metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m862-m863

Tripyridinium cis-tetra­chlorido­dioxido­molybdate(VI) chloride

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 6 June 2010; accepted 20 June 2010; online 26 June 2010)

In the title compound, (C5H6N)3[MoCl4O2]Cl, the pyridinium cations are N—H⋯Cl hydrogen bonded to the anionic [MoCl4O2]2− complexes and to the two crystallographically independent chloride anions (located on C2 axes). The Mo6+ centre adopts a highly distorted octa­hedral geometry, being surrounded by four chloride and two terminal oxide groups. The oxide ligands are mutually cis.

Related literature

For a related structure, see: Luan et al. (2008[Luan, Y., Wang, G., Luck, R. L., Wang, Y., Xiao, H. & Ding, H. (2008). Chem. Lett. 37, 1144-1145.]). For previous studies by our group on dioxidomolybdenum complexes, see: Monteiro et al. (2010[Monteiro, B., Cunha-Silva, L., Gago, S., Klinowski, J., Paz, F. A. A., Rocha, J., Gonçalves, I. S. & Pillinger, M. (2010). Polyhedron, 29, 719-730.]); Gago et al. (2009[Gago, S., Neves, P., Monteiro, B., Pêssego, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528-4537.]); Pereira et al. (2007[Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508-8510.]); Cunha-Silva et al. (2007[Cunha-Silva, L., Monteiro, B., Pillinger, M., Gonçalves, I. S., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m376-m378.]); Bruno et al. (2007[Bruno, S. M., Balula, S. S., Valente, A. A., Paz, F. A. A., Pillinger, M., Sousa, C., Klinowski, J., Freire, C., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A, 270, 185-194.]). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)3[MoCl4O2]Cl

  • Mr = 545.51

  • Trigonal, P 31 21

  • a = 11.3972 (2) Å

  • c = 29.4265 (9) Å

  • V = 3310.28 (13) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 150 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.888

  • 33230 measured reflections

  • 10395 independent reflections

  • 8105 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.074

  • S = 1.05

  • 10395 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4490 Friedel pairs

  • Flack parameter: 0.03 (4)

Table 1
Selected geometric parameters (Å, °)

Mo1—O2 1.6988 (13)
Mo1—O1 1.7004 (13)
Mo1—Cl2 2.3750 (6)
Mo1—Cl1 2.3995 (6)
Mo1—Cl3 2.5746 (5)
Mo1—Cl4 2.5953 (5)
O2—Mo1—O1 102.11 (7)
O2—Mo1—Cl2 94.45 (6)
O1—Mo1—Cl2 95.78 (6)
O2—Mo1—Cl1 94.06 (6)
O1—Mo1—Cl1 93.64 (6)
Cl2—Mo1—Cl1 165.71 (2)
O2—Mo1—Cl3 169.07 (5)
O1—Mo1—Cl3 88.75 (5)
Cl2—Mo1—Cl3 85.57 (2)
Cl1—Mo1—Cl3 83.91 (2)
O2—Mo1—Cl4 87.40 (5)
O1—Mo1—Cl4 170.36 (5)
Cl2—Mo1—Cl4 84.99 (2)
Cl1—Mo1—Cl4 83.94 (2)
Cl3—Mo1—Cl4 81.717 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl6i 0.88 2.16 3.0424 (19) 175
N2—H2A⋯Cl5ii 0.88 2.17 3.0304 (19) 166
N3—H3A⋯Cl4 0.88 2.45 3.243 (2) 150
N3—H3A⋯Cl3 0.88 2.69 3.277 (2) 126
Symmetry codes: (i) x, y, z+1; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our research group has been interested in the development of novel catalysts based on dioxomolybdenum complexes (Monteiro et al., 2010; Gago et al., 2009; Pereira et al., 2007; Cunha-Silva et al., 2007; Bruno et al., 2007). During our recent efforts to coordinate pyridine to the molybdenum centre, we have isolated the title compound: [C5H6N]3[MoCl4O2]Cl. Remarkably, a search in the literature and in the Cambridge Structural Database (Allen, 2002) reveals the existence of only one other structure with the [MoCl4O2]2- anion (Luan et al., 2008).

The asymmetric unit of the title compound I is composed of three pyridinium (PyH) cations whose charge is balanced by the metallic dianion, [MoCl4O2]2-, and by two chloride anions located at special positions (Cl5 and Cl6 on C2 axes) The Mo6+ centre is coordinated by four chloro and two oxo terminal ligands in a distorted octahedral geometry (Figure 1), {MoCl4O2}. The Mo—Cl distances range from 2.3750 (6) to 2.5953 (5) Å and the MoO distance is either 1.6988 (13) or 1.7004 (13) Å (Table 1). The cis and trans octahedral angles fall within a short range of the ideal values [81.717 (16)—103.11 (7)° and 165.71 (2)—170.36 (5)°, respectively - see Table 1].

The PyH cations are engaged in strong and relatively directional N+—H···Cl- hydrogen bonds with the chloride anions (not shown; Table 2). We note that N3 is interacting with two spatially close chloro ligands (Cl3 and Cl4), forming a R12(4) graph set motif (Grell et al.,1999) typical of bifurcated interactions. The crystal packing is, thus, mediated by the need to effectively fill the available space (Figure 2) since no significant supramolecular contacts are present in the crystal structure (e.g., C—H···O or C—H···Cl contacts are all greater than 3.18 Å).

Related literature top

For a related structure, see: Luan et al. (2008). For previous studies by our group on dioxomolybdenum complexes, see: Monteiro et al. (2010); Gago et al. (2009); Pereira et al. (2007); Cunha-Silva et al. (2007); Bruno et al. (2007). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Chemicals were purchased from commercial sources and were used as received without purification.

To an aqueous solution (30 ml) of HCl (3.3 mol dm-3) containing 2.0 g (8.3 mmol) of Na2MoO4.2H2O, a solution of pyridine (1.34 ml, 16.6 mmol) in CH2Cl2 (60 ml) was slowly added dropwise. The biphasic mixture was vigorously stirred for 3 h at ambient temperature. The aqueous phase was separated and washed three times with CH2Cl2, and then allowed to evaporate yielding a solid. Crystals of the title compound were ultimately isolated by slow diffusion of diethyl ether into a concentrated solution in acetonitrile.

Crystals of the title compound were ultimately isolated by slow diffusion of diethyl ether into a concentrated solution in acetonitrile. Yield: 65%.

1H NMR (300.13 MHz, 298 K, CD3CN): δ = 8.75 (d, 2H), 8.56 (t, 1H), 8.03 (t, 2H) p.p.m..

Selected FT—IR (ATR, cm-1): 923 [vs, νsym(MoO)], 884 [vs, νasym(MoO)], 320 [vs, ν(Mo—Cl)].

Refinement top

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding-motion approximation with: C—H = 0.95 Å (aromatic) and N—H = 0.88 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent atom.

A total of 4490 estimated Friedel pairs have not been merged and were used as independent data for the structure refinement. The Flack parameter (Flack, 1983) converged to 0.03 (4), ultimately assuring a correct absolute structure determination from the single-crystal data set.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of the asymmetric unit. The [MoCl4O2]2- anion has a highly distorted {MoCl4O2} octahedral coordination environment, and the anions Cl5 and Cl6 are located on C2 axes. Thermal ellipsoids are drawn at the 50% probability level. For selected bond lengths (in Å) and angles (in degrees) see Table 1.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the (a) [001] and (b) [110] directions of the unit cell.
Tripyridinium cis-tetrachloridodioxidomolybdate(VI) chloride top
Crystal data top
(C5H6N)3[MoCl4O2]ClDx = 1.642 Mg m3
Mr = 545.51Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 6207 reflections
Hall symbol: P 31 2"θ = 5.5–33.1°
a = 11.3972 (2) ŵ = 1.21 mm1
c = 29.4265 (9) ÅT = 150 K
V = 3310.28 (13) Å3Block, yellow
Z = 60.18 × 0.12 × 0.10 mm
F(000) = 1632
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
10395 independent reflections
Radiation source: fine-focus sealed tube8105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω & ϕ scansθmax = 36.3°, θmin = 5.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1816
Tmin = 0.811, Tmax = 0.888k = 178
33230 measured reflectionsl = 4849
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.183P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
10395 reflectionsΔρmax = 0.46 e Å3
237 parametersΔρmin = 0.68 e Å3
0 restraintsAbsolute structure: Flack (1983), 4490 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
(C5H6N)3[MoCl4O2]ClZ = 6
Mr = 545.51Mo Kα radiation
Trigonal, P3121µ = 1.21 mm1
a = 11.3972 (2) ÅT = 150 K
c = 29.4265 (9) Å0.18 × 0.12 × 0.10 mm
V = 3310.28 (13) Å3
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
10395 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
8105 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.888Rint = 0.047
33230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.46 e Å3
S = 1.05Δρmin = 0.68 e Å3
10395 reflectionsAbsolute structure: Flack (1983), 4490 Friedel pairs
237 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.663054 (16)0.338004 (17)0.915715 (4)0.01643 (3)
O10.77729 (15)0.39544 (18)0.87246 (4)0.0238 (3)
O20.76505 (15)0.38526 (17)0.96219 (4)0.0233 (3)
Cl10.64140 (7)0.53687 (6)0.916423 (17)0.02869 (12)
Cl20.62465 (7)0.11310 (6)0.914936 (17)0.02893 (12)
Cl30.47182 (5)0.25297 (6)0.856354 (14)0.02601 (11)
Cl40.45883 (5)0.24295 (6)0.971200 (14)0.02623 (11)
Cl51.00836 (8)0.00000.83330.0421 (2)
Cl60.94835 (8)0.94835 (8)0.00000.0352 (2)
N10.6973 (2)0.8428 (2)0.94054 (6)0.0266 (4)
H1A0.77260.87650.95640.032*
N20.1156 (2)0.8720 (2)0.89938 (5)0.0306 (4)
H2A0.09890.91610.87820.037*
N30.2586 (2)0.3111 (2)0.91300 (7)0.0333 (5)
H3A0.32990.30290.91860.040*
C10.5793 (3)0.7649 (3)0.96154 (7)0.0289 (5)
H10.57820.74490.99290.035*
C20.4601 (3)0.7139 (3)0.93800 (7)0.0304 (5)
H20.37590.65720.95260.037*
C30.4649 (3)0.7467 (3)0.89223 (7)0.0321 (5)
H30.38320.71540.87560.039*
C40.5876 (3)0.8244 (3)0.87119 (7)0.0313 (6)
H40.59160.84540.83980.038*
C50.7049 (3)0.8714 (3)0.89623 (7)0.0295 (5)
H50.79070.92390.88210.035*
C60.2380 (3)0.9313 (3)0.91843 (8)0.0335 (6)
H60.30641.01830.90850.040*
C70.2645 (3)0.8657 (3)0.95249 (8)0.0327 (6)
H70.35010.90820.96730.039*
C80.1656 (3)0.7374 (3)0.96502 (8)0.0345 (6)
H80.18330.69020.98820.041*
C90.0411 (3)0.6777 (3)0.94404 (8)0.0367 (6)
H90.02720.58870.95220.044*
C100.0168 (3)0.7481 (3)0.91116 (8)0.0345 (6)
H100.06930.70940.89690.041*
C110.1483 (3)0.2387 (3)0.93686 (7)0.0339 (6)
H110.14640.17750.95920.041*
C120.0362 (3)0.2502 (3)0.92996 (8)0.0361 (6)
H120.04340.19890.94750.043*
C130.0413 (3)0.3393 (3)0.89645 (9)0.0395 (6)
H130.03560.34870.89080.047*
C140.1574 (3)0.4132 (3)0.87173 (9)0.0389 (7)
H140.16180.47430.84900.047*
C150.2673 (3)0.3979 (3)0.88024 (8)0.0351 (6)
H150.34850.44780.86330.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01527 (8)0.01530 (8)0.01882 (5)0.00773 (7)0.00036 (5)0.00003 (5)
O10.0216 (7)0.0270 (9)0.0249 (5)0.0137 (7)0.0046 (5)0.0054 (6)
O20.0215 (7)0.0220 (9)0.0248 (5)0.0096 (7)0.0042 (5)0.0012 (6)
Cl10.0361 (3)0.0210 (3)0.0348 (2)0.0187 (3)0.0008 (2)0.0004 (2)
Cl20.0381 (4)0.0186 (3)0.0334 (2)0.0167 (3)0.0018 (2)0.0006 (2)
Cl30.0213 (2)0.0335 (3)0.02208 (16)0.0128 (2)0.00321 (16)0.00294 (19)
Cl40.0216 (2)0.0311 (3)0.02295 (17)0.0109 (2)0.00463 (16)0.00273 (19)
Cl50.0355 (3)0.0628 (7)0.0371 (3)0.0314 (3)0.01181 (18)0.0236 (4)
Cl60.0300 (3)0.0300 (3)0.0359 (3)0.0077 (4)0.00797 (16)0.00797 (16)
N10.0273 (10)0.0259 (11)0.0312 (7)0.0169 (10)0.0071 (7)0.0074 (8)
N20.0337 (13)0.0350 (13)0.0280 (7)0.0208 (10)0.0009 (8)0.0038 (8)
N30.0245 (12)0.0311 (13)0.0480 (11)0.0166 (10)0.0007 (9)0.0044 (9)
C10.0393 (14)0.0348 (14)0.0213 (7)0.0250 (12)0.0004 (8)0.0004 (8)
C20.0297 (12)0.0334 (14)0.0304 (9)0.0174 (11)0.0053 (8)0.0008 (9)
C30.0338 (13)0.0349 (15)0.0303 (9)0.0192 (12)0.0104 (8)0.0087 (9)
C40.0473 (16)0.0272 (13)0.0220 (8)0.0206 (12)0.0018 (9)0.0011 (8)
C50.0323 (13)0.0228 (13)0.0340 (9)0.0141 (11)0.0068 (9)0.0018 (9)
C60.0337 (15)0.0233 (13)0.0389 (11)0.0108 (12)0.0003 (10)0.0010 (10)
C70.0234 (13)0.0319 (14)0.0363 (10)0.0091 (11)0.0074 (9)0.0007 (10)
C80.0315 (14)0.0366 (16)0.0336 (10)0.0157 (13)0.0005 (10)0.0110 (10)
C90.0247 (13)0.0299 (14)0.0458 (12)0.0064 (11)0.0035 (10)0.0090 (11)
C100.0224 (13)0.0401 (16)0.0370 (11)0.0126 (12)0.0048 (10)0.0032 (10)
C110.0409 (16)0.0288 (13)0.0285 (9)0.0148 (12)0.0000 (9)0.0074 (9)
C120.0300 (14)0.0321 (15)0.0416 (11)0.0122 (12)0.0131 (11)0.0031 (10)
C130.0250 (14)0.0436 (18)0.0508 (13)0.0178 (14)0.0058 (11)0.0029 (12)
C140.0353 (15)0.0410 (18)0.0414 (12)0.0200 (14)0.0006 (11)0.0158 (12)
C150.0325 (15)0.0338 (16)0.0395 (11)0.0169 (13)0.0130 (10)0.0128 (10)
Geometric parameters (Å, º) top
Mo1—O21.6988 (13)C4—C51.379 (4)
Mo1—O11.7004 (13)C4—H40.9500
Mo1—Cl22.3750 (6)C5—H50.9500
Mo1—Cl12.3995 (6)C6—C71.372 (4)
Mo1—Cl32.5746 (5)C6—H60.9500
Mo1—Cl42.5953 (5)C7—C81.377 (4)
N1—C11.335 (3)C7—H70.9500
N1—C51.336 (3)C8—C91.375 (4)
N1—H1A0.8800C8—H80.9500
N2—C61.332 (4)C9—C101.371 (4)
N2—C101.338 (4)C9—H90.9500
N2—H2A0.8800C10—H100.9500
N3—C111.310 (3)C11—C121.363 (4)
N3—C151.349 (3)C11—H110.9500
N3—H3A0.8800C12—C131.395 (4)
C1—C21.369 (3)C12—H120.9500
C1—H10.9500C13—C141.369 (4)
C2—C31.392 (3)C13—H130.9500
C2—H20.9500C14—C151.370 (4)
C3—C41.373 (4)C14—H140.9500
C3—H30.9500C15—H150.9500
O2—Mo1—O1102.11 (7)C5—C4—H4120.4
O2—Mo1—Cl294.45 (6)N1—C5—C4119.6 (2)
O1—Mo1—Cl295.78 (6)N1—C5—H5120.2
O2—Mo1—Cl194.06 (6)C4—C5—H5120.2
O1—Mo1—Cl193.64 (6)N2—C6—C7119.4 (3)
Cl2—Mo1—Cl1165.71 (2)N2—C6—H6120.3
O2—Mo1—Cl3169.07 (5)C7—C6—H6120.3
O1—Mo1—Cl388.75 (5)C6—C7—C8119.2 (3)
Cl2—Mo1—Cl385.57 (2)C6—C7—H7120.4
Cl1—Mo1—Cl383.91 (2)C8—C7—H7120.4
O2—Mo1—Cl487.40 (5)C9—C8—C7120.0 (2)
O1—Mo1—Cl4170.36 (5)C9—C8—H8120.0
Cl2—Mo1—Cl484.99 (2)C7—C8—H8120.0
Cl1—Mo1—Cl483.94 (2)C10—C9—C8119.2 (3)
Cl3—Mo1—Cl481.717 (16)C10—C9—H9120.4
C1—N1—C5122.4 (2)C8—C9—H9120.4
C1—N1—H1A118.8N2—C10—C9119.4 (2)
C5—N1—H1A118.8N2—C10—H10120.3
C6—N2—C10122.8 (2)C9—C10—H10120.3
C6—N2—H2A118.6N3—C11—C12120.6 (2)
C10—N2—H2A118.6N3—C11—H11119.7
C11—N3—C15122.7 (2)C12—C11—H11119.7
C11—N3—H3A118.6C11—C12—C13118.4 (3)
C15—N3—H3A118.6C11—C12—H12120.8
N1—C1—C2120.24 (19)C13—C12—H12120.8
N1—C1—H1119.9C14—C13—C12119.9 (3)
C2—C1—H1119.9C14—C13—H13120.0
C1—C2—C3118.6 (2)C12—C13—H13120.0
C1—C2—H2120.7C13—C14—C15119.2 (3)
C3—C2—H2120.7C13—C14—H14120.4
C4—C3—C2120.0 (2)C15—C14—H14120.4
C4—C3—H3120.0N3—C15—C14119.1 (3)
C2—C3—H3120.0N3—C15—H15120.4
C3—C4—C5119.14 (19)C14—C15—H15120.4
C3—C4—H4120.4
C5—N1—C1—C21.7 (4)C7—C8—C9—C100.9 (4)
N1—C1—C2—C31.0 (4)C6—N2—C10—C90.3 (4)
C1—C2—C3—C42.5 (4)C8—C9—C10—N21.6 (4)
C2—C3—C4—C51.5 (4)C15—N3—C11—C121.3 (4)
C1—N1—C5—C42.8 (4)N3—C11—C12—C131.0 (4)
C3—C4—C5—N11.1 (4)C11—C12—C13—C140.5 (4)
C10—N2—C6—C71.9 (4)C12—C13—C14—C150.2 (5)
N2—C6—C7—C82.6 (4)C11—N3—C15—C141.0 (4)
C6—C7—C8—C91.2 (4)C13—C14—C15—N30.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl6i0.882.163.0424 (19)175
N2—H2A···Cl5ii0.882.173.0304 (19)166
N3—H3A···Cl40.882.453.243 (2)150
N3—H3A···Cl30.882.693.277 (2)126
Symmetry codes: (i) x, y, z+1; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H6N)3[MoCl4O2]Cl
Mr545.51
Crystal system, space groupTrigonal, P3121
Temperature (K)150
a, c (Å)11.3972 (2), 29.4265 (9)
V3)3310.28 (13)
Z6
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.811, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
33230, 10395, 8105
Rint0.047
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 1.05
No. of reflections10395
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.68
Absolute structureFlack (1983), 4490 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT-Plus (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Mo1—O21.6988 (13)Mo1—Cl12.3995 (6)
Mo1—O11.7004 (13)Mo1—Cl32.5746 (5)
Mo1—Cl22.3750 (6)Mo1—Cl42.5953 (5)
O2—Mo1—O1102.11 (7)Cl2—Mo1—Cl385.57 (2)
O2—Mo1—Cl294.45 (6)Cl1—Mo1—Cl383.91 (2)
O1—Mo1—Cl295.78 (6)O2—Mo1—Cl487.40 (5)
O2—Mo1—Cl194.06 (6)O1—Mo1—Cl4170.36 (5)
O1—Mo1—Cl193.64 (6)Cl2—Mo1—Cl484.99 (2)
Cl2—Mo1—Cl1165.71 (2)Cl1—Mo1—Cl483.94 (2)
O2—Mo1—Cl3169.07 (5)Cl3—Mo1—Cl481.717 (16)
O1—Mo1—Cl388.75 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl6i0.882.163.0424 (19)175.4
N2—H2A···Cl5ii0.882.173.0304 (19)165.8
N3—H3A···Cl40.882.453.243 (2)149.5
N3—H3A···Cl30.882.693.277 (2)125.6
Symmetry codes: (i) x, y, z+1; (ii) x1, y+1, z.
 

Acknowledgements

We wish to thank Dr Martyn Pillinger (CICECO, University of Aveiro) and Dr André D. Lopes (University of the Algarve) for their collaboration in the preparation of this communication. We are also grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant SFRH/BPD/63736/2009 (to JAF), SFRH/BPD/25269/2005 (to SG), SFRH/BD/45116/2008 (to SF) and for specific funding toward the purchase of the single-crystal diffractometer. We also wish to thank the Associated Laboratory CICECO for a research grant to AG.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, S. M., Balula, S. S., Valente, A. A., Paz, F. A. A., Pillinger, M., Sousa, C., Klinowski, J., Freire, C., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A, 270, 185–194.  CrossRef CAS Google Scholar
First citationCunha-Silva, L., Monteiro, B., Pillinger, M., Gonçalves, I. S., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m376–m378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGago, S., Neves, P., Monteiro, B., Pêssego, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537.  Web of Science CSD CrossRef Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLuan, Y., Wang, G., Luck, R. L., Wang, Y., Xiao, H. & Ding, H. (2008). Chem. Lett. 37, 1144–1145.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonteiro, B., Cunha-Silva, L., Gago, S., Klinowski, J., Paz, F. A. A., Rocha, J., Gonçalves, I. S. & Pillinger, M. (2010). Polyhedron, 29, 719–730.  Web of Science CSD CrossRef CAS Google Scholar
First citationPereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m862-m863
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds