organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium picrate

aPost Graduate and Research Department of Chemistry, Kongunadu College of Arts and Science, Coimbatore 641 029, India, bPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 2 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C5H7N2+·C6H2N3O7, there are two crystallographically independent cations and anions (A and B) in the asymmetric unit. In both picrate anions, one of the nitro groups lies in the plane of the benzene ring [r.m.s. deviations = 0.014 (2) and 0.014 (2) Å for anions A and B, respectively] and the other two are twisted away by 39.0 (2) and 18.8 (2)° in A, and 18.2 (1) and 2.5 (2)° in B. In the crystal, the cations and anions are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network.

Related literature

For general background to picrate complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C6H2N3O7

  • Mr = 323.23

  • Triclinic, [P \overline 1]

  • a = 11.2543 (4) Å

  • b = 11.6588 (5) Å

  • c = 12.9883 (5) Å

  • α = 114.641 (4)°

  • β = 100.204 (3)°

  • γ = 103.928 (3)°

  • V = 1427.16 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 110 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.981

  • 12905 measured reflections

  • 6555 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.179

  • S = 0.90

  • 6555 reflections

  • 438 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O1B 0.96 (3) 1.79 (3) 2.681 (3) 152 (2)
N1B—H1B⋯O7B 0.96 (3) 2.36 (3) 3.035 (3) 127 (2)
N7B—H7D⋯O1B 0.84 (3) 2.04 (3) 2.784 (3) 148 (3)
N7B—H7D⋯O2B 0.84 (3) 2.47 (3) 3.165 (3) 141 (2)
N1A—H1A⋯O1A 0.87 (3) 1.97 (3) 2.726 (2) 145 (2)
N1A—H1A⋯O7A 0.87 (3) 2.34 (3) 3.031 (3) 137 (2)
N7A—H7B⋯O2A 1.05 (3) 2.40 (3) 3.329 (3) 147 (2)
C10A—H10A⋯O4Bi 0.95 2.57 3.438 (3) 153
N7A—H7A⋯O2Bii 0.87 (3) 2.24 (3) 3.029 (3) 152 (3)
N7B—H7C⋯O2Aii 0.72 (3) 2.49 (3) 3.137 (3) 149 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,4,6-Trinitro phenol, also called picric acid, was primarily used to manufacture explosives and dyes. Picric acid forms molecular charge transfer complexes with aromatic compounds through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). We report here the crystal structure of the title salt to understand its molecular conformation and packing mode.

There are two crystallographically independent cations and anions (A & B) in the asymmetric unit. Both the pyridinium rings of the cation (Figure 1) are planar (r.m.s. deviations 0.004 (4) and 0.002 (3) Å). In the picrate anion, the keto O atom lies in the plane of the benzene ring [-0.010 (2) Å] in molecule A whereas it deviates by -0.076 (2)Å in molecule B. The C8A—O1A [1.252 (2) Å] and C8B—O1B [1.237 (3) Å] bonds assume partial double bond character. The C8A—C9A (1.446 (3) Å), C8B—C9B (1.450 (3) Å), C8A—C13A (1.436 (3) Å) and C8B—C13B (1.441 (3) Å) bond distances are longer than the normal bond lengths in a benzene ring. In both the anions , one of the nitro groups of the picrate lies in the plane of the benzene ring while the other two are twisted away by 39.0 (2)° [N14A/O2A/O3A] & 18.8 (2)° [N16A/O6A/O7A] for molecule A and 18.2 (1)° [N14B/O2B/O3B] & 2.5 (2)° [N16B/O6B/O7B] for molecule B.

In the crystal, the cations and anions are linked via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which form a two dimensional network (Figure 2).

Related literature top

For general background to picrate complexes, see: In et al. (1997); Zaderenko et al. (1997).

Experimental top

2-Amino pyridinium picrate was prepared from a methanol solution containing equimolar amounts of picric acid and 2-amino pyridine. Single crystals suitable for X-ray analysis are obtained by repeated recrystallization of the salt from pure methanol.

Refinement top

The N-bound H atom was located in a difference map and refined isotrophically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. A search for solvent-accessible voids in the crystal structure using PLATON shows a potential solvent volume of 114.0 Å3. However, this procedure showed no electron density in the voids. This indicates that the crystal lost nearly all of its solvent of crystallization by the time it was used for data collection, without collapse of the structure.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis.
2-Aminopyridinium picrate top
Crystal data top
C5H7N2+·C6H2N3O7Z = 4
Mr = 323.23F(000) = 664
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2543 (4) ÅCell parameters from 1241 reflections
b = 11.6588 (5) Åθ = 2.9–29.2°
c = 12.9883 (5) ŵ = 0.13 mm1
α = 114.641 (4)°T = 110 K
β = 100.204 (3)°Block, colourless
γ = 103.928 (3)°0.20 × 0.17 × 0.15 mm
V = 1427.16 (12) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6555 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.975, Tmax = 0.981k = 1315
12905 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0994P)2]
where P = (Fo2 + 2Fc2)/3
6555 reflections(Δ/σ)max = 0.003
438 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C5H7N2+·C6H2N3O7γ = 103.928 (3)°
Mr = 323.23V = 1427.16 (12) Å3
Triclinic, P1Z = 4
a = 11.2543 (4) ÅMo Kα radiation
b = 11.6588 (5) ŵ = 0.13 mm1
c = 12.9883 (5) ÅT = 110 K
α = 114.641 (4)°0.20 × 0.17 × 0.15 mm
β = 100.204 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3011 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.981Rint = 0.020
12905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.27 e Å3
6555 reflectionsΔρmin = 0.21 e Å3
438 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.09943 (15)0.43819 (16)0.43463 (15)0.0536 (5)
O1B0.23913 (17)0.3169 (2)0.1731 (2)0.0813 (7)
O2A0.27377 (16)0.3677 (2)0.54622 (19)0.0748 (6)
O2B0.40164 (17)0.3168 (2)0.3449 (2)0.0836 (7)
O3A0.20270 (17)0.33859 (19)0.67855 (17)0.0710 (6)
O3B0.36036 (19)0.1314 (2)0.3494 (2)0.0942 (8)
O4A0.20594 (19)0.04375 (18)0.48852 (19)0.0745 (6)
O4B0.0709 (2)0.1479 (2)0.2427 (2)0.0963 (8)
O5A0.35954 (18)0.03632 (19)0.36907 (19)0.0752 (6)
O5B0.2227 (2)0.1377 (2)0.1262 (2)0.1038 (9)
O6A0.28300 (19)0.3105 (3)0.2612 (2)0.1067 (9)
O6B0.14349 (18)0.1761 (2)0.0134 (2)0.0871 (7)
O7A0.09658 (17)0.40685 (19)0.26526 (17)0.0671 (6)
O7B0.03844 (19)0.3203 (2)0.0375 (2)0.0870 (7)
N1A0.17461 (19)0.6011 (2)0.33902 (18)0.0435 (5)
H1A0.124 (2)0.534 (3)0.342 (2)0.061 (8)*
N1B0.31598 (19)0.4800 (2)0.08244 (18)0.0478 (5)
H1B0.265 (2)0.409 (3)0.093 (2)0.070 (8)*
C2A0.1199 (3)0.6384 (3)0.2628 (2)0.0538 (7)
H2A0.03060.59450.21900.065*
C2B0.2668 (3)0.5098 (3)0.0024 (3)0.0631 (8)
H2B0.17910.46230.05080.076*
C3A0.1918 (3)0.7381 (3)0.2486 (3)0.0637 (8)
H3A0.15420.76420.19440.076*
C3B0.3409 (3)0.6061 (3)0.0190 (3)0.0681 (8)
H3B0.30690.62770.07810.082*
C4A0.3221 (3)0.8020 (3)0.3147 (3)0.0616 (8)
H4A0.37360.87270.30570.074*
C4B0.4689 (3)0.6726 (3)0.0531 (3)0.0621 (8)
H4B0.52300.74040.04270.075*
C5A0.3761 (3)0.7650 (2)0.3913 (2)0.0556 (7)
H5A0.46500.80960.43640.067*
C5B0.5183 (2)0.6432 (2)0.1379 (2)0.0527 (7)
H5B0.60590.69050.18650.063*
C6A0.2995 (2)0.6592 (2)0.4042 (2)0.0417 (6)
C6B0.4402 (2)0.5433 (2)0.1535 (2)0.0425 (6)
N7A0.3450 (2)0.6145 (2)0.4761 (2)0.0557 (6)
H7A0.427 (3)0.650 (3)0.514 (3)0.102 (8)*
H7B0.287 (3)0.528 (3)0.474 (3)0.102 (8)*
N7B0.4794 (3)0.5063 (3)0.2321 (2)0.0626 (7)
H7C0.547 (3)0.539 (3)0.265 (3)0.060 (10)*
H7D0.423 (3)0.450 (3)0.239 (3)0.070 (10)*
C8A0.0194 (2)0.3402 (2)0.43135 (19)0.0361 (5)
C8B0.1588 (2)0.2278 (2)0.1784 (2)0.0453 (6)
C9A0.0536 (2)0.2783 (2)0.5026 (2)0.0386 (5)
C9B0.1927 (2)0.1623 (2)0.2467 (2)0.0442 (6)
C10A0.0308 (2)0.1731 (2)0.5044 (2)0.0411 (6)
H10A0.00320.13710.55390.049*
C10B0.1087 (2)0.0598 (2)0.2493 (2)0.0451 (6)
H10B0.13730.02030.29510.054*
C11A0.1580 (2)0.1204 (2)0.4318 (2)0.0385 (5)
C11B0.0197 (2)0.0135 (2)0.1839 (2)0.0437 (6)
C12A0.2003 (2)0.1743 (2)0.3635 (2)0.0389 (5)
H12A0.28830.13840.31640.047*
C12B0.0629 (2)0.0708 (2)0.1180 (2)0.0397 (6)
H12B0.15170.03840.07420.048*
C13A0.1151 (2)0.2806 (2)0.36324 (19)0.0376 (5)
C13B0.0225 (2)0.1740 (2)0.1161 (2)0.0379 (5)
N14A0.18554 (19)0.33227 (19)0.58082 (19)0.0484 (5)
N14B0.3273 (2)0.2071 (2)0.3173 (2)0.0579 (6)
N15A0.2477 (2)0.00586 (19)0.4296 (2)0.0524 (6)
N15B0.1106 (2)0.0986 (2)0.1844 (2)0.0608 (6)
N16A0.1678 (2)0.3358 (2)0.29156 (18)0.0493 (5)
N16B0.0302 (2)0.2282 (2)0.04259 (18)0.0481 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0453 (9)0.0539 (10)0.0624 (12)0.0011 (8)0.0076 (8)0.0413 (9)
O1B0.0462 (11)0.1026 (15)0.1073 (17)0.0049 (10)0.0033 (10)0.0862 (14)
O2A0.0380 (10)0.1079 (16)0.0862 (15)0.0112 (10)0.0115 (10)0.0646 (13)
O2B0.0465 (11)0.0889 (15)0.1088 (18)0.0002 (9)0.0047 (11)0.0659 (14)
O3A0.0661 (12)0.0843 (14)0.0561 (13)0.0079 (10)0.0046 (10)0.0474 (11)
O3B0.0629 (13)0.1237 (19)0.133 (2)0.0345 (12)0.0134 (13)0.1004 (17)
O4A0.0800 (14)0.0627 (12)0.0970 (16)0.0110 (10)0.0246 (12)0.0615 (12)
O4B0.1063 (18)0.0910 (16)0.115 (2)0.0131 (13)0.0293 (15)0.0845 (16)
O5A0.0518 (12)0.0658 (13)0.0883 (16)0.0106 (9)0.0091 (11)0.0419 (11)
O5B0.0642 (14)0.0994 (17)0.125 (2)0.0206 (12)0.0024 (14)0.0711 (16)
O6A0.0481 (13)0.155 (2)0.149 (2)0.0152 (13)0.0001 (13)0.125 (2)
O6B0.0508 (12)0.1075 (17)0.1051 (18)0.0075 (11)0.0084 (11)0.0770 (15)
O7A0.0610 (12)0.0790 (14)0.0779 (14)0.0147 (10)0.0102 (10)0.0622 (12)
O7B0.0596 (12)0.1074 (17)0.1231 (19)0.0117 (11)0.0115 (12)0.0975 (16)
N1A0.0437 (12)0.0441 (12)0.0469 (13)0.0100 (10)0.0118 (10)0.0295 (10)
N1B0.0379 (11)0.0573 (13)0.0522 (13)0.0089 (10)0.0078 (10)0.0366 (11)
C2A0.0578 (16)0.0597 (16)0.0533 (17)0.0205 (13)0.0128 (13)0.0374 (14)
C2B0.0525 (16)0.078 (2)0.0618 (19)0.0157 (14)0.0065 (14)0.0446 (16)
C3A0.082 (2)0.077 (2)0.0677 (19)0.0430 (17)0.0314 (17)0.0548 (17)
C3B0.074 (2)0.083 (2)0.077 (2)0.0290 (17)0.0280 (17)0.0624 (19)
C4A0.073 (2)0.0548 (17)0.081 (2)0.0231 (15)0.0380 (17)0.0486 (16)
C4B0.0669 (19)0.0553 (17)0.076 (2)0.0164 (14)0.0293 (16)0.0416 (16)
C5A0.0527 (16)0.0488 (16)0.0662 (19)0.0100 (12)0.0244 (14)0.0306 (14)
C5B0.0447 (14)0.0481 (15)0.0608 (18)0.0077 (11)0.0136 (13)0.0279 (13)
C6A0.0453 (14)0.0408 (14)0.0435 (14)0.0143 (11)0.0183 (12)0.0230 (11)
C6B0.0379 (13)0.0460 (14)0.0438 (15)0.0119 (11)0.0133 (11)0.0231 (12)
N7A0.0419 (13)0.0706 (16)0.0612 (16)0.0119 (12)0.0070 (11)0.0453 (13)
N7B0.0372 (14)0.0818 (19)0.0681 (18)0.0050 (13)0.0020 (13)0.0498 (15)
C8A0.0390 (12)0.0337 (13)0.0361 (13)0.0073 (10)0.0102 (10)0.0210 (10)
C8B0.0393 (13)0.0530 (15)0.0489 (15)0.0108 (11)0.0113 (11)0.0332 (13)
C9A0.0371 (12)0.0378 (13)0.0385 (13)0.0090 (10)0.0062 (10)0.0206 (11)
C9B0.0371 (13)0.0518 (15)0.0475 (15)0.0125 (11)0.0105 (11)0.0301 (12)
C10A0.0508 (14)0.0338 (13)0.0418 (14)0.0122 (10)0.0128 (11)0.0232 (11)
C10B0.0503 (14)0.0494 (15)0.0479 (15)0.0201 (12)0.0178 (12)0.0321 (12)
C11A0.0411 (13)0.0319 (12)0.0413 (14)0.0061 (10)0.0139 (11)0.0198 (11)
C11B0.0489 (14)0.0394 (14)0.0460 (15)0.0121 (11)0.0229 (12)0.0221 (12)
C12A0.0339 (12)0.0365 (13)0.0371 (13)0.0058 (9)0.0050 (10)0.0155 (11)
C12B0.0375 (12)0.0401 (13)0.0387 (13)0.0111 (10)0.0123 (10)0.0177 (11)
C13A0.0404 (13)0.0379 (13)0.0327 (13)0.0104 (10)0.0067 (10)0.0191 (11)
C13B0.0408 (13)0.0402 (13)0.0374 (13)0.0136 (10)0.0133 (10)0.0229 (11)
N14A0.0434 (12)0.0460 (12)0.0535 (14)0.0072 (9)0.0024 (10)0.0315 (11)
N14B0.0453 (12)0.0751 (14)0.0697 (16)0.0203 (9)0.0157 (11)0.0506 (13)
N15A0.0556 (14)0.0400 (12)0.0576 (14)0.0050 (10)0.0217 (11)0.0249 (11)
N15B0.0629 (15)0.0514 (14)0.0633 (16)0.0033 (11)0.0245 (13)0.0306 (12)
N16A0.0453 (12)0.0518 (13)0.0482 (13)0.0064 (10)0.0013 (10)0.0328 (11)
N16B0.0438 (12)0.0560 (13)0.0491 (13)0.0166 (10)0.0112 (10)0.0311 (11)
Geometric parameters (Å, º) top
O1A—C8A1.252 (2)C5A—C6A1.416 (3)
O1B—C8B1.237 (3)C5A—H5A0.9500
O2A—N14A1.214 (3)C5B—C6B1.393 (3)
O2B—N14B1.208 (3)C5B—H5B0.9500
O3A—N14A1.217 (2)C6A—N7A1.331 (3)
O3B—N14B1.226 (2)C6B—N7B1.312 (3)
O4A—N15A1.230 (3)N7A—H7A0.87 (3)
O4B—N15B1.212 (3)N7A—H7B1.05 (3)
O5A—N15A1.214 (3)N7B—H7C0.72 (3)
O5B—N15B1.212 (3)N7B—H7D0.84 (3)
O6A—N16A1.209 (2)C8A—C13A1.436 (3)
O6B—N16B1.206 (2)C8A—C9A1.446 (3)
O7A—N16A1.208 (2)C8B—C13B1.441 (3)
O7B—N16B1.197 (2)C8B—C9B1.450 (3)
N1A—C6A1.339 (3)C9A—C10A1.371 (3)
N1A—C2A1.350 (3)C9A—N14A1.454 (3)
N1A—H1A0.87 (3)C9B—C10B1.351 (3)
N1B—C6B1.352 (3)C9B—N14B1.461 (3)
N1B—C2B1.356 (3)C10A—C11A1.389 (3)
N1B—H1B0.96 (3)C10A—H10A0.9500
C2A—C3A1.348 (3)C10B—C11B1.381 (3)
C2A—H2A0.9500C10B—H10B0.9500
C2B—C3B1.347 (4)C11A—C12A1.367 (3)
C2B—H2B0.9500C11A—N15A1.453 (3)
C3A—C4A1.391 (4)C11B—C12B1.379 (3)
C3A—H3A0.9500C11B—N15B1.457 (3)
C3B—C4B1.390 (4)C12A—C13A1.374 (3)
C3B—H3B0.9500C12A—H12A0.9500
C4A—C5A1.348 (3)C12B—C13B1.359 (3)
C4A—H4A0.9500C12B—H12B0.9500
C4B—C5B1.351 (4)C13A—N16A1.456 (3)
C4B—H4B0.9500C13B—N16B1.465 (3)
C6A—N1A—C2A123.2 (2)C10A—C9A—C8A124.6 (2)
C6A—N1A—H1A121.2 (17)C10A—C9A—N14A116.76 (19)
C2A—N1A—H1A115.6 (17)C8A—C9A—N14A118.66 (19)
C6B—N1B—C2B122.5 (2)C10B—C9B—C8B124.8 (2)
C6B—N1B—H1B115.8 (15)C10B—C9B—N14B116.4 (2)
C2B—N1B—H1B121.7 (15)C8B—C9B—N14B118.8 (2)
C3A—C2A—N1A120.1 (3)C9A—C10A—C11A118.2 (2)
C3A—C2A—H2A120.0C9A—C10A—H10A120.9
N1A—C2A—H2A120.0C11A—C10A—H10A120.9
C3B—C2B—N1B120.8 (3)C9B—C10B—C11B118.6 (2)
C3B—C2B—H2B119.6C9B—C10B—H10B120.7
N1B—C2B—H2B119.6C11B—C10B—H10B120.7
C2A—C3A—C4A118.9 (2)C12A—C11A—C10A121.5 (2)
C2A—C3A—H3A120.6C12A—C11A—N15A119.6 (2)
C4A—C3A—H3A120.6C10A—C11A—N15A118.9 (2)
C2B—C3B—C4B117.8 (3)C12B—C11B—C10B121.4 (2)
C2B—C3B—H3B121.1C12B—C11B—N15B119.6 (2)
C4B—C3B—H3B121.1C10B—C11B—N15B119.0 (2)
C5A—C4A—C3A120.8 (2)C11A—C12A—C13A119.8 (2)
C5A—C4A—H4A119.6C11A—C12A—H12A120.1
C3A—C4A—H4A119.6C13A—C12A—H12A120.1
C5B—C4B—C3B121.7 (2)C13B—C12B—C11B119.5 (2)
C5B—C4B—H4B119.2C13B—C12B—H12B120.3
C3B—C4B—H4B119.2C11B—C12B—H12B120.3
C4A—C5A—C6A119.6 (3)C12A—C13A—C8A123.6 (2)
C4A—C5A—H5A120.2C12A—C13A—N16A116.78 (19)
C6A—C5A—H5A120.2C8A—C13A—N16A119.61 (19)
C4B—C5B—C6B119.7 (2)C12B—C13B—C8B123.8 (2)
C4B—C5B—H5B120.2C12B—C13B—N16B116.4 (2)
C6B—C5B—H5B120.2C8B—C13B—N16B119.77 (19)
N7A—C6A—N1A118.9 (2)O2A—N14A—O3A122.7 (2)
N7A—C6A—C5A123.7 (2)O2A—N14A—C9A119.2 (2)
N1A—C6A—C5A117.4 (2)O3A—N14A—C9A118.1 (2)
N7B—C6B—N1B118.1 (2)O2B—N14B—O3B121.8 (2)
N7B—C6B—C5B124.3 (2)O2B—N14B—C9B120.4 (2)
N1B—C6B—C5B117.6 (2)O3B—N14B—C9B117.7 (2)
C6A—N7A—H7A118 (2)O5A—N15A—O4A123.5 (2)
C6A—N7A—H7B120.8 (17)O5A—N15A—C11A118.3 (2)
H7A—N7A—H7B120 (3)O4A—N15A—C11A118.2 (2)
C6B—N7B—H7C114 (2)O4B—N15B—O5B123.4 (2)
C6B—N7B—H7D117.1 (19)O4B—N15B—C11B118.7 (2)
H7C—N7B—H7D129 (3)O5B—N15B—C11B117.9 (2)
O1A—C8A—C13A125.4 (2)O7A—N16A—O6A121.4 (2)
O1A—C8A—C9A122.2 (2)O7A—N16A—C13A120.0 (2)
C13A—C8A—C9A112.30 (19)O6A—N16A—C13A118.5 (2)
O1B—C8B—C13B124.9 (2)O7B—N16B—O6B121.4 (2)
O1B—C8B—C9B123.2 (2)O7B—N16B—C13B120.5 (2)
C13B—C8B—C9B111.9 (2)O6B—N16B—C13B118.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.96 (3)1.79 (3)2.681 (3)152 (2)
N1B—H1B···O7B0.96 (3)2.36 (3)3.035 (3)127 (2)
N7B—H7D···O1B0.84 (3)2.04 (3)2.784 (3)148 (3)
N7B—H7D···O2B0.84 (3)2.47 (3)3.165 (3)141 (2)
N1A—H1A···O1A0.87 (3)1.97 (3)2.726 (2)145 (2)
N1A—H1A···O7A0.87 (3)2.34 (3)3.031 (3)137 (2)
N7A—H7B···O2A1.05 (3)2.40 (3)3.329 (3)147 (2)
C10A—H10A···O4Bi0.952.573.438 (3)153
N7A—H7A···O2Bii0.87 (3)2.24 (3)3.029 (3)152 (3)
N7B—H7C···O2Aii0.72 (3)2.49 (3)3.137 (3)149 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C6H2N3O7
Mr323.23
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)11.2543 (4), 11.6588 (5), 12.9883 (5)
α, β, γ (°)114.641 (4), 100.204 (3), 103.928 (3)
V3)1427.16 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12905, 6555, 3011
Rint0.020
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.179, 0.90
No. of reflections6555
No. of parameters438
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.96 (3)1.79 (3)2.681 (3)152 (2)
N1B—H1B···O7B0.96 (3)2.36 (3)3.035 (3)127 (2)
N7B—H7D···O1B0.84 (3)2.04 (3)2.784 (3)148 (3)
N7B—H7D···O2B0.84 (3)2.47 (3)3.165 (3)141 (2)
N1A—H1A···O1A0.87 (3)1.97 (3)2.726 (2)145 (2)
N1A—H1A···O7A0.87 (3)2.34 (3)3.031 (3)137 (2)
N7A—H7B···O2A1.05 (3)2.40 (3)3.329 (3)147 (2)
C10A—H10A···O4Bi0.952.573.438 (3)152.7
N7A—H7A···O2Bii0.87 (3)2.24 (3)3.029 (3)152 (3)
N7B—H7C···O2Aii0.72 (3)2.49 (3)3.137 (3)149 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors wish to thank Dr A. Chandramohan, Department of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore, India, for his valuable suggestions.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds