organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Meth­­oxy-3,3,5-tri­methyl-3,11-di­hydro­pyrano[3,2-a]carbazole

aDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 May 2010; accepted 31 May 2010; online 5 June 2010)

In the title compound, C19H19NO2, commonly called koenimbine, the pyran ring adopts a sofa conformation. The carbazole ring system is planar [r.m.s. deviation = 0.063 (1) Å]. A C(10) zigzag chain running along the b axis is formed through inter­molecular C—H⋯O hydrogen bonds. The chains are linked via weak C—H⋯π and N—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the bio­logical activity of carbazole derivatives, see: Kong et al. (1986[Kong, Y. C., Ng, K. H., But, P. P. H., li, Q., Yu, S. X., Zhang, H. T., Cheng, K. F., Soejarto, D. D., Kan, W. S. & Waterman, P. G. (1986). J. Ethanopharmacol. 15,195-200.]); Ito (2000[Ito, C. (2000). Nat. Med. 54, 117-122.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWirr, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Chowdhury et al. (2001[Chowdhury, B. K., Jha, S., Bhattacharya, P. & Mukherjee, J. (2001). Indian J. Chem. Sect. B, 40, 490-494.]); Fiebi et al. (1985[Fiebi, M., Pezzuto, J. M., Soejarto, D. D. & Kinghorn, A. D. (1985). Phytochemistry, 24, 3041-3043.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO2

  • Mr = 293.35

  • Monoclinic, P 21 /c

  • a = 8.290 (5) Å

  • b = 8.693 (5) Å

  • c = 21.326 (5) Å

  • β = 90.742 (5)°

  • V = 1536.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.987

  • 14325 measured reflections

  • 3803 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.05

  • 3803 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2/C7/C8/C16 ring and Cg4 is the centroid of the C8–C11/C15/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.54 3.333 (2) 143
N1—H1⋯Cg4ii 0.872 (18) 2.744 (17) 3.528 (2) 149.7 (14)
C17—H17CCg1iii 0.96 3.08 3.489 (3) 107
C17—H17CCg4iii 0.96 3.00 3.514 (3) 115
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Murraya koenigii (L.) Spreng (Family of Rutaceae), commonly known as the Indian curry leaf plant, is cultivated for the aromatic and appetizing nature of its leaves. The leaves are used for flavouring southern Asian dishes. Various parts of the plant have been used in traditional or folk medicine for the treatment of head-, tooth-, and stomach aches, influenza, rheumatism, traumatic injury, insect and snake bites, and also as an antidysentric as well as an astringent (Kong et al., 1986). Recently, several biological activities have been reported for carbazole alkaloids. Bioactive coumarins, acridone alkaloids and carbazole alkaloids from the family of Rutaceae were reviewed (Ito, 2000). Mahanimbine, murrayanol, and mahanine compounds isolated from M. koenigii exhibit antioxidant, mosquitocidal and antimicrobial activities (Ramsewak et al.., 1999). Activities of carbazoles from M. koenigii against Gram-positive and Gram-negative bacteria and fungi were reported (Chowdhury et al., 2001). The ethanol extract of M. koenigii displayed cytotoxic activity against cultured KB cells (Fiebi et al., 1985). Against this background and to ascertain the structure and molecular conformation, the X-ray structure determination of the title compound has been carried out.

An ORTEP plot of the molecule is shown in Fig. 1. The carbazole ring system is planar (r.m.s. deviation 0.016 Å). The pyran ring in the molecule adopts sofa conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983): q2 = 0.287 (1) Å, q3 = -0.126 (1) Å, ϕ2 = 136.6 (3)° and Δs(C12 & C15)= 10.9 (2)°. The N—C bond lengths, namely N1—C2 and N1—C16 [1.386 (2) & 1.383 (2) Å] deviate slightly from the mean value reported in the literature 1.370 (12) Å (Allen et al., 1987). The sum of the bond angles around N1 [359.3°] is in accordance with sp2 hybridization. The methoxy group substituted at C5 deviates slightly from the plane of the attached carbazole ring system [C6—C5—O2—C17 = 19.3 (2)°].

The crystal packing of the molecules is controlled by C–H···O and C—H··· π types of intermolecular interactions. Atom C8 of the molecule at (x, y, z) donates a proton to atom O1 of the molecule at (-x+2, y+1/2, -z+1/2+1), which form a one dimensional zigzag C(10) chain (Bernstein et al., 1995) running along the b–axis, Fig. 2. The packing of the molecules is further influenced by C—H··· π contacts and an N1—H1···Cg4 interaction of Table 1; Cg4 is the centroid of the C8/C9/C10/C11/C15/C16 benzene ring.

Related literature top

For bond-length data, see: Allen et al. (1987). For the biological activity of carbazole derivatives, see: Kong et al. (1986); Ito (2000); Ramsewak et al. (1999); Chowdhury et al. (2001); Fiebi et al. (1985). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The air dried fruit pulps of M. koenigii were extracted with n-hexane in a Soxhlet apparatus. The total extract was concentrated and kept at room temperature. A dirty white solid separated out. This was dissolved in chloroform and chromatographed using a silica gel column and eluted successively with n-hexane and n-hexane- chloroform mixture. The fraction obtained with 7% chloroform in hexane afforded a white crystalline solid. Which on repeated crystallization with methanol:chloroform (3:1) as solvent afforded white crystalline solid koenimbine (3,11-Dihydro-8-methoxy-3,3,5- trimethylpyrano[3,2-a]carbazole).

Refinement top

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
8-Methoxy-3,3,5-trimethyl-3,11-dihydropyrano[3,2-a]carbazole top
Crystal data top
C19H19NO2F(000) = 624
Mr = 293.35Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1546 reflections
a = 8.290 (5) Åθ = 1.9–28.3°
b = 8.693 (5) ŵ = 0.08 mm1
c = 21.326 (5) ÅT = 293 K
β = 90.742 (5)°Block, colorless
V = 1536.7 (13) Å30.20 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3803 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 911
Tmin = 0.984, Tmax = 0.987k = 911
14325 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.2629P]
where P = (Fo2 + 2Fc2)/3
3803 reflections(Δ/σ)max = 0.004
207 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H19NO2V = 1536.7 (13) Å3
Mr = 293.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.290 (5) ŵ = 0.08 mm1
b = 8.693 (5) ÅT = 293 K
c = 21.326 (5) Å0.20 × 0.17 × 0.16 mm
β = 90.742 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3050 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.026
14325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
3803 reflectionsΔρmin = 0.22 e Å3
207 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.12605 (11)0.25969 (10)0.57699 (4)0.0444 (2)
O20.32475 (14)0.26609 (14)0.86787 (5)0.0676 (3)
N10.93165 (14)0.40700 (14)0.78439 (5)0.0436 (3)
C20.78388 (15)0.37981 (14)0.81195 (6)0.0396 (3)
C30.72718 (17)0.42649 (16)0.87003 (6)0.0468 (3)
H30.79110.48510.89710.056*
C40.57398 (18)0.38336 (16)0.88612 (6)0.0487 (3)
H40.53380.41340.92480.058*
C50.47677 (16)0.29541 (15)0.84589 (6)0.0451 (3)
C60.53268 (16)0.24753 (14)0.78823 (6)0.0407 (3)
H60.46840.18830.76160.049*
C70.68785 (15)0.29046 (14)0.77121 (5)0.0368 (3)
C80.78297 (14)0.26342 (13)0.71591 (5)0.0360 (3)
C90.75455 (14)0.18608 (15)0.65939 (6)0.0381 (3)
H90.65790.13370.65320.046*
C100.86873 (15)0.18656 (14)0.61251 (5)0.0381 (3)
C111.01461 (15)0.26595 (13)0.62376 (6)0.0364 (3)
C121.25668 (16)0.37274 (16)0.57659 (7)0.0472 (3)
C131.31224 (18)0.40802 (18)0.64208 (8)0.0561 (4)
H131.41900.43680.64920.067*
C141.21332 (16)0.39936 (17)0.69017 (7)0.0493 (3)
H141.24710.43190.72980.059*
C151.05153 (14)0.33853 (14)0.68064 (6)0.0377 (3)
C160.93148 (14)0.33859 (14)0.72584 (5)0.0369 (3)
C170.23594 (19)0.1452 (2)0.84007 (8)0.0625 (4)
H17A0.21610.16810.79660.094*
H17B0.13500.13380.86110.094*
H17C0.29630.05120.84350.094*
C180.83971 (18)0.10395 (18)0.55133 (6)0.0512 (3)
H18A0.89710.00810.55170.077*
H18B0.87710.16650.51740.077*
H18C0.72640.08460.54590.077*
C191.38727 (19)0.2969 (2)0.53819 (8)0.0624 (4)
H19A1.42050.20290.55820.094*
H19B1.47800.36500.53520.094*
H19C1.34590.27470.49690.094*
C201.1956 (2)0.5186 (2)0.54519 (9)0.0694 (5)
H20A1.16330.49620.50280.104*
H20B1.28000.59430.54520.104*
H20C1.10490.55770.56780.104*
H11.005 (2)0.469 (2)0.7994 (8)0.063 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (5)0.0453 (5)0.0480 (5)0.0053 (4)0.0115 (4)0.0031 (4)
O20.0550 (7)0.0727 (8)0.0759 (7)0.0199 (5)0.0296 (6)0.0240 (6)
N10.0379 (6)0.0484 (6)0.0446 (6)0.0083 (5)0.0010 (4)0.0095 (5)
C20.0392 (7)0.0376 (6)0.0421 (6)0.0015 (5)0.0011 (5)0.0026 (5)
C30.0519 (8)0.0456 (7)0.0431 (6)0.0064 (6)0.0028 (5)0.0091 (5)
C40.0566 (8)0.0456 (7)0.0443 (6)0.0036 (6)0.0118 (6)0.0081 (5)
C50.0427 (7)0.0412 (7)0.0516 (7)0.0026 (5)0.0115 (6)0.0022 (5)
C60.0379 (7)0.0389 (6)0.0454 (6)0.0027 (5)0.0032 (5)0.0035 (5)
C70.0363 (6)0.0348 (6)0.0392 (6)0.0008 (5)0.0012 (5)0.0017 (5)
C80.0325 (6)0.0352 (6)0.0402 (6)0.0010 (4)0.0010 (4)0.0000 (4)
C90.0320 (6)0.0406 (6)0.0419 (6)0.0044 (5)0.0003 (5)0.0033 (5)
C100.0371 (6)0.0372 (6)0.0400 (6)0.0011 (5)0.0007 (5)0.0031 (5)
C110.0335 (6)0.0343 (6)0.0416 (6)0.0012 (4)0.0049 (5)0.0017 (5)
C120.0375 (7)0.0454 (7)0.0589 (8)0.0043 (5)0.0118 (6)0.0042 (6)
C130.0379 (7)0.0620 (9)0.0686 (9)0.0139 (6)0.0062 (6)0.0086 (7)
C140.0383 (7)0.0537 (8)0.0558 (7)0.0093 (6)0.0009 (6)0.0077 (6)
C150.0331 (6)0.0359 (6)0.0443 (6)0.0015 (5)0.0004 (5)0.0009 (5)
C160.0343 (6)0.0356 (6)0.0409 (6)0.0012 (4)0.0012 (5)0.0016 (5)
C170.0472 (9)0.0626 (10)0.0781 (11)0.0123 (7)0.0114 (7)0.0048 (8)
C180.0496 (8)0.0590 (9)0.0450 (7)0.0091 (6)0.0049 (6)0.0127 (6)
C190.0458 (8)0.0706 (10)0.0714 (10)0.0002 (7)0.0205 (7)0.0012 (8)
C200.0619 (10)0.0536 (9)0.0931 (12)0.0001 (8)0.0121 (9)0.0182 (9)
Geometric parameters (Å, º) top
O1—C111.3693 (15)C10—C181.5059 (17)
O1—C121.4625 (17)C11—C151.3977 (17)
O2—C51.3741 (18)C12—C131.497 (2)
O2—C171.410 (2)C12—C191.517 (2)
N1—C161.3830 (16)C12—C201.518 (2)
N1—C21.3859 (18)C13—C141.323 (2)
N1—H10.872 (18)C13—H130.9300
C2—C31.3911 (18)C14—C151.4535 (19)
C2—C71.4050 (17)C14—H140.9300
C3—C41.372 (2)C15—C161.3945 (18)
C3—H30.9300C17—H17A0.9600
C4—C51.397 (2)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.3838 (18)C18—H18A0.9600
C6—C71.3920 (19)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.4463 (17)C19—H19A0.9600
C8—C91.3975 (16)C19—H19B0.9600
C8—C161.4075 (18)C19—H19C0.9600
C9—C101.3856 (17)C20—H20A0.9600
C9—H90.9300C20—H20B0.9600
C10—C111.4102 (18)C20—H20C0.9600
C11—O1—C12118.95 (10)C13—C12—C20109.71 (14)
C5—O2—C17118.11 (12)C19—C12—C20111.18 (13)
C16—N1—C2108.60 (10)C14—C13—C12121.68 (13)
C16—N1—H1126.3 (11)C14—C13—H13119.2
C2—N1—H1124.4 (11)C12—C13—H13119.2
N1—C2—C3129.69 (12)C13—C14—C15119.48 (13)
N1—C2—C7109.20 (11)C13—C14—H14120.3
C3—C2—C7121.11 (12)C15—C14—H14120.3
C4—C3—C2117.87 (12)C16—C15—C11116.73 (11)
C4—C3—H3121.1C16—C15—C14124.66 (12)
C2—C3—H3121.1C11—C15—C14118.49 (11)
C3—C4—C5121.62 (12)N1—C16—C15129.19 (11)
C3—C4—H4119.2N1—C16—C8109.03 (11)
C5—C4—H4119.2C15—C16—C8121.78 (11)
O2—C5—C6124.51 (13)O2—C17—H17A109.5
O2—C5—C4114.60 (12)O2—C17—H17B109.5
C6—C5—C4120.87 (13)H17A—C17—H17B109.5
C5—C6—C7118.19 (12)O2—C17—H17C109.5
C5—C6—H6120.9H17A—C17—H17C109.5
C7—C6—H6120.9H17B—C17—H17C109.5
C6—C7—C2120.34 (12)C10—C18—H18A109.5
C6—C7—C8133.19 (11)C10—C18—H18B109.5
C2—C7—C8106.47 (11)H18A—C18—H18B109.5
C9—C8—C16119.37 (11)C10—C18—H18C109.5
C9—C8—C7133.94 (11)H18A—C18—H18C109.5
C16—C8—C7106.68 (10)H18B—C18—H18C109.5
C10—C9—C8120.78 (11)C12—C19—H19A109.5
C10—C9—H9119.6C12—C19—H19B109.5
C8—C9—H9119.6H19A—C19—H19B109.5
C9—C10—C11118.11 (11)C12—C19—H19C109.5
C9—C10—C18121.38 (11)H19A—C19—H19C109.5
C11—C10—C18120.51 (11)H19B—C19—H19C109.5
O1—C11—C15120.52 (11)C12—C20—H20A109.5
O1—C11—C10116.22 (11)C12—C20—H20B109.5
C15—C11—C10123.10 (11)H20A—C20—H20B109.5
O1—C12—C13110.56 (11)C12—C20—H20C109.5
O1—C12—C19104.16 (12)H20A—C20—H20C109.5
C13—C12—C19112.32 (13)H20B—C20—H20C109.5
O1—C12—C20108.74 (12)
C16—N1—C2—C3179.35 (13)C9—C10—C11—O1178.11 (11)
C16—N1—C2—C71.02 (15)C18—C10—C11—O11.39 (17)
N1—C2—C3—C4179.97 (14)C9—C10—C11—C152.60 (19)
C7—C2—C3—C40.4 (2)C18—C10—C11—C15176.90 (12)
C2—C3—C4—C50.0 (2)C11—O1—C12—C1336.86 (16)
C17—O2—C5—C619.3 (2)C11—O1—C12—C19157.72 (12)
C17—O2—C5—C4162.32 (14)C11—O1—C12—C2083.65 (15)
C3—C4—C5—O2177.91 (13)O1—C12—C13—C1429.5 (2)
C3—C4—C5—C60.5 (2)C19—C12—C13—C14145.39 (16)
O2—C5—C6—C7177.72 (13)C20—C12—C13—C1490.42 (18)
C4—C5—C6—C70.5 (2)C12—C13—C14—C156.7 (2)
C5—C6—C7—C20.09 (19)O1—C11—C15—C16179.54 (10)
C5—C6—C7—C8179.29 (13)C10—C11—C15—C164.22 (18)
N1—C2—C7—C6179.94 (11)O1—C11—C15—C143.37 (18)
C3—C2—C7—C60.4 (2)C10—C11—C15—C14171.96 (12)
N1—C2—C7—C80.40 (14)C13—C14—C15—C16172.97 (14)
C3—C2—C7—C8179.92 (12)C13—C14—C15—C1111.2 (2)
C6—C7—C8—C90.6 (2)C2—N1—C16—C15178.26 (13)
C2—C7—C8—C9178.84 (13)C2—N1—C16—C81.24 (14)
C6—C7—C8—C16179.10 (13)C11—C15—C16—N1176.68 (12)
C2—C7—C8—C160.34 (13)C14—C15—C16—N17.4 (2)
C16—C8—C9—C101.93 (18)C11—C15—C16—C82.77 (18)
C7—C8—C9—C10176.42 (12)C14—C15—C16—C8173.14 (12)
C8—C9—C10—C110.59 (18)C9—C8—C16—N1179.73 (11)
C8—C9—C10—C18179.91 (12)C7—C8—C16—N10.97 (14)
C12—O1—C11—C1522.17 (17)C9—C8—C16—C150.18 (18)
C12—O1—C11—C10162.20 (11)C7—C8—C16—C15178.58 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/C7/C8/C16 ring and Cg4 is the centroid of the C8–C11/C15/C16 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.333 (2)143
N1—H1···Cg4ii0.872 (18)2.744 (17)3.528 (2)149.7 (14)
C17—H17C···Cg1iii0.963.083.489 (3)107
C17—H17C···Cg4iii0.963.003.514 (3)115
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H19NO2
Mr293.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.290 (5), 8.693 (5), 21.326 (5)
β (°) 90.742 (5)
V3)1536.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14325, 3803, 3050
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.05
No. of reflections3803
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/C7/C8/C16 ring and Cg4 is the centroid of the C8–C11/C15/C16 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.543.333 (2)143.0
N1—H1···Cg4ii0.872 (18)2.744 (17)3.528 (2)149.7 (14)
C17—H17C···Cg1iii0.96003.07973.489 (3)107.37
C17—H17C···Cg4iii0.96003.00023.514 (3)114.87
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to thank the TBI Consultancy, University of Madras, Chennai, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, B. K., Jha, S., Bhattacharya, P. & Mukherjee, J. (2001). Indian J. Chem. Sect. B, 40, 490–494.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFiebi, M., Pezzuto, J. M., Soejarto, D. D. & Kinghorn, A. D. (1985). Phytochemistry, 24, 3041–3043.  Google Scholar
First citationIto, C. (2000). Nat. Med. 54, 117–122.  CAS Google Scholar
First citationKong, Y. C., Ng, K. H., But, P. P. H., li, Q., Yu, S. X., Zhang, H. T., Cheng, K. F., Soejarto, D. D., Kan, W. S. & Waterman, P. G. (1986). J. Ethanopharmacol. 15,195–200.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWirr, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds