of the minor component is same as that of the major component. The crystal is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1).

Related literature top

For details of ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For previous studies on 3,4-secodammarane triterpenes in Aglaia see: Pointinger et al. (2008); Seger et al. (2008); Joycharat et al. (2010). For related structures, see: Fun et al. (2010); Joycharat et al. (2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The seeds of Aglaia forbesii (48 g) were air-dried, ground, and exhaustively extracted with EtOH (3 x 500 mL) at room temperature. The combined extracts were concentrated under reduced pressure to afford a brown extract (5.7 g) which was resuspended in a mixture of MeOH and water and then extracted with n-hexane, CH2Cl2, and BuOH, successively. The CH2Cl2 fraction (1.87 g) was applied to column chromatography (CC) over silica gel (Merck, 0.063-0.200 mm) using gradient elution from 0% to 100% acetone in CH2Cl2, and finally washed down with MeOH. The fraction eluted with 20% acetone in CH2Cl2 was further subjected to repeated silica gel column chromatography ((i) CC with Hexane/Acetone, 100:0 to 0:100 and (ii) CC with CH2Cl2/EtOAc, 98:2, v/v) to afford the title compound (3 mg). Colorless plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from EtOH after several days. 1H NMR and 13 C NMR spectral data (Joycharat et al., 2010) were consistent with the X-ray structure.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.98 Å for CH; 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.99 Å from H25B and the deepest hole is located at 0.21 Å from C28B. 1634 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 40% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed along the a axis, showing screw chains along the [010] direction. Weak C—H···O interactions are shown as dashed lines. Water molecules and atoms of the minor disorder component were omitted for clarity.
Methyl (3S,3aR,5aR,6S,7S,9aR,9bR)-6,9a,9b-trimethyl-3-[(R)-2-methyl-5-oxotetrahydrofuran-2-yl]-7-(prop-1-en-2-yl)dodecahydro-1H-cyclopenta[a]naphthalen-6-yl)propanoate 0.56-hydrate top
Crystal data top
C28H44O4·0.56H2OF(000) = 998.1
Mr = 454.68Dx = 1.192 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3968 reflections
a = 7.2246 (2) Åθ = 3.4–63.0°
b = 13.3872 (4) ŵ = 0.62 mm1
c = 26.1898 (8) ÅT = 100 K
V = 2533.00 (13) Å3Plate, colorless
Z = 40.34 × 0.23 × 0.05 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3968 independent reflections
Radiation source: sealed tube3522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 63.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 87
Tmin = 0.818, Tmax = 0.969k = 1515
52930 measured reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.5383P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3968 reflectionsΔρmax = 0.18 e Å3
327 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1634 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C28H44O4·0.56H2OV = 2533.00 (13) Å3
Mr = 454.68Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.2246 (2) ŵ = 0.62 mm1
b = 13.3872 (4) ÅT = 100 K
c = 26.1898 (8) Å0.34 × 0.23 × 0.05 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3522 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.969Rint = 0.044
52930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.19 e Å3
3968 reflectionsAbsolute structure: Flack (1983), 1634 Friedel pairs
327 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.273 (2)0.1142 (10)0.8174 (8)0.044 (3)0.558 (3)
O2A0.1434 (13)0.2556 (6)0.8441 (4)0.050 (4)0.558 (3)
O1B0.1464 (14)0.2552 (8)0.8408 (5)0.044 (4)0.442 (3)
O2B0.286 (3)0.1069 (15)0.8266 (10)0.051 (5)0.442 (3)
O30.0321 (2)0.44352 (10)0.80263 (5)0.0326 (4)
O40.1588 (2)0.51204 (12)0.74616 (6)0.0430 (4)
C10.0153 (3)0.07230 (15)0.91294 (7)0.0241 (4)
H1B0.03410.13160.93360.029*
H1A0.13050.03510.91330.029*
C20.0210 (3)0.10586 (17)0.85799 (7)0.0318 (5)
H2A0.04520.04820.83660.038*
H2B0.12870.14910.85690.038*
C30.1439 (3)0.16044 (19)0.83871 (8)0.0349 (5)
C40.2820 (3)0.16680 (16)0.97910 (8)0.0302 (5)
C50.3125 (3)0.07180 (15)0.94891 (8)0.0259 (5)
H5A0.35430.09330.91510.031*
C60.4708 (3)0.00839 (15)0.97075 (8)0.0289 (5)
H6A0.43390.01841.00360.035*
H6B0.57860.05040.97600.035*
C70.5214 (3)0.07702 (15)0.93534 (7)0.0263 (5)
H7A0.56920.04950.90370.032*
H7B0.61960.11580.95100.032*
C80.3586 (3)0.14722 (15)0.92282 (7)0.0221 (4)
C90.1912 (3)0.08197 (14)0.90423 (7)0.0205 (4)
H9A0.23500.05050.87270.025*
C100.1343 (3)0.00757 (15)0.93938 (7)0.0224 (4)
C110.0263 (3)0.14707 (15)0.88736 (7)0.0247 (5)
H11A0.06930.10410.87340.030*
H11B0.02480.18030.91710.030*
C120.0774 (3)0.22616 (15)0.84740 (7)0.0259 (5)
H12A0.10840.19380.81540.031*
H12B0.02760.26980.84150.031*
C130.2412 (3)0.28711 (15)0.86592 (7)0.0239 (5)
H13A0.20340.31840.89810.029*
C140.4102 (3)0.22061 (15)0.87820 (7)0.0224 (5)
C150.5590 (3)0.30013 (15)0.88955 (8)0.0289 (5)
H15A0.68200.27310.88400.035*
H15B0.54980.32300.92460.035*
C160.5195 (3)0.38659 (16)0.85200 (8)0.0337 (5)
H16A0.60690.38530.82390.040*
H16B0.52990.45050.86930.040*
C170.3182 (3)0.37058 (15)0.83198 (7)0.0267 (5)
H17A0.32720.34410.79720.032*
C180.4771 (3)0.16521 (15)0.82951 (7)0.0270 (5)
H18A0.50170.21290.80300.041*
H18B0.38270.11970.81830.041*
H18C0.58810.12870.83710.041*
C190.0426 (3)0.02362 (15)0.99005 (7)0.0256 (5)
H19A0.01800.03311.00500.038*
H19B0.04680.07520.98360.038*
H19C0.13540.04821.01310.038*
C200.2067 (3)0.46699 (16)0.82936 (8)0.0317 (5)
C210.2973 (4)0.54557 (17)0.79445 (9)0.0412 (6)
H21A0.36440.59490.81430.049*
H21B0.38190.51440.77050.049*
C220.1347 (4)0.59283 (19)0.76687 (9)0.0447 (6)
H22A0.09590.65380.78380.054*
H22B0.16630.60810.73170.054*
C230.0139 (3)0.51499 (17)0.76943 (7)0.0346 (5)
C240.1526 (4)0.51003 (18)0.88086 (8)0.0483 (7)
H24A0.06610.46610.89730.073*
H24B0.09650.57440.87610.073*
H24C0.26100.51690.90180.073*
C250.2746 (3)0.25788 (19)0.95303 (10)0.0453 (6)
H25A0.26330.31730.97120.054*
H25B0.28090.25900.91760.054*
C260.2721 (3)0.16537 (19)1.03380 (9)0.0429 (6)
H26A0.24120.23081.04610.064*
H26B0.17890.11871.04440.064*
H26C0.38980.14561.04750.064*
C270.3098 (3)0.20673 (15)0.97170 (7)0.0264 (5)
H27A0.18330.22830.97000.040*
H27B0.38940.26400.97430.040*
H27C0.32660.16481.00110.040*
C28A0.3009 (7)0.3076 (4)0.82808 (17)0.0485 (9)0.558 (3)
H28A0.28590.37740.83530.073*0.558 (3)
H28B0.31750.29840.79200.073*0.558 (3)
H28C0.40740.28260.84590.073*0.558 (3)
C28B0.4627 (8)0.1624 (5)0.8110 (2)0.0485 (9)0.442 (3)
H28D0.54650.11660.79490.073*0.442 (3)
H28E0.52020.19050.84070.073*0.442 (3)
H28F0.43190.21490.78750.073*0.442 (3)
O1W0.3649 (5)0.8328 (3)0.78098 (12)0.0633 (11)0.558 (3)
H1W10.28510.88460.75960.095*0.558 (3)
H2W10.47640.84500.77860.095*0.558 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.063 (6)0.024 (4)0.043 (5)0.004 (3)0.021 (4)0.002 (4)
O2A0.080 (6)0.034 (6)0.036 (4)0.034 (3)0.006 (4)0.010 (3)
O1B0.039 (6)0.035 (8)0.056 (7)0.020 (5)0.002 (4)0.017 (5)
O2B0.028 (5)0.069 (8)0.057 (10)0.002 (4)0.010 (4)0.019 (4)
O30.0336 (9)0.0289 (8)0.0354 (8)0.0033 (7)0.0003 (7)0.0093 (7)
O40.0472 (11)0.0473 (10)0.0344 (8)0.0120 (8)0.0045 (8)0.0014 (8)
C10.0210 (11)0.0223 (11)0.0289 (10)0.0008 (8)0.0004 (9)0.0052 (8)
C20.0377 (13)0.0289 (12)0.0289 (11)0.0039 (10)0.0012 (10)0.0018 (9)
C30.0434 (16)0.0353 (16)0.0261 (11)0.0009 (12)0.0010 (11)0.0051 (12)
C40.0179 (11)0.0294 (13)0.0434 (12)0.0039 (9)0.0001 (9)0.0099 (10)
C50.0228 (11)0.0259 (12)0.0291 (10)0.0037 (9)0.0015 (9)0.0032 (9)
C60.0218 (11)0.0319 (13)0.0330 (10)0.0039 (9)0.0037 (9)0.0065 (10)
C70.0187 (11)0.0319 (12)0.0284 (10)0.0018 (9)0.0027 (9)0.0040 (9)
C80.0181 (11)0.0244 (12)0.0239 (9)0.0008 (8)0.0003 (8)0.0004 (8)
C90.0183 (11)0.0216 (11)0.0218 (9)0.0015 (8)0.0003 (8)0.0003 (8)
C100.0209 (11)0.0226 (12)0.0238 (9)0.0024 (8)0.0007 (8)0.0002 (9)
C110.0194 (11)0.0252 (12)0.0294 (10)0.0009 (8)0.0025 (9)0.0033 (9)
C120.0221 (11)0.0267 (12)0.0291 (10)0.0011 (8)0.0032 (8)0.0037 (9)
C130.0240 (11)0.0238 (12)0.0240 (10)0.0019 (8)0.0007 (8)0.0011 (9)
C140.0189 (11)0.0226 (11)0.0257 (10)0.0006 (8)0.0009 (8)0.0001 (9)
C150.0241 (12)0.0327 (12)0.0299 (11)0.0021 (9)0.0001 (8)0.0022 (9)
C160.0338 (13)0.0300 (13)0.0372 (12)0.0067 (10)0.0007 (10)0.0047 (10)
C170.0293 (12)0.0235 (11)0.0274 (10)0.0012 (9)0.0002 (9)0.0004 (9)
C180.0253 (12)0.0285 (12)0.0273 (10)0.0020 (9)0.0053 (9)0.0031 (9)
C190.0230 (11)0.0262 (11)0.0277 (10)0.0001 (9)0.0027 (9)0.0011 (9)
C200.0390 (13)0.0245 (12)0.0316 (11)0.0026 (9)0.0025 (10)0.0024 (9)
C210.0503 (15)0.0284 (13)0.0450 (13)0.0039 (11)0.0042 (12)0.0064 (11)
C220.0555 (17)0.0375 (15)0.0410 (13)0.0027 (11)0.0003 (12)0.0145 (11)
C230.0438 (15)0.0349 (14)0.0252 (10)0.0083 (11)0.0036 (11)0.0010 (10)
C240.078 (2)0.0308 (14)0.0359 (12)0.0161 (13)0.0014 (12)0.0034 (11)
C250.0457 (15)0.0310 (14)0.0593 (15)0.0032 (11)0.0005 (12)0.0161 (12)
C260.0327 (14)0.0439 (15)0.0521 (14)0.0036 (11)0.0031 (11)0.0203 (13)
C270.0246 (12)0.0276 (12)0.0272 (10)0.0050 (9)0.0016 (9)0.0001 (9)
C28A0.039 (2)0.059 (2)0.047 (2)0.0197 (18)0.0002 (17)0.0083 (18)
C28B0.039 (2)0.059 (2)0.047 (2)0.0197 (18)0.0002 (17)0.0083 (18)
O1W0.048 (2)0.079 (3)0.063 (2)0.0069 (18)0.0034 (18)0.0044 (19)
Geometric parameters (Å, º) top
O1A—C31.253 (14)C14—C151.542 (3)
O2A—C31.282 (9)C14—C181.552 (3)
O2A—C28A1.398 (11)C15—C161.545 (3)
O1B—C31.270 (11)C15—H15A0.9700
O2B—C31.291 (19)C15—H15B0.9700
O2B—C28B1.533 (19)C16—C171.561 (3)
O3—C231.335 (3)C16—H16A0.9700
O3—C201.477 (3)C16—H16B0.9700
O4—C231.212 (3)C17—C201.523 (3)
C1—C21.530 (3)C17—H17A0.9800
C1—C101.549 (3)C18—H18A0.9600
C1—H1B0.9700C18—H18B0.9600
C1—H1A0.9700C18—H18C0.9600
C2—C31.486 (3)C19—H19A0.9600
C2—H2A0.9700C19—H19B0.9600
C2—H2B0.9700C19—H19C0.9600
C4—C251.398 (3)C20—C241.518 (3)
C4—C261.434 (3)C20—C211.540 (3)
C4—C51.514 (3)C21—C221.517 (3)
C5—C61.535 (3)C21—H21A0.9700
C5—C101.568 (3)C21—H21B0.9700
C5—H5A0.9800C22—C231.498 (3)
C6—C71.517 (3)C22—H22A0.9700
C6—H6A0.9700C22—H22B0.9700
C6—H6B0.9700C24—H24A0.9600
C7—C81.540 (3)C24—H24B0.9600
C7—H7A0.9700C24—H24C0.9600
C7—H7B0.9700C25—H25A0.9300
C8—C271.548 (3)C25—H25B0.9300
C8—C91.570 (3)C26—H26A0.9600
C8—C141.572 (3)C26—H26B0.9600
C9—C111.541 (3)C26—H26C0.9600
C9—C101.566 (3)C27—H27A0.9600
C9—H9A0.9800C27—H27B0.9600
C10—C191.541 (3)C27—H27C0.9600
C11—C121.534 (3)C28A—H28A0.9600
C11—H11A0.9700C28A—H28B0.9600
C11—H11B0.9700C28A—H28C0.9600
C12—C131.517 (3)C28B—H28D0.9600
C12—H12A0.9700C28B—H28E0.9600
C12—H12B0.9700C28B—H28F0.9600
C13—C171.532 (3)O1W—H1W11.0623
C13—C141.545 (3)O1W—H2W10.8240
C13—H13A0.9800
C3—O2A—C28A117.3 (7)C15—C14—C8116.96 (15)
C3—O2B—C28B117.3 (14)C13—C14—C8109.14 (15)
C23—O3—C20111.64 (16)C18—C14—C8112.70 (16)
C2—C1—C10117.72 (16)C14—C15—C16105.42 (16)
C2—C1—H1B107.9C14—C15—H15A110.7
C10—C1—H1B107.9C16—C15—H15A110.7
C2—C1—H1A107.9C14—C15—H15B110.7
C10—C1—H1A107.9C16—C15—H15B110.7
H1B—C1—H1A107.2H15A—C15—H15B108.8
C3—C2—C1109.05 (18)C15—C16—C17106.42 (17)
C3—C2—H2A109.9C15—C16—H16A110.4
C1—C2—H2A109.9C17—C16—H16A110.4
C3—C2—H2B109.9C15—C16—H16B110.4
C1—C2—H2B109.9C17—C16—H16B110.4
H2A—C2—H2B108.3H16A—C16—H16B108.6
O1A—C3—O1B120.2 (9)C20—C17—C13116.89 (17)
O1A—C3—O2A122.9 (8)C20—C17—C16113.05 (18)
O1B—C3—O2B123.7 (10)C13—C17—C16104.10 (16)
O2A—C3—O2B125.6 (9)C20—C17—H17A107.4
O1A—C3—C2120.4 (7)C13—C17—H17A107.4
O1B—C3—C2119.2 (6)C16—C17—H17A107.4
O2A—C3—C2116.7 (5)C14—C18—H18A109.5
O2B—C3—C2116.6 (9)C14—C18—H18B109.5
C25—C4—C26119.8 (2)H18A—C18—H18B109.5
C25—C4—C5118.88 (19)C14—C18—H18C109.5
C26—C4—C5121.2 (2)H18A—C18—H18C109.5
C4—C5—C6112.25 (16)H18B—C18—H18C109.5
C4—C5—C10115.08 (16)C10—C19—H19A109.5
C6—C5—C10111.58 (16)C10—C19—H19B109.5
C4—C5—H5A105.7H19A—C19—H19B109.5
C6—C5—H5A105.7C10—C19—H19C109.5
C10—C5—H5A105.7H19A—C19—H19C109.5
C7—C6—C5111.62 (16)H19B—C19—H19C109.5
C7—C6—H6A109.3O3—C20—C24106.38 (18)
C5—C6—H6A109.3O3—C20—C17107.03 (16)
C7—C6—H6B109.3C24—C20—C17114.70 (18)
C5—C6—H6B109.3O3—C20—C21103.13 (16)
H6A—C6—H6B108.0C24—C20—C21112.19 (19)
C6—C7—C8113.96 (16)C17—C20—C21112.40 (18)
C6—C7—H7A108.8C22—C21—C20103.79 (19)
C8—C7—H7A108.8C22—C21—H21A111.0
C6—C7—H7B108.8C20—C21—H21A111.0
C8—C7—H7B108.8C22—C21—H21B111.0
H7A—C7—H7B107.7C20—C21—H21B111.0
C7—C8—C27108.17 (15)H21A—C21—H21B109.0
C7—C8—C9108.34 (15)C23—C22—C21104.10 (18)
C27—C8—C9111.55 (16)C23—C22—H22A110.9
C7—C8—C14111.03 (16)C21—C22—H22A110.9
C27—C8—C14110.31 (16)C23—C22—H22B110.9
C9—C8—C14107.44 (14)C21—C22—H22B110.9
C11—C9—C10113.48 (15)H22A—C22—H22B109.0
C11—C9—C8111.72 (15)O4—C23—O3121.3 (2)
C10—C9—C8116.48 (15)O4—C23—C22128.3 (2)
C11—C9—H9A104.6O3—C23—C22110.47 (19)
C10—C9—H9A104.6C20—C24—H24A109.5
C8—C9—H9A104.6C20—C24—H24B109.5
C19—C10—C1103.69 (15)H24A—C24—H24B109.5
C19—C10—C9114.31 (16)C20—C24—H24C109.5
C1—C10—C9110.40 (15)H24A—C24—H24C109.5
C19—C10—C5111.38 (15)H24B—C24—H24C109.5
C1—C10—C5109.72 (15)C4—C25—H25A120.0
C9—C10—C5107.31 (15)C4—C25—H25B120.0
C12—C11—C9113.57 (16)H25A—C25—H25B120.0
C12—C11—H11A108.9C4—C26—H26A109.5
C9—C11—H11A108.9C4—C26—H26B109.5
C12—C11—H11B108.9H26A—C26—H26B109.5
C9—C11—H11B108.9C4—C26—H26C109.5
H11A—C11—H11B107.7H26A—C26—H26C109.5
C13—C12—C11109.93 (16)H26B—C26—H26C109.5
C13—C12—H12A109.7C8—C27—H27A109.5
C11—C12—H12A109.7C8—C27—H27B109.5
C13—C12—H12B109.7H27A—C27—H27B109.5
C11—C12—H12B109.7C8—C27—H27C109.5
H12A—C12—H12B108.2H27A—C27—H27C109.5
C12—C13—C17119.33 (16)H27B—C27—H27C109.5
C12—C13—C14111.90 (16)O2B—C28B—H28D109.5
C17—C13—C14104.72 (15)O2B—C28B—H28E109.5
C12—C13—H13A106.7H28D—C28B—H28E109.5
C17—C13—H13A106.7O2B—C28B—H28F109.5
C14—C13—H13A106.7H28D—C28B—H28F109.5
C15—C14—C13101.14 (15)H28E—C28B—H28F109.5
C15—C14—C18105.73 (16)H1W1—O1W—H2W1111.2
C13—C14—C18110.52 (15)
C10—C1—C2—C3175.99 (17)C9—C11—C12—C1352.3 (2)
C28A—O2A—C3—O1A4.2 (16)C11—C12—C13—C17179.56 (17)
C28A—O2A—C3—O1B52 (11)C11—C12—C13—C1456.9 (2)
C28A—O2A—C3—O2B10.4 (19)C12—C13—C14—C15173.67 (15)
C28A—O2A—C3—C2177.4 (5)C17—C13—C14—C1543.02 (18)
C28B—O2B—C3—O1A74 (6)C12—C13—C14—C1862.0 (2)
C28B—O2B—C3—O1B4 (3)C17—C13—C14—C1868.62 (19)
C28B—O2B—C3—O2A8 (3)C12—C13—C14—C862.44 (19)
C28B—O2B—C3—C2175.0 (12)C17—C13—C14—C8166.90 (15)
C1—C2—C3—O1A88.7 (12)C7—C8—C14—C1567.8 (2)
C1—C2—C3—O1B96.4 (6)C27—C8—C14—C1552.1 (2)
C1—C2—C3—O2A92.9 (5)C9—C8—C14—C15173.92 (16)
C1—C2—C3—O2B75.3 (14)C7—C8—C14—C13178.27 (16)
C25—C4—C5—C6129.0 (2)C27—C8—C14—C1361.8 (2)
C26—C4—C5—C647.1 (3)C9—C8—C14—C1359.96 (19)
C25—C4—C5—C10101.9 (2)C7—C8—C14—C1855.1 (2)
C26—C4—C5—C1081.9 (2)C27—C8—C14—C18174.98 (16)
C4—C5—C6—C7170.36 (17)C9—C8—C14—C1863.2 (2)
C10—C5—C6—C758.8 (2)C13—C14—C15—C1636.41 (19)
C5—C6—C7—C857.2 (2)C18—C14—C15—C1678.84 (19)
C6—C7—C8—C2769.8 (2)C8—C14—C15—C16154.78 (17)
C6—C7—C8—C951.2 (2)C14—C15—C16—C1717.0 (2)
C6—C7—C8—C14168.99 (16)C12—C13—C17—C2075.7 (2)
C7—C8—C9—C11176.10 (14)C14—C13—C17—C20158.18 (17)
C27—C8—C9—C1164.9 (2)C12—C13—C17—C16158.89 (18)
C14—C8—C9—C1156.07 (19)C14—C13—C17—C1632.73 (19)
C7—C8—C9—C1051.2 (2)C15—C16—C17—C20137.46 (18)
C27—C8—C9—C1067.7 (2)C15—C16—C17—C139.6 (2)
C14—C8—C9—C10171.27 (15)C23—O3—C20—C2498.95 (19)
C2—C1—C10—C19172.70 (17)C23—O3—C20—C17138.00 (17)
C2—C1—C10—C949.8 (2)C23—O3—C20—C2119.3 (2)
C2—C1—C10—C568.2 (2)C13—C17—C20—O367.8 (2)
C11—C9—C10—C1961.2 (2)C16—C17—C20—O3171.40 (15)
C8—C9—C10—C1970.7 (2)C13—C17—C20—C2450.0 (3)
C11—C9—C10—C155.2 (2)C16—C17—C20—C2470.9 (3)
C8—C9—C10—C1172.91 (15)C13—C17—C20—C21179.70 (17)
C11—C9—C10—C5174.77 (15)C16—C17—C20—C2158.9 (2)
C8—C9—C10—C553.4 (2)O3—C20—C21—C2225.6 (2)
C4—C5—C10—C1958.6 (2)C24—C20—C21—C2288.4 (2)
C6—C5—C10—C1970.8 (2)C17—C20—C21—C22140.6 (2)
C4—C5—C10—C155.6 (2)C20—C21—C22—C2323.4 (2)
C6—C5—C10—C1174.97 (15)C20—O3—C23—O4175.35 (18)
C4—C5—C10—C9175.60 (16)C20—O3—C23—C224.4 (2)
C6—C5—C10—C955.00 (19)C21—C22—C23—O4167.6 (2)
C10—C9—C11—C12172.33 (16)C21—C22—C23—O312.6 (2)
C8—C9—C11—C1253.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i1.061.942.912 (4)151
C2—H2A···O4ii0.972.453.305 (3)146
C12—H12B···O30.972.583.154 (2)118
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC28H44O4·0.56H2O
Mr454.68
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.2246 (2), 13.3872 (4), 26.1898 (8)
V3)2533.00 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.34 × 0.23 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.818, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
52930, 3968, 3522
Rint0.044
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05
No. of reflections3968
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19
Absolute structureFlack (1983), 1634 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i1.061.942.912 (4)151
C2—H2A···O4ii0.972.453.305 (3)146
C12—H12B···O30.972.583.154 (2)118
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Permanent address: Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Additional correspondence author, email: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

This work was supported financially by the Office of Higher Education Commission (CHE-RES-PD), Thailand. The authors thank the Prince of Songkla University for financial support and also the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Joycharat, N., Voravuthikunchai, S. P. & Chantrapromma, S. (2010). Acta Cryst. E66, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B. & Voravuthikunchai, S. P. (2010). Can. J. Chem. In the press.  Google Scholar
First citationPointinger, S., Promdang, S., Vajrodaya, S., Pannell, C. M., Hofer, O., Mereiter, K. & Greger, H. (2008). Phytochemistry, 69, 2696–2703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeger, C., Pointinger, S., Greger, H. & Hofer, O. (2008). Tetrahedron Lett. 49, 4313–4315.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1604-o1605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds