metal-organic compounds
Tripyridinium cis-tetrachloridodioxidomolybdate(VI) chloride
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt
In the title compound, (C5H6N)3[MoCl4O2]Cl, the pyridinium cations are N—H⋯Cl hydrogen bonded to the anionic [MoCl4O2]2− complexes and to the two crystallographically independent chloride anions (located on C2 axes). The Mo6+ centre adopts a highly distorted octahedral geometry, being surrounded by four chloride and two terminal oxide groups. The oxide ligands are mutually cis.
Related literature
For a related structure, see: Luan et al. (2008). For previous studies by our group on dioxidomolybdenum complexes, see: Monteiro et al. (2010); Gago et al. (2009); Pereira et al. (2007); Cunha-Silva et al. (2007); Bruno et al. (2007). For graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810023950/sj5018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023950/sj5018Isup2.hkl
Chemicals were purchased from commercial sources and were used as received without purification.
To an aqueous solution (30 ml) of HCl (3.3 mol dm-3) containing 2.0 g (8.3 mmol) of Na2MoO4.2H2O, a solution of pyridine (1.34 ml, 16.6 mmol) in CH2Cl2 (60 ml) was slowly added dropwise. The biphasic mixture was vigorously stirred for 3 h at ambient temperature. The aqueous phase was separated and washed three times with CH2Cl2, and then allowed to evaporate yielding a solid. Crystals of the title compound were ultimately isolated by slow diffusion of diethyl ether into a concentrated solution in acetonitrile.
Crystals of the title compound were ultimately isolated by slow diffusion of diethyl ether into a concentrated solution in acetonitrile. Yield: 65%.
1H NMR (300.13 MHz, 298 K, CD3CN): δ = 8.75 (d, 2H), 8.56 (t, 1H), 8.03 (t, 2H) p.p.m..
Selected FT—IR (ATR, cm-1): 923 [vs, νsym(Mo═O)], 884 [vs, νasym(Mo═O)], 320 [vs, ν(Mo—Cl)].
Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding-motion approximation with: C—H = 0.95 Å (aromatic) and N—H = 0.88 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent atom.
A total of 4490 estimated Friedel pairs have not been merged and were used as independent data for the structure
The (Flack, 1983) converged to 0.03 (4), ultimately assuring a correct determination from the single-crystal data set.Data collection: APEX2 (Bruker, 2006); cell
APEX2 and SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C5H6N)3[MoCl4O2]Cl | Dx = 1.642 Mg m−3 |
Mr = 545.51 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3121 | Cell parameters from 6207 reflections |
Hall symbol: P 31 2" | θ = 5.5–33.1° |
a = 11.3972 (2) Å | µ = 1.21 mm−1 |
c = 29.4265 (9) Å | T = 150 K |
V = 3310.28 (13) Å3 | Block, yellow |
Z = 6 | 0.18 × 0.12 × 0.10 mm |
F(000) = 1632 |
Bruker X8 Kappa CCD APEXII diffractometer | 10395 independent reflections |
Radiation source: fine-focus sealed tube | 8105 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω & ϕ scans | θmax = 36.3°, θmin = 5.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −18→16 |
Tmin = 0.811, Tmax = 0.888 | k = −17→8 |
33230 measured reflections | l = −48→49 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0224P)2 + 0.183P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
10395 reflections | Δρmax = 0.46 e Å−3 |
237 parameters | Δρmin = −0.68 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 4490 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (4) |
(C5H6N)3[MoCl4O2]Cl | Z = 6 |
Mr = 545.51 | Mo Kα radiation |
Trigonal, P3121 | µ = 1.21 mm−1 |
a = 11.3972 (2) Å | T = 150 K |
c = 29.4265 (9) Å | 0.18 × 0.12 × 0.10 mm |
V = 3310.28 (13) Å3 |
Bruker X8 Kappa CCD APEXII diffractometer | 10395 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 8105 reflections with I > 2σ(I) |
Tmin = 0.811, Tmax = 0.888 | Rint = 0.047 |
33230 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.074 | Δρmax = 0.46 e Å−3 |
S = 1.05 | Δρmin = −0.68 e Å−3 |
10395 reflections | Absolute structure: Flack (1983), 4490 Friedel pairs |
237 parameters | Absolute structure parameter: 0.03 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.663054 (16) | 0.338004 (17) | 0.915715 (4) | 0.01643 (3) | |
O1 | 0.77729 (15) | 0.39544 (18) | 0.87246 (4) | 0.0238 (3) | |
O2 | 0.76505 (15) | 0.38526 (17) | 0.96219 (4) | 0.0233 (3) | |
Cl1 | 0.64140 (7) | 0.53687 (6) | 0.916423 (17) | 0.02869 (12) | |
Cl2 | 0.62465 (7) | 0.11310 (6) | 0.914936 (17) | 0.02893 (12) | |
Cl3 | 0.47182 (5) | 0.25297 (6) | 0.856354 (14) | 0.02601 (11) | |
Cl4 | 0.45883 (5) | 0.24295 (6) | 0.971200 (14) | 0.02623 (11) | |
Cl5 | 1.00836 (8) | 0.0000 | 0.8333 | 0.0421 (2) | |
Cl6 | 0.94835 (8) | 0.94835 (8) | 0.0000 | 0.0352 (2) | |
N1 | 0.6973 (2) | 0.8428 (2) | 0.94054 (6) | 0.0266 (4) | |
H1A | 0.7726 | 0.8765 | 0.9564 | 0.032* | |
N2 | 0.1156 (2) | 0.8720 (2) | 0.89938 (5) | 0.0306 (4) | |
H2A | 0.0989 | 0.9161 | 0.8782 | 0.037* | |
N3 | 0.2586 (2) | 0.3111 (2) | 0.91300 (7) | 0.0333 (5) | |
H3A | 0.3299 | 0.3029 | 0.9186 | 0.040* | |
C1 | 0.5793 (3) | 0.7649 (3) | 0.96154 (7) | 0.0289 (5) | |
H1 | 0.5782 | 0.7449 | 0.9929 | 0.035* | |
C2 | 0.4601 (3) | 0.7139 (3) | 0.93800 (7) | 0.0304 (5) | |
H2 | 0.3759 | 0.6572 | 0.9526 | 0.037* | |
C3 | 0.4649 (3) | 0.7467 (3) | 0.89223 (7) | 0.0321 (5) | |
H3 | 0.3832 | 0.7154 | 0.8756 | 0.039* | |
C4 | 0.5876 (3) | 0.8244 (3) | 0.87119 (7) | 0.0313 (6) | |
H4 | 0.5916 | 0.8454 | 0.8398 | 0.038* | |
C5 | 0.7049 (3) | 0.8714 (3) | 0.89623 (7) | 0.0295 (5) | |
H5 | 0.7907 | 0.9239 | 0.8821 | 0.035* | |
C6 | 0.2380 (3) | 0.9313 (3) | 0.91843 (8) | 0.0335 (6) | |
H6 | 0.3064 | 1.0183 | 0.9085 | 0.040* | |
C7 | 0.2645 (3) | 0.8657 (3) | 0.95249 (8) | 0.0327 (6) | |
H7 | 0.3501 | 0.9082 | 0.9673 | 0.039* | |
C8 | 0.1656 (3) | 0.7374 (3) | 0.96502 (8) | 0.0345 (6) | |
H8 | 0.1833 | 0.6902 | 0.9882 | 0.041* | |
C9 | 0.0411 (3) | 0.6777 (3) | 0.94404 (8) | 0.0367 (6) | |
H9 | −0.0272 | 0.5887 | 0.9522 | 0.044* | |
C10 | 0.0168 (3) | 0.7481 (3) | 0.91116 (8) | 0.0345 (6) | |
H10 | −0.0693 | 0.7094 | 0.8969 | 0.041* | |
C11 | 0.1483 (3) | 0.2387 (3) | 0.93686 (7) | 0.0339 (6) | |
H11 | 0.1464 | 0.1775 | 0.9592 | 0.041* | |
C12 | 0.0362 (3) | 0.2502 (3) | 0.92996 (8) | 0.0361 (6) | |
H12 | −0.0434 | 0.1989 | 0.9475 | 0.043* | |
C13 | 0.0413 (3) | 0.3393 (3) | 0.89645 (9) | 0.0395 (6) | |
H13 | −0.0356 | 0.3487 | 0.8908 | 0.047* | |
C14 | 0.1574 (3) | 0.4132 (3) | 0.87173 (9) | 0.0389 (7) | |
H14 | 0.1618 | 0.4743 | 0.8490 | 0.047* | |
C15 | 0.2673 (3) | 0.3979 (3) | 0.88024 (8) | 0.0351 (6) | |
H15 | 0.3485 | 0.4478 | 0.8633 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01527 (8) | 0.01530 (8) | 0.01882 (5) | 0.00773 (7) | 0.00036 (5) | 0.00003 (5) |
O1 | 0.0216 (7) | 0.0270 (9) | 0.0249 (5) | 0.0137 (7) | 0.0046 (5) | 0.0054 (6) |
O2 | 0.0215 (7) | 0.0220 (9) | 0.0248 (5) | 0.0096 (7) | −0.0042 (5) | −0.0012 (6) |
Cl1 | 0.0361 (3) | 0.0210 (3) | 0.0348 (2) | 0.0187 (3) | −0.0008 (2) | −0.0004 (2) |
Cl2 | 0.0381 (4) | 0.0186 (3) | 0.0334 (2) | 0.0167 (3) | 0.0018 (2) | −0.0006 (2) |
Cl3 | 0.0213 (2) | 0.0335 (3) | 0.02208 (16) | 0.0128 (2) | −0.00321 (16) | −0.00294 (19) |
Cl4 | 0.0216 (2) | 0.0311 (3) | 0.02295 (17) | 0.0109 (2) | 0.00463 (16) | 0.00273 (19) |
Cl5 | 0.0355 (3) | 0.0628 (7) | 0.0371 (3) | 0.0314 (3) | 0.01181 (18) | 0.0236 (4) |
Cl6 | 0.0300 (3) | 0.0300 (3) | 0.0359 (3) | 0.0077 (4) | −0.00797 (16) | 0.00797 (16) |
N1 | 0.0273 (10) | 0.0259 (11) | 0.0312 (7) | 0.0169 (10) | −0.0071 (7) | −0.0074 (8) |
N2 | 0.0337 (13) | 0.0350 (13) | 0.0280 (7) | 0.0208 (10) | −0.0009 (8) | 0.0038 (8) |
N3 | 0.0245 (12) | 0.0311 (13) | 0.0480 (11) | 0.0166 (10) | 0.0007 (9) | 0.0044 (9) |
C1 | 0.0393 (14) | 0.0348 (14) | 0.0213 (7) | 0.0250 (12) | 0.0004 (8) | −0.0004 (8) |
C2 | 0.0297 (12) | 0.0334 (14) | 0.0304 (9) | 0.0174 (11) | 0.0053 (8) | −0.0008 (9) |
C3 | 0.0338 (13) | 0.0349 (15) | 0.0303 (9) | 0.0192 (12) | −0.0104 (8) | −0.0087 (9) |
C4 | 0.0473 (16) | 0.0272 (13) | 0.0220 (8) | 0.0206 (12) | −0.0018 (9) | −0.0011 (8) |
C5 | 0.0323 (13) | 0.0228 (13) | 0.0340 (9) | 0.0141 (11) | 0.0068 (9) | 0.0018 (9) |
C6 | 0.0337 (15) | 0.0233 (13) | 0.0389 (11) | 0.0108 (12) | 0.0003 (10) | 0.0010 (10) |
C7 | 0.0234 (13) | 0.0319 (14) | 0.0363 (10) | 0.0091 (11) | −0.0074 (9) | −0.0007 (10) |
C8 | 0.0315 (14) | 0.0366 (16) | 0.0336 (10) | 0.0157 (13) | 0.0005 (10) | 0.0110 (10) |
C9 | 0.0247 (13) | 0.0299 (14) | 0.0458 (12) | 0.0064 (11) | 0.0035 (10) | 0.0090 (11) |
C10 | 0.0224 (13) | 0.0401 (16) | 0.0370 (11) | 0.0126 (12) | −0.0048 (10) | −0.0032 (10) |
C11 | 0.0409 (16) | 0.0288 (13) | 0.0285 (9) | 0.0148 (12) | 0.0000 (9) | 0.0074 (9) |
C12 | 0.0300 (14) | 0.0321 (15) | 0.0416 (11) | 0.0122 (12) | 0.0131 (11) | 0.0031 (10) |
C13 | 0.0250 (14) | 0.0436 (18) | 0.0508 (13) | 0.0178 (14) | −0.0058 (11) | −0.0029 (12) |
C14 | 0.0353 (15) | 0.0410 (18) | 0.0414 (12) | 0.0200 (14) | −0.0006 (11) | 0.0158 (12) |
C15 | 0.0325 (15) | 0.0338 (16) | 0.0395 (11) | 0.0169 (13) | 0.0130 (10) | 0.0128 (10) |
Mo1—O2 | 1.6988 (13) | C4—C5 | 1.379 (4) |
Mo1—O1 | 1.7004 (13) | C4—H4 | 0.9500 |
Mo1—Cl2 | 2.3750 (6) | C5—H5 | 0.9500 |
Mo1—Cl1 | 2.3995 (6) | C6—C7 | 1.372 (4) |
Mo1—Cl3 | 2.5746 (5) | C6—H6 | 0.9500 |
Mo1—Cl4 | 2.5953 (5) | C7—C8 | 1.377 (4) |
N1—C1 | 1.335 (3) | C7—H7 | 0.9500 |
N1—C5 | 1.336 (3) | C8—C9 | 1.375 (4) |
N1—H1A | 0.8800 | C8—H8 | 0.9500 |
N2—C6 | 1.332 (4) | C9—C10 | 1.371 (4) |
N2—C10 | 1.338 (4) | C9—H9 | 0.9500 |
N2—H2A | 0.8800 | C10—H10 | 0.9500 |
N3—C11 | 1.310 (3) | C11—C12 | 1.363 (4) |
N3—C15 | 1.349 (3) | C11—H11 | 0.9500 |
N3—H3A | 0.8800 | C12—C13 | 1.395 (4) |
C1—C2 | 1.369 (3) | C12—H12 | 0.9500 |
C1—H1 | 0.9500 | C13—C14 | 1.369 (4) |
C2—C3 | 1.392 (3) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C14—C15 | 1.370 (4) |
C3—C4 | 1.373 (4) | C14—H14 | 0.9500 |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
O2—Mo1—O1 | 102.11 (7) | C5—C4—H4 | 120.4 |
O2—Mo1—Cl2 | 94.45 (6) | N1—C5—C4 | 119.6 (2) |
O1—Mo1—Cl2 | 95.78 (6) | N1—C5—H5 | 120.2 |
O2—Mo1—Cl1 | 94.06 (6) | C4—C5—H5 | 120.2 |
O1—Mo1—Cl1 | 93.64 (6) | N2—C6—C7 | 119.4 (3) |
Cl2—Mo1—Cl1 | 165.71 (2) | N2—C6—H6 | 120.3 |
O2—Mo1—Cl3 | 169.07 (5) | C7—C6—H6 | 120.3 |
O1—Mo1—Cl3 | 88.75 (5) | C6—C7—C8 | 119.2 (3) |
Cl2—Mo1—Cl3 | 85.57 (2) | C6—C7—H7 | 120.4 |
Cl1—Mo1—Cl3 | 83.91 (2) | C8—C7—H7 | 120.4 |
O2—Mo1—Cl4 | 87.40 (5) | C9—C8—C7 | 120.0 (2) |
O1—Mo1—Cl4 | 170.36 (5) | C9—C8—H8 | 120.0 |
Cl2—Mo1—Cl4 | 84.99 (2) | C7—C8—H8 | 120.0 |
Cl1—Mo1—Cl4 | 83.94 (2) | C10—C9—C8 | 119.2 (3) |
Cl3—Mo1—Cl4 | 81.717 (16) | C10—C9—H9 | 120.4 |
C1—N1—C5 | 122.4 (2) | C8—C9—H9 | 120.4 |
C1—N1—H1A | 118.8 | N2—C10—C9 | 119.4 (2) |
C5—N1—H1A | 118.8 | N2—C10—H10 | 120.3 |
C6—N2—C10 | 122.8 (2) | C9—C10—H10 | 120.3 |
C6—N2—H2A | 118.6 | N3—C11—C12 | 120.6 (2) |
C10—N2—H2A | 118.6 | N3—C11—H11 | 119.7 |
C11—N3—C15 | 122.7 (2) | C12—C11—H11 | 119.7 |
C11—N3—H3A | 118.6 | C11—C12—C13 | 118.4 (3) |
C15—N3—H3A | 118.6 | C11—C12—H12 | 120.8 |
N1—C1—C2 | 120.24 (19) | C13—C12—H12 | 120.8 |
N1—C1—H1 | 119.9 | C14—C13—C12 | 119.9 (3) |
C2—C1—H1 | 119.9 | C14—C13—H13 | 120.0 |
C1—C2—C3 | 118.6 (2) | C12—C13—H13 | 120.0 |
C1—C2—H2 | 120.7 | C13—C14—C15 | 119.2 (3) |
C3—C2—H2 | 120.7 | C13—C14—H14 | 120.4 |
C4—C3—C2 | 120.0 (2) | C15—C14—H14 | 120.4 |
C4—C3—H3 | 120.0 | N3—C15—C14 | 119.1 (3) |
C2—C3—H3 | 120.0 | N3—C15—H15 | 120.4 |
C3—C4—C5 | 119.14 (19) | C14—C15—H15 | 120.4 |
C3—C4—H4 | 120.4 | ||
C5—N1—C1—C2 | −1.7 (4) | C7—C8—C9—C10 | −0.9 (4) |
N1—C1—C2—C3 | −1.0 (4) | C6—N2—C10—C9 | −0.3 (4) |
C1—C2—C3—C4 | 2.5 (4) | C8—C9—C10—N2 | 1.6 (4) |
C2—C3—C4—C5 | −1.5 (4) | C15—N3—C11—C12 | −1.3 (4) |
C1—N1—C5—C4 | 2.8 (4) | N3—C11—C12—C13 | 1.0 (4) |
C3—C4—C5—N1 | −1.1 (4) | C11—C12—C13—C14 | −0.5 (4) |
C10—N2—C6—C7 | −1.9 (4) | C12—C13—C14—C15 | 0.2 (5) |
N2—C6—C7—C8 | 2.6 (4) | C11—N3—C15—C14 | 1.0 (4) |
C6—C7—C8—C9 | −1.2 (4) | C13—C14—C15—N3 | −0.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl6i | 0.88 | 2.16 | 3.0424 (19) | 175 |
N2—H2A···Cl5ii | 0.88 | 2.17 | 3.0304 (19) | 166 |
N3—H3A···Cl4 | 0.88 | 2.45 | 3.243 (2) | 150 |
N3—H3A···Cl3 | 0.88 | 2.69 | 3.277 (2) | 126 |
Symmetry codes: (i) x, y, z+1; (ii) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C5H6N)3[MoCl4O2]Cl |
Mr | 545.51 |
Crystal system, space group | Trigonal, P3121 |
Temperature (K) | 150 |
a, c (Å) | 11.3972 (2), 29.4265 (9) |
V (Å3) | 3310.28 (13) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.18 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker X8 Kappa CCD APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.811, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33230, 10395, 8105 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.833 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.074, 1.05 |
No. of reflections | 10395 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.68 |
Absolute structure | Flack (1983), 4490 Friedel pairs |
Absolute structure parameter | 0.03 (4) |
Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT-Plus (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
Mo1—O2 | 1.6988 (13) | Mo1—Cl1 | 2.3995 (6) |
Mo1—O1 | 1.7004 (13) | Mo1—Cl3 | 2.5746 (5) |
Mo1—Cl2 | 2.3750 (6) | Mo1—Cl4 | 2.5953 (5) |
O2—Mo1—O1 | 102.11 (7) | Cl2—Mo1—Cl3 | 85.57 (2) |
O2—Mo1—Cl2 | 94.45 (6) | Cl1—Mo1—Cl3 | 83.91 (2) |
O1—Mo1—Cl2 | 95.78 (6) | O2—Mo1—Cl4 | 87.40 (5) |
O2—Mo1—Cl1 | 94.06 (6) | O1—Mo1—Cl4 | 170.36 (5) |
O1—Mo1—Cl1 | 93.64 (6) | Cl2—Mo1—Cl4 | 84.99 (2) |
Cl2—Mo1—Cl1 | 165.71 (2) | Cl1—Mo1—Cl4 | 83.94 (2) |
O2—Mo1—Cl3 | 169.07 (5) | Cl3—Mo1—Cl4 | 81.717 (16) |
O1—Mo1—Cl3 | 88.75 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl6i | 0.88 | 2.16 | 3.0424 (19) | 175.4 |
N2—H2A···Cl5ii | 0.88 | 2.17 | 3.0304 (19) | 165.8 |
N3—H3A···Cl4 | 0.88 | 2.45 | 3.243 (2) | 149.5 |
N3—H3A···Cl3 | 0.88 | 2.69 | 3.277 (2) | 125.6 |
Symmetry codes: (i) x, y, z+1; (ii) x−1, y+1, z. |
Acknowledgements
We wish to thank Dr Martyn Pillinger (CICECO, University of Aveiro) and Dr André D. Lopes (University of the Algarve) for their collaboration in the preparation of this communication. We are also grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant SFRH/BPD/63736/2009 (to JAF), SFRH/BPD/25269/2005 (to SG), SFRH/BD/45116/2008 (to SF) and for specific funding toward the purchase of the single-crystal diffractometer. We also wish to thank the Associated Laboratory CICECO for a research grant to AG.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, S. M., Balula, S. S., Valente, A. A., Paz, F. A. A., Pillinger, M., Sousa, C., Klinowski, J., Freire, C., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A, 270, 185–194. CrossRef CAS Google Scholar
Cunha-Silva, L., Monteiro, B., Pillinger, M., Gonçalves, I. S., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m376–m378. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gago, S., Neves, P., Monteiro, B., Pêssego, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537. Web of Science CSD CrossRef Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. Web of Science CrossRef CAS IUCr Journals Google Scholar
Luan, Y., Wang, G., Luck, R. L., Wang, Y., Xiao, H. & Ding, H. (2008). Chem. Lett. 37, 1144–1145. Web of Science CSD CrossRef CAS Google Scholar
Monteiro, B., Cunha-Silva, L., Gago, S., Klinowski, J., Paz, F. A. A., Rocha, J., Gonçalves, I. S. & Pillinger, M. (2010). Polyhedron, 29, 719–730. Web of Science CSD CrossRef CAS Google Scholar
Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our research group has been interested in the development of novel catalysts based on dioxomolybdenum complexes (Monteiro et al., 2010; Gago et al., 2009; Pereira et al., 2007; Cunha-Silva et al., 2007; Bruno et al., 2007). During our recent efforts to coordinate pyridine to the molybdenum centre, we have isolated the title compound: [C5H6N]3[MoCl4O2]Cl. Remarkably, a search in the literature and in the Cambridge Structural Database (Allen, 2002) reveals the existence of only one other structure with the [MoCl4O2]2- anion (Luan et al., 2008).
The asymmetric unit of the title compound I is composed of three pyridinium (PyH) cations whose charge is balanced by the metallic dianion, [MoCl4O2]2-, and by two chloride anions located at special positions (Cl5 and Cl6 on C2 axes) The Mo6+ centre is coordinated by four chloro and two oxo terminal ligands in a distorted octahedral geometry (Figure 1), {MoCl4O2}. The Mo—Cl distances range from 2.3750 (6) to 2.5953 (5) Å and the Mo═O distance is either 1.6988 (13) or 1.7004 (13) Å (Table 1). The cis and trans octahedral angles fall within a short range of the ideal values [81.717 (16)—103.11 (7)° and 165.71 (2)—170.36 (5)°, respectively - see Table 1].
The PyH cations are engaged in strong and relatively directional N+—H···Cl- hydrogen bonds with the chloride anions (not shown; Table 2). We note that N3 is interacting with two spatially close chloro ligands (Cl3 and Cl4), forming a R12(4) graph set motif (Grell et al.,1999) typical of bifurcated interactions. The crystal packing is, thus, mediated by the need to effectively fill the available space (Figure 2) since no significant supramolecular contacts are present in the crystal structure (e.g., C—H···O or C—H···Cl contacts are all greater than 3.18 Å).