organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,5-Di­aza-9H-fluoren-9-yl­­idene)-4-meth­­oxy­aniline

aChemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China, bDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, and cDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: canghui@ycit.edu.cn

(Received 11 June 2010; accepted 16 June 2010; online 26 June 2010)

In the title compound, C18H13N3O, the diaza­fluorene ring system is almost coplanar (r.m.s. deviation = 0.0640 Å) and subtends an angle of 61.5 (4)° with the plane of the meth­oxy-substituted benzene ring. In the crystal structure, pairs of C—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers parallel to the ab plane. Mol­ecules are also stacked in an obverse fashion along the c axis by a variety of ππ inter­actions with centroid–centroid distances in the range 3.557 (2)–3.921 (2) Å.

Related literature

For the use of the title compound in the synthesis of complexes with inter­esting photochemical properties and for the synthesis, see: Wang & Rillema (1997[Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377-12390.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O

  • Mr = 287.31

  • Monoclinic, P 21 /n

  • a = 8.3070 (17) Å

  • b = 12.839 (3) Å

  • c = 13.233 (3) Å

  • β = 97.12 (3)°

  • V = 1400.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.996

  • 2678 measured reflections

  • 2498 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.212

  • S = 1.03

  • 2498 reflections

  • 193 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Oi 0.93 2.42 3.337 (6) 169
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf-Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-(5H-cyclopenta[1,2 - b:5,4 - b']dipyridin-5-ylidene)-4-methoxyaniline and its derivatives are an important class of ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The diazafluorene rings are almost coplanar with an r.m.s. deviation 0.0640 Å and this plane is inclined to the plane of the C2···C7 benzene ring by 61.5 (4)°.

In the crystal structure C—H···O hydrogen bonds link molecules into centrosymmetric dimers parallel to the ab plane, Table 1. An extensive system of ππ contacts stacks molecules in an obverse fashion down the c axis, Fig. 2, with Cg1···Cg1 = 3.921 (2) Å, Cg2···Cg2 = 3.921 (2) Å and Cg1···Cg2 = 3.557 (2) Å. Symmetry operations 1/2-X, 1/2+Y, 1/2-Z; 3-X, –Y, –Z; Cg1 and Cg2 are the centroids of the C10,C9,C13,N2,C12,C11 and C18,C8,C9,C13,C14 rings, respectively.

Related literature top

For the use of the title compound in the synthesis of complexes with interesting photochemical properties and for the synthesis, see: Wang & Rillema (1997). For reference bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). Crystals were obtained by dissolving the compound (2.0 g, 6.96 mmol) in ethyl acetate(50 ml), and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.96Å, Uiso = 1.5Ueq (C) for CH3 atoms

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software (Enraf-Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure or (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are drawn as dashed lines.
N-(4,5-Diaza-9H-fluoren-9-ylidene)-4-methoxyaniline top
Crystal data top
C18H13N3OF(000) = 600
Mr = 287.31Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.3070 (17) Åθ = 9–12°
b = 12.839 (3) ŵ = 0.09 mm1
c = 13.233 (3) ÅT = 298 K
β = 97.12 (3)°Block, colourless
V = 1400.5 (5) Å30.30 × 0.10 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1599 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.974, Tmax = 0.996l = 015
2678 measured reflections3 standard reflections every 200 reflections
2498 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
2498 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.37 e Å3
48 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H13N3OV = 1400.5 (5) Å3
Mr = 287.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3070 (17) ŵ = 0.09 mm1
b = 12.839 (3) ÅT = 298 K
c = 13.233 (3) Å0.30 × 0.10 × 0.05 mm
β = 97.12 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1599 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.974, Tmax = 0.9963 standard reflections every 200 reflections
2678 measured reflections intensity decay: none
2498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08148 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
2498 reflectionsΔρmin = 0.40 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.1797 (4)0.1191 (2)0.5460 (2)0.0455 (8)
N10.4360 (4)0.2396 (3)0.3622 (3)0.045
C10.2903 (6)0.0674 (4)0.4883 (4)0.0580 (14)
H1B0.39270.05840.52980.087*
H1C0.30540.10850.42960.087*
H1D0.24730.00050.46680.087*
N20.4715 (5)0.6162 (3)0.3850 (3)0.0417 (9)
C20.0291 (5)0.1441 (3)0.4969 (3)0.0354 (10)
C30.0260 (5)0.1213 (3)0.3959 (3)0.0426 (11)
H3A0.04050.08530.35630.051*
N30.7987 (5)0.5270 (3)0.2939 (3)0.0498 (11)
C40.1786 (5)0.1517 (4)0.3544 (3)0.0425 (11)
H4A0.21620.13170.28810.051*
C50.2786 (5)0.2115 (3)0.4081 (3)0.0337 (10)
C60.2233 (6)0.2327 (4)0.5093 (3)0.0448 (12)
H6A0.29080.26780.54890.054*
C70.0708 (5)0.2028 (3)0.5526 (3)0.0392 (10)
H7A0.03420.22180.61930.047*
C80.4781 (5)0.3355 (3)0.3556 (3)0.0325 (9)
C90.3939 (5)0.4347 (3)0.3850 (3)0.0353 (10)
C100.2335 (5)0.4605 (4)0.4154 (3)0.0429 (11)
H10A0.15330.40960.42330.051*
C110.1965 (6)0.5636 (4)0.4337 (4)0.0490 (12)
H11A0.09020.58350.45540.059*
C120.3178 (6)0.6378 (4)0.4197 (3)0.0433 (11)
H12A0.29060.70660.43550.052*
C130.5040 (5)0.5164 (3)0.3679 (3)0.0346 (10)
C140.6635 (5)0.4748 (4)0.3245 (3)0.0363 (10)
C150.9247 (6)0.4701 (5)0.2532 (4)0.0583 (15)
H15A1.02080.50470.23070.070*
C160.9214 (6)0.3612 (5)0.2422 (4)0.0564 (14)
H16A1.01310.32520.21370.068*
C170.7832 (5)0.3104 (4)0.2738 (3)0.0467 (12)
H17A0.77770.23840.26740.056*
C180.6499 (5)0.3656 (4)0.3156 (3)0.0365 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0423 (18)0.0440 (19)0.050 (2)0.0081 (14)0.0058 (14)0.0014 (15)
N10.0450.0450.0450.0000.0060.000
C10.049 (3)0.057 (3)0.073 (4)0.006 (2)0.027 (3)0.003 (3)
N20.053 (2)0.035 (2)0.038 (2)0.0018 (17)0.0143 (17)0.0024 (17)
C20.047 (3)0.023 (2)0.039 (2)0.0055 (18)0.0183 (19)0.0003 (18)
C30.048 (3)0.041 (3)0.043 (3)0.000 (2)0.018 (2)0.011 (2)
N30.041 (2)0.069 (3)0.041 (2)0.002 (2)0.0099 (18)0.011 (2)
C40.045 (3)0.049 (3)0.035 (2)0.006 (2)0.010 (2)0.012 (2)
C50.042 (2)0.026 (2)0.035 (2)0.0025 (17)0.0137 (18)0.0017 (18)
C60.060 (3)0.044 (3)0.035 (3)0.015 (2)0.023 (2)0.000 (2)
C70.048 (3)0.040 (3)0.031 (2)0.002 (2)0.0088 (19)0.002 (2)
C80.046 (2)0.028 (2)0.026 (2)0.0012 (18)0.0140 (18)0.0042 (17)
C90.048 (2)0.039 (2)0.021 (2)0.0006 (18)0.0102 (17)0.0019 (18)
C100.042 (2)0.041 (2)0.046 (3)0.0099 (19)0.008 (2)0.009 (2)
C110.046 (3)0.055 (3)0.046 (3)0.005 (2)0.001 (2)0.011 (2)
C120.059 (3)0.034 (2)0.037 (2)0.007 (2)0.009 (2)0.001 (2)
C130.039 (2)0.041 (2)0.026 (2)0.0035 (18)0.0123 (17)0.0068 (18)
C140.036 (2)0.048 (3)0.027 (2)0.0026 (19)0.0131 (18)0.008 (2)
C150.036 (3)0.088 (4)0.052 (3)0.010 (3)0.008 (2)0.015 (3)
C160.033 (3)0.087 (4)0.051 (3)0.014 (3)0.012 (2)0.005 (3)
C170.043 (3)0.059 (3)0.039 (3)0.008 (2)0.007 (2)0.009 (2)
C180.036 (2)0.051 (3)0.024 (2)0.003 (2)0.0083 (17)0.000 (2)
Geometric parameters (Å, º) top
O—C21.375 (5)C6—H6A0.9300
O—C11.429 (5)C7—H7A0.9300
N1—C81.280 (5)C8—C91.482 (6)
N1—C51.418 (5)C8—C181.510 (6)
C1—H1B0.9600C9—C101.383 (6)
C1—H1C0.9600C9—C131.392 (6)
C1—H1D0.9600C10—C111.375 (7)
N2—C131.323 (5)C10—H10A0.9300
N2—C121.331 (6)C11—C121.382 (6)
C2—C31.389 (6)C11—H11A0.9300
C2—C71.397 (6)C12—H12A0.9300
C3—C41.374 (6)C13—C141.477 (6)
C3—H3A0.9300C14—C181.412 (6)
N3—C141.328 (5)C15—C161.407 (8)
N3—C151.333 (6)C15—H15A0.9300
C4—C51.389 (6)C16—C171.341 (7)
C4—H4A0.9300C16—H16A0.9300
C5—C61.388 (6)C17—C181.372 (6)
C6—C71.378 (6)C17—H17A0.9300
C2—O—C1117.6 (4)C10—C9—C13117.2 (4)
C8—N1—C5120.2 (4)C10—C9—C8133.5 (4)
O—C1—H1B109.5C13—C9—C8109.0 (4)
O—C1—H1C109.5C11—C10—C9117.9 (4)
H1B—C1—H1C109.5C11—C10—H10A121.1
O—C1—H1D109.5C9—C10—H10A121.1
H1B—C1—H1D109.5C10—C11—C12119.8 (4)
H1C—C1—H1D109.5C10—C11—H11A120.1
C13—N2—C12115.3 (4)C12—C11—H11A120.1
O—C2—C3125.3 (4)N2—C12—C11123.7 (4)
O—C2—C7116.2 (4)N2—C12—H12A118.1
C3—C2—C7118.4 (4)C11—C12—H12A118.1
C4—C3—C2120.1 (4)N2—C13—C9125.8 (4)
C4—C3—H3A119.9N2—C13—C14124.9 (4)
C2—C3—H3A119.9C9—C13—C14109.3 (4)
C14—N3—C15116.0 (5)N3—C14—C18123.3 (4)
C3—C4—C5122.2 (4)N3—C14—C13128.3 (4)
C3—C4—H4A118.9C18—C14—C13108.4 (4)
C5—C4—H4A118.9N3—C15—C16124.2 (5)
C6—C5—C4117.1 (4)N3—C15—H15A117.9
C6—C5—N1122.7 (4)C16—C15—H15A117.9
C4—C5—N1120.0 (4)C17—C16—C15118.5 (5)
C7—C6—C5121.6 (4)C17—C16—H16A120.7
C7—C6—H6A119.2C15—C16—H16A120.7
C5—C6—H6A119.2C16—C17—C18119.4 (5)
C6—C7—C2120.4 (4)C16—C17—H17A120.3
C6—C7—H7A119.8C18—C17—H17A120.3
C2—C7—H7A119.8C17—C18—C14118.5 (4)
N1—C8—C9133.8 (4)C17—C18—C8133.6 (4)
N1—C8—C18120.6 (4)C14—C18—C8107.8 (4)
C9—C8—C18105.5 (3)
C1—O—C2—C31.4 (6)C12—N2—C13—C91.5 (6)
C1—O—C2—C7174.4 (4)C12—N2—C13—C14176.8 (4)
O—C2—C3—C4179.0 (4)C10—C9—C13—N25.1 (6)
C7—C2—C3—C43.2 (6)C8—C9—C13—N2179.8 (4)
C2—C3—C4—C54.4 (7)C10—C9—C13—C14173.3 (4)
C3—C4—C5—C65.1 (7)C8—C9—C13—C141.3 (4)
C3—C4—C5—N1179.1 (4)C15—N3—C14—C180.1 (6)
C8—N1—C5—C662.1 (6)C15—N3—C14—C13177.1 (4)
C8—N1—C5—C4124.2 (5)N2—C13—C14—N31.3 (7)
C4—C5—C6—C74.9 (6)C9—C13—C14—N3177.2 (4)
N1—C5—C6—C7178.8 (4)N2—C13—C14—C18178.7 (4)
C5—C6—C7—C24.1 (7)C9—C13—C14—C180.2 (5)
O—C2—C7—C6179.2 (4)C14—N3—C15—C160.4 (7)
C3—C2—C7—C63.1 (6)N3—C15—C16—C170.4 (8)
C5—N1—C8—C91.7 (7)C15—C16—C17—C180.0 (7)
C5—N1—C8—C18174.5 (3)C16—C17—C18—C140.4 (6)
N1—C8—C9—C1011.8 (8)C16—C17—C18—C8178.2 (4)
C18—C8—C9—C10171.6 (4)N3—C14—C18—C170.5 (6)
N1—C8—C9—C13174.8 (5)C13—C14—C18—C17178.0 (4)
C18—C8—C9—C131.8 (4)N3—C14—C18—C8178.5 (4)
C13—C9—C10—C114.6 (6)C13—C14—C18—C80.9 (4)
C8—C9—C10—C11177.6 (4)N1—C8—C18—C175.8 (7)
C9—C10—C11—C121.1 (7)C9—C8—C18—C17177.0 (4)
C13—N2—C12—C112.6 (6)N1—C8—C18—C14175.5 (4)
C10—C11—C12—N22.8 (7)C9—C8—C18—C141.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Oi0.932.423.337 (6)169
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H13N3O
Mr287.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.3070 (17), 12.839 (3), 13.233 (3)
β (°) 97.12 (3)
V3)1400.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
2678, 2498, 1599
Rint0.025
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.212, 1.03
No. of reflections2498
No. of parameters193
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: CAD-4 Software (Enraf-Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Oi0.93002.42003.337 (6)169.00
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf-Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds