organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4H-chromen-4-one

aShandong Provincial Key Laboratory of Microbial Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 15 May 2010; accepted 29 May 2010; online 5 June 2010)

In the title chromenone derivative, C10H8O2, the two fused six-membered rings are coplanar, with a mean deviation of 0.0261 (1) Å from the plane through the non-H atoms of the rings. The carbonyl and methyl substituents of the pyran ring also lie close to that plane, with the O and C atoms deviating by 0.0557 (1) and 0.1405 (1) Å, respectively. In the crystal, weak C—H⋯O contacts form chains along the a axis.

Related literature

For the pharmaceutical applications of chromanone compounds, see: Shi et al. (2004[Shi, G. F., Lu, R. H., Yang, Y. S., Li, C. L., Yang, A. M. & Cai, L. X. (2004). Chin. J. Struct. Chem. 23, 1164-1169.]). For related structures, see: Takikawa & Suzuki (2007[Takikawa, H. & Suzuki, K. (2007). Org. Lett. 9, 2713—2716.]); Patonay et al. (2002[Patonay, T., Juhász-Tóth, É. & Bényei, A. (2002). Eur. J. Org. Chem. pp. 285—295.]); Alaniz & Rovis, (2005[Alaniz, J. R. de & Rovis, T. (2005). J. Am. Chem. Soc. 127, 6284—6289.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O2

  • Mr = 160.16

  • Triclinic, [P \overline 1]

  • a = 6.5284 (13) Å

  • b = 7.2210 (14) Å

  • c = 8.9834 (18) Å

  • α = 75.137 (2)°

  • β = 78.169 (2)°

  • γ = 80.895 (2)°

  • V = 398.12 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.993

  • 2771 measured reflections

  • 1394 independent reflections

  • 1143 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.00

  • 1394 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.70 3.4374 (19) 137
C7—H7⋯O2ii 0.93 2.69 3.3820 (19) 132
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of chromanone derivatives has attracted continuous research interest due to their applications as vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Shi et al., 2004). Here, we describe the cystallization and structural characterization of the title compound.

As shown in Fig 1. the two fused six membered rings are coplanar with a mean deviation of 0.0261 (1) Å from the plane through the non-hydrogen atoms of the rings. The carbonyl and methyl substituents of the pyran ring also lie close to that plane with deviations of 0.0557 (1) and 0.1405 (1) Å, respectively. The C=O and C—O bond distances, 1.367 (2) and 1.231 (2)—1.355 (2) Å, respectively, are in the normal range compared to reported chromanone derivatives (Takikawa & Suzuki, 2007; Patonay et al., 2002; Alaniz & Rovis, 2005). In the crystal structure, chains along the a axis are formed via the weak C—H···O contacts.

Related literature top

For the pharmaceutical applications of chromanone compounds, see: Shi et al. (2004). For related structures, see: Takikawa & Suzuki (2007); Patonay et al. (2002); Alaniz & Rovis, (2005).

Experimental top

3-methyl-4H-chromen-4-one powder (10 mmoL, 1.60 g) was purchased from Jinan Henghua Science & Technology Co. Ltd., dissolved in 20 ml ethanol and evaporated in an open flask at room temperature. One week later, colorless block like crystals of the title compound suitable for the X-ray analysis were obained. Anal. C10H8O2: C, 74.93; H, 5.00%. Found: C, 74.86; H, 4.89%.

Refinement top

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.95 Å for aromatic and formyl, 0.99 Å for methylene and 0.98 Å for methyl) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) [for methyl groups Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound showing the atom numbering with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing showing chains formed along the a axis via weak C—H···O contacts.
3-Methyl-4H-chromen-4-one top
Crystal data top
C10H8O2Z = 2
Mr = 160.16F(000) = 168
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5284 (13) ÅCell parameters from 1573 reflections
b = 7.2210 (14) Åθ = 2.4–28.4°
c = 8.9834 (18) ŵ = 0.09 mm1
α = 75.137 (2)°T = 296 K
β = 78.169 (2)°Block, colorless
γ = 80.895 (2)°0.12 × 0.10 × 0.08 mm
V = 398.12 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1394 independent reflections
Radiation source: fine-focus sealed tube1143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.989, Tmax = 0.993k = 88
2771 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.065P)2 + 0.067P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1394 reflectionsΔρmax = 0.18 e Å3
111 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (10)
Crystal data top
C10H8O2γ = 80.895 (2)°
Mr = 160.16V = 398.12 (14) Å3
Triclinic, P1Z = 2
a = 6.5284 (13) ÅMo Kα radiation
b = 7.2210 (14) ŵ = 0.09 mm1
c = 8.9834 (18) ÅT = 296 K
α = 75.137 (2)°0.12 × 0.10 × 0.08 mm
β = 78.169 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1394 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1143 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.014
2771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1394 reflectionsΔρmin = 0.14 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5883 (2)0.71757 (18)1.05339 (16)0.0417 (3)
C20.4277 (2)0.76708 (17)0.96592 (15)0.0390 (3)
C30.4728 (2)0.76636 (18)0.79936 (15)0.0427 (4)
C40.6928 (2)0.71855 (19)0.73797 (16)0.0455 (4)
C50.8332 (2)0.6710 (2)0.83389 (17)0.0503 (4)
H50.97260.63980.79050.060*
C60.7581 (3)0.7246 (3)0.56727 (18)0.0700 (5)
H6A0.90740.69030.54450.105*
H6B0.72220.85240.50780.105*
H6C0.68640.63500.54000.105*
C70.2263 (2)0.8210 (2)1.04176 (18)0.0506 (4)
H70.11500.85330.98640.061*
C80.1897 (3)0.8271 (2)1.19601 (19)0.0602 (4)
H80.05490.86461.24430.072*
C90.3541 (3)0.7771 (2)1.28035 (18)0.0607 (5)
H90.32910.78181.38510.073*
C100.5524 (3)0.7212 (2)1.21027 (17)0.0554 (4)
H100.66210.68591.26710.066*
O10.33452 (17)0.80490 (17)0.71782 (12)0.0648 (4)
O20.79069 (14)0.66418 (15)0.98916 (11)0.0522 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (7)0.0398 (7)0.0441 (7)0.0053 (5)0.0089 (6)0.0103 (5)
C20.0379 (7)0.0336 (6)0.0444 (7)0.0056 (5)0.0078 (5)0.0057 (5)
C30.0444 (8)0.0392 (7)0.0440 (7)0.0064 (6)0.0133 (6)0.0031 (5)
C40.0487 (8)0.0439 (7)0.0421 (7)0.0055 (6)0.0062 (6)0.0080 (6)
C50.0397 (8)0.0574 (9)0.0522 (8)0.0016 (6)0.0028 (6)0.0162 (7)
C60.0782 (12)0.0787 (12)0.0445 (9)0.0009 (9)0.0016 (8)0.0108 (8)
C70.0418 (8)0.0482 (8)0.0594 (9)0.0046 (6)0.0063 (6)0.0106 (6)
C80.0552 (9)0.0551 (9)0.0635 (10)0.0085 (7)0.0104 (7)0.0168 (7)
C90.0803 (12)0.0573 (9)0.0437 (8)0.0141 (8)0.0018 (8)0.0164 (7)
C100.0673 (10)0.0573 (9)0.0461 (8)0.0084 (7)0.0180 (7)0.0129 (7)
O10.0559 (7)0.0849 (8)0.0544 (7)0.0039 (6)0.0253 (5)0.0076 (5)
O20.0403 (6)0.0681 (7)0.0517 (6)0.0017 (5)0.0162 (4)0.0184 (5)
Geometric parameters (Å, º) top
C1—O21.3668 (17)C6—H6A0.9600
C1—C21.3854 (19)C6—H6B0.9600
C1—C101.387 (2)C6—H6C0.9600
C2—C71.3967 (19)C7—C81.368 (2)
C2—C31.4657 (19)C7—H70.9300
C3—O11.2312 (16)C8—C91.388 (2)
C3—C41.450 (2)C8—H80.9300
C4—C51.332 (2)C9—C101.366 (2)
C4—C61.4961 (19)C9—H90.9300
C5—O21.3548 (17)C10—H100.9300
C5—H50.9300
O2—C1—C2121.70 (12)H6A—C6—H6B109.5
O2—C1—C10116.53 (12)C4—C6—H6C109.5
C2—C1—C10121.77 (14)H6A—C6—H6C109.5
C1—C2—C7117.46 (13)H6B—C6—H6C109.5
C1—C2—C3120.18 (13)C8—C7—C2121.23 (14)
C7—C2—C3122.34 (13)C8—C7—H7119.4
O1—C3—C4122.69 (13)C2—C7—H7119.4
O1—C3—C2122.50 (13)C7—C8—C9119.91 (15)
C4—C3—C2114.81 (11)C7—C8—H8120.0
C5—C4—C3119.62 (13)C9—C8—H8120.0
C5—C4—C6121.16 (14)C10—C9—C8120.34 (14)
C3—C4—C6119.22 (13)C10—C9—H9119.8
C4—C5—O2125.65 (13)C8—C9—H9119.8
C4—C5—H5117.2C9—C10—C1119.28 (14)
O2—C5—H5117.2C9—C10—H10120.4
C4—C6—H6A109.5C1—C10—H10120.4
C4—C6—H6B109.5C5—O2—C1117.89 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.703.4374 (19)137
C7—H7···O2ii0.932.693.3820 (19)132
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8O2
Mr160.16
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5284 (13), 7.2210 (14), 8.9834 (18)
α, β, γ (°)75.137 (2), 78.169 (2), 80.895 (2)
V3)398.12 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
2771, 1394, 1143
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.00
No. of reflections1394
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.703.4374 (19)136.8
C7—H7···O2ii0.932.693.3820 (19)132.0
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

Financial support from the International Cooperation Program for Excellent Lectures of 2008 by Shandong Provincial Education Department is gratefully acknowledged.

References

First citationAlaniz, J. R. de & Rovis, T. (2005). J. Am. Chem. Soc. 127, 6284—6289.  Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatonay, T., Juhász-Tóth, É. & Bényei, A. (2002). Eur. J. Org. Chem. pp. 285—295.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, G. F., Lu, R. H., Yang, Y. S., Li, C. L., Yang, A. M. & Cai, L. X. (2004). Chin. J. Struct. Chem. 23, 1164–1169.  CAS Google Scholar
First citationTakikawa, H. & Suzuki, K. (2007). Org. Lett. 9, 2713—2716.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds