metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m853-m854

fac-Tris(4-amino­benzo­hydroxamato)iron(III) ethanol solvate

aCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland, bCentre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland, and cSmurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: kbnolan@rcsi.ie

(Received 17 June 2010; accepted 21 June 2010; online 26 June 2010)

In the structure of the title compound, [Fe(C7H7N2O2)3]·CH3CH2OH, the FeIII atom is in a distorted octa­hedral O6 environment with the three hydroxamate O atoms (and the three carbonyl O atoms) arranged in a fac configuration and one of the hydroxamate ligands being puckered. The methyl C atom of the ethanol solvent mol­ecule is disordered over two positions with occupancies of 0.626 (13) and 0.374 (13), respectively. The cocrystallized ethanol mol­ecule is hydrogen bonded to one of the hydroxamate O atoms. O—H⋯O and N—H⋯O inter­actions generate infinite three-dimensional networks along [100], [010] and [001].

Related literature

For a detailed account of the mol­ecular and crystal structures of related tris­(hydroxamato)FeIII complexes, see: Rio-Echevarria et al. (2008[Rio-Echevarria, I. M., White, F. J., Brechin, E. K., Tasker, P. A. & Harris, S. G. (2008). Chem. Commun. pp. 4570-4572.]); Mulcahy et al. (2007[Mulcahy, C., Krot, K. A., Griffith, D. M., Suponitsky, K. Y., Starikova, Z. A. & Marmion, C. J. (2007). Eur. J. Inorg. Chem. pp. 1373-1380.]); Marmion et al. (2000[Marmion, C. J., Murphy, T., Starikova, Z. & Nolan, K. B. (2000). Acta Cryst. C56, e491-e492.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); for pseudorotation parameters, see: Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C7H7N2O2)3]·C2H6O

  • Mr = 555.36

  • Triclinic, [P \overline 1]

  • a = 10.6232 (18) Å

  • b = 10.6455 (18) Å

  • c = 13.225 (2) Å

  • α = 107.550 (3)°

  • β = 91.085 (4)°

  • γ = 112.217 (3)°

  • V = 1305.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.03 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.981

  • 24614 measured reflections

  • 5739 independent reflections

  • 5065 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.06

  • 5739 reflections

  • 433 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Fe—O2 1.9615 (14)
Fe—O6 1.9769 (14)
Fe—O4 1.9822 (14)
Fe—O5 2.0444 (14)
Fe—O1 2.0470 (14)
Fe—O3 2.0654 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1O7⋯O6i 0.78 (3) 1.91 (3) 2.694 (2) 175 (3)
N6—H1N6⋯O3ii 0.84 (2) 2.15 (2) 2.968 (2) 163.9 (19)
N5—H1N5⋯O7 0.84 (2) 1.91 (2) 2.740 (2) 176 (2)
N3—H1N3⋯O4iii 0.86 (3) 1.98 (3) 2.755 (2) 150 (2)
N1—H1N1⋯O2iv 0.84 (3) 1.99 (3) 2.737 (2) 149 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x, -y, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The FeIII core is in a distorted octahedral O6 environment with the three 4-aminophenylhydroxamato ligands coordinated through both O-atoms to form stable five-membered chelates (Fig. 1). The complex has a fac geometric configuration defined by the positioning of the three hydroxamate or the three carbonyl O atoms. The Fe—O3—C8—N3—O4 and Fe—O5—C15—N5—O6 five membered rings are not puckered whereas the Fe—O1—C1—N1—O2 ring exhibits a puckered configuration with the closest pucker descriptor being twisted on O2—Fe. The Cremer and Pople puckering paramaters (Cremer & Pople, 1975) are Q2 = 0.120 (2) Å & ϕ2 = 330.0 (9)° and the pseudorotation parameters (Rao et al., 1981) are P = 130.8 (6)° and τ(M) = 11.2 (1)° for reference bond Fe—O1. The co-crystallized ethanol molecule is hydrogen bonded to one of the hydroxamate oxygen atoms through strong O–H···O bond (O7 H1O7 O6 interaction in Table 2). The O–H···O and N–H···O interactions (Table 2) form a set of clusters generating infinite two dimensional networks along the base vectors [0 1 0] and [1 0 0] and along the plane (0 0 1). These clusters then assemble to form infinite three dimensional networks (Fig. 2) along the base vectors [1 0 0], [0 1 0] and [0 0 1].

Related literature top

For a detailed account of the molecular and crystal structures of related tris hydroxamato FeIII complexes see: Rio-Echevarria et al. (2008); Mulcahy et al. (2007); Marmion et al. (2000). For ring puckering parameters, see: Cremer & Pople (1975); for pseudorotation parameters, see Rao et al. (1981).

Experimental top

FeCl3.6H2O (59.3 mg, 0.22 mmol) in water (5 ml), was added to a solution of 4-aminophenylhydroxamic acid, (100 mg, 0.66 mmol) in ethanol (15 ml). The pH of the resulting solution was then raised to 5.7 using 0.1 M NaOH solution whereupon a dark red precipitate was obtained. This was removed by filtration and the filtrate was left to stand at room temperature for two months whereupon very dark red crystals were obtained. These were collected by filtration and dried. Yield (100 mg, 0.18 mmol, 82%). Elemental analysis (%), calcd C23H27N6O7Fe: C, 49.56; H, 5.26; N, 15.08; Fe, 10.02; found C 49.01, H 5.02, N 15.03, Fe 9.77. IR (KBr Disc); νmax 3345br, 3211br, 1604 s, 1525 s, 1484 s cm-1.

Refinement top

All H-atoms (except those attached to the methylene and the methyl carbon atoms of the ethanol solvate) were located in difference maps and their positions and isotropic displacement parameters were freely refined. The CH2 and CH3 H atoms of the solvate were constrained to ride on their parent C atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97(Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius
[Figure 2] Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the O—H···O and N—H···O interactions within the lattice.
fac-Tris(4-aminobenzohydroxamato)iron(III) ethanol solvate top
Crystal data top
[Fe(C7H7N2O2)3]·C2H6OZ = 2
Mr = 555.36F(000) = 578
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6232 (18) ÅCell parameters from 4743 reflections
b = 10.6455 (18) Åθ = 2.2–24.9°
c = 13.225 (2) ŵ = 0.63 mm1
α = 107.550 (3)°T = 100 K
β = 91.085 (4)°Plate, red
γ = 112.217 (3)°0.30 × 0.20 × 0.03 mm
V = 1305.1 (4) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
5739 independent reflections
Radiation source: fine-focus sealed tube5065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.366 pixels mm-1θmax = 27.1°, θmin = 1.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.883, Tmax = 0.981l = 1616
24614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.6552P]
where P = (Fo2 + 2Fc2)/3
5739 reflections(Δ/σ)max = 0.004
433 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(C7H7N2O2)3]·C2H6Oγ = 112.217 (3)°
Mr = 555.36V = 1305.1 (4) Å3
Triclinic, P1Z = 2
a = 10.6232 (18) ÅMo Kα radiation
b = 10.6455 (18) ŵ = 0.63 mm1
c = 13.225 (2) ÅT = 100 K
α = 107.550 (3)°0.30 × 0.20 × 0.03 mm
β = 91.085 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5739 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5065 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.981Rint = 0.044
24614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
5739 reflectionsΔρmin = 0.31 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.13879 (3)0.36163 (3)0.16284 (2)0.01220 (9)
O20.06647 (14)0.16143 (14)0.06621 (11)0.0180 (3)
N10.05305 (18)0.07800 (18)0.09477 (14)0.0187 (4)
H1N10.087 (3)0.007 (3)0.052 (2)0.035 (7)*
C10.0862 (2)0.1334 (2)0.18804 (16)0.0161 (4)
O10.01237 (14)0.26557 (14)0.24206 (11)0.0162 (3)
C20.2049 (2)0.0445 (2)0.22618 (16)0.0179 (4)
C30.2669 (2)0.1117 (2)0.30398 (18)0.0239 (5)
H30.231 (3)0.211 (3)0.331 (2)0.039 (7)*
C40.3816 (2)0.0325 (3)0.3394 (2)0.0279 (5)
H40.425 (3)0.078 (3)0.391 (2)0.031 (7)*
C50.4376 (2)0.1172 (2)0.29942 (18)0.0243 (5)
N20.5509 (2)0.1970 (3)0.3375 (2)0.0340 (5)
H1N20.595 (3)0.277 (3)0.296 (2)0.040 (9)*
H2N20.602 (3)0.147 (3)0.364 (2)0.048 (9)*
C60.3739 (3)0.1848 (2)0.2234 (2)0.0317 (5)
H60.410 (3)0.288 (3)0.198 (2)0.043 (8)*
C70.2604 (2)0.1056 (2)0.1865 (2)0.0286 (5)
H70.219 (3)0.152 (3)0.136 (2)0.037 (7)*
O40.04007 (15)0.41933 (14)0.06861 (11)0.0175 (3)
N30.03983 (18)0.55267 (18)0.11997 (14)0.0188 (4)
H1N30.008 (3)0.585 (3)0.078 (2)0.029 (7)*
C80.1040 (2)0.6232 (2)0.21800 (15)0.0146 (4)
O30.15716 (14)0.56033 (14)0.26357 (10)0.0149 (3)
C90.1150 (2)0.7704 (2)0.27167 (16)0.0154 (4)
C100.1173 (2)0.8613 (2)0.21373 (17)0.0196 (4)
H100.116 (2)0.832 (2)0.1403 (18)0.014 (5)*
C110.1315 (2)1.0008 (2)0.26579 (17)0.0205 (4)
H110.135 (2)1.060 (2)0.2244 (17)0.015 (5)*
C120.1403 (2)1.0527 (2)0.37769 (17)0.0184 (4)
N40.1479 (2)1.1887 (2)0.42768 (17)0.0238 (4)
H1N40.165 (3)1.217 (3)0.494 (2)0.027 (7)*
H2N40.161 (3)1.247 (3)0.388 (2)0.042 (8)*
C130.1409 (2)0.9625 (2)0.43591 (17)0.0182 (4)
H130.148 (2)0.995 (3)0.508 (2)0.024 (6)*
C140.1295 (2)0.8241 (2)0.38380 (16)0.0168 (4)
H140.129 (2)0.765 (2)0.4247 (17)0.010 (5)*
O60.30277 (14)0.41024 (15)0.09015 (11)0.0178 (3)
N50.41597 (18)0.41538 (19)0.14684 (14)0.0173 (4)
H1N50.480 (2)0.412 (2)0.1112 (18)0.016 (6)*
C150.4028 (2)0.3985 (2)0.24097 (15)0.0145 (4)
O50.28464 (14)0.37299 (14)0.27232 (11)0.0157 (3)
C160.5226 (2)0.4146 (2)0.30955 (15)0.0154 (4)
C170.5013 (2)0.3612 (2)0.39495 (16)0.0178 (4)
H170.408 (2)0.311 (2)0.4045 (18)0.021 (6)*
C180.6104 (2)0.3822 (2)0.46526 (16)0.0175 (4)
H180.592 (2)0.346 (3)0.5211 (19)0.024 (6)*
C190.7457 (2)0.4587 (2)0.45299 (15)0.0158 (4)
N60.8551 (2)0.4808 (2)0.52404 (15)0.0198 (4)
H1N60.835 (2)0.467 (2)0.5823 (18)0.008 (5)*
H2N60.927 (3)0.549 (3)0.529 (2)0.037 (8)*
C200.7675 (2)0.5081 (2)0.36565 (17)0.0186 (4)
H200.854 (2)0.559 (2)0.3568 (17)0.015 (5)*
C210.6581 (2)0.4880 (2)0.29572 (17)0.0187 (4)
H210.677 (2)0.527 (2)0.2400 (17)0.012 (5)*
O70.62865 (18)0.41913 (19)0.03203 (14)0.0300 (4)
H1O70.651 (3)0.473 (3)0.000 (2)0.030 (7)*
C220.6632 (3)0.2992 (3)0.0101 (2)0.0450 (7)
H22A0.76330.33040.00970.054*0.626 (13)
H22B0.64250.26490.08930.054*0.626 (13)
H22C0.59110.22830.07110.054*0.374 (13)
H22D0.75020.33210.03950.054*0.374 (13)
C23A0.5904 (9)0.1809 (6)0.0278 (5)0.048 (2)0.626 (13)
H23A0.59920.21680.10620.073*0.626 (13)
H23B0.62970.10880.00610.073*0.626 (13)
H23C0.49290.13710.00320.073*0.626 (13)
C23B0.6799 (14)0.2255 (11)0.0608 (8)0.052 (3)0.374 (13)
H23D0.70010.14320.02070.077*0.374 (13)
H23E0.59500.19140.09120.077*0.374 (13)
H23F0.75610.29170.11890.077*0.374 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01437 (15)0.00964 (14)0.01186 (14)0.00477 (11)0.00097 (10)0.00273 (10)
O20.0186 (7)0.0124 (7)0.0189 (7)0.0040 (6)0.0068 (6)0.0023 (6)
N10.0189 (9)0.0108 (8)0.0199 (9)0.0027 (7)0.0037 (7)0.0002 (7)
C10.0155 (9)0.0125 (9)0.0187 (10)0.0061 (8)0.0006 (8)0.0028 (8)
O10.0176 (7)0.0102 (6)0.0168 (7)0.0036 (5)0.0032 (5)0.0015 (5)
C20.0178 (10)0.0148 (10)0.0201 (10)0.0057 (8)0.0022 (8)0.0058 (8)
C30.0252 (11)0.0143 (10)0.0286 (12)0.0054 (9)0.0085 (9)0.0052 (9)
C40.0281 (12)0.0259 (12)0.0317 (13)0.0118 (10)0.0146 (10)0.0106 (10)
C50.0181 (10)0.0253 (11)0.0301 (12)0.0043 (9)0.0001 (9)0.0161 (10)
N20.0229 (11)0.0333 (13)0.0448 (14)0.0024 (10)0.0056 (10)0.0229 (11)
C60.0296 (13)0.0151 (11)0.0439 (15)0.0021 (10)0.0070 (11)0.0099 (10)
C70.0299 (12)0.0150 (10)0.0382 (14)0.0087 (9)0.0126 (11)0.0051 (10)
O40.0266 (8)0.0127 (7)0.0132 (7)0.0111 (6)0.0023 (6)0.0004 (5)
N30.0263 (9)0.0166 (9)0.0158 (9)0.0130 (7)0.0014 (7)0.0033 (7)
C80.0161 (9)0.0137 (9)0.0142 (9)0.0061 (8)0.0024 (7)0.0050 (7)
O30.0191 (7)0.0115 (6)0.0140 (7)0.0063 (5)0.0011 (5)0.0038 (5)
C90.0161 (9)0.0143 (9)0.0161 (9)0.0073 (8)0.0018 (7)0.0041 (8)
C100.0257 (11)0.0190 (10)0.0162 (10)0.0112 (9)0.0029 (8)0.0060 (8)
C110.0253 (11)0.0186 (10)0.0231 (11)0.0117 (9)0.0041 (9)0.0108 (9)
C120.0146 (9)0.0151 (10)0.0256 (11)0.0063 (8)0.0057 (8)0.0065 (8)
N40.0326 (11)0.0153 (9)0.0239 (11)0.0109 (8)0.0077 (8)0.0050 (8)
C130.0202 (10)0.0168 (10)0.0151 (10)0.0065 (8)0.0036 (8)0.0032 (8)
C140.0185 (10)0.0144 (9)0.0181 (10)0.0062 (8)0.0028 (8)0.0069 (8)
O60.0160 (7)0.0245 (8)0.0167 (7)0.0092 (6)0.0019 (6)0.0105 (6)
N50.0152 (8)0.0225 (9)0.0181 (9)0.0091 (7)0.0045 (7)0.0102 (7)
C150.0175 (10)0.0103 (9)0.0162 (9)0.0063 (7)0.0027 (8)0.0042 (7)
O50.0158 (7)0.0171 (7)0.0160 (7)0.0071 (6)0.0025 (5)0.0073 (6)
C160.0180 (10)0.0141 (9)0.0159 (9)0.0086 (8)0.0028 (8)0.0046 (8)
C170.0181 (10)0.0159 (10)0.0202 (10)0.0070 (8)0.0052 (8)0.0068 (8)
C180.0227 (10)0.0196 (10)0.0151 (10)0.0109 (8)0.0047 (8)0.0094 (8)
C190.0195 (10)0.0141 (9)0.0141 (9)0.0102 (8)0.0022 (8)0.0007 (7)
N60.0197 (10)0.0247 (10)0.0168 (9)0.0100 (8)0.0037 (7)0.0083 (8)
C200.0142 (10)0.0190 (10)0.0209 (10)0.0046 (8)0.0045 (8)0.0069 (8)
C210.0198 (10)0.0203 (10)0.0171 (10)0.0069 (8)0.0043 (8)0.0092 (8)
O70.0367 (10)0.0372 (10)0.0326 (9)0.0221 (8)0.0197 (8)0.0238 (8)
C220.0638 (19)0.0503 (17)0.0404 (16)0.0374 (16)0.0226 (14)0.0222 (14)
C23A0.063 (5)0.036 (3)0.058 (4)0.026 (3)0.021 (3)0.023 (3)
C23B0.048 (7)0.039 (5)0.069 (6)0.022 (5)0.016 (5)0.015 (4)
Geometric parameters (Å, º) top
Fe—O21.9615 (14)N4—H1N40.83 (3)
Fe—O61.9769 (14)N4—H2N40.90 (3)
Fe—O41.9822 (14)C13—C141.382 (3)
Fe—O52.0444 (14)C13—H130.90 (2)
Fe—O12.0470 (14)C14—H140.94 (2)
Fe—O32.0654 (13)O6—N51.379 (2)
O2—N11.383 (2)N5—C151.313 (3)
N1—C11.315 (3)N5—H1N50.84 (2)
N1—H1N10.84 (3)C15—O51.285 (2)
C1—O11.282 (2)C15—C161.474 (3)
C1—C21.466 (3)C16—C171.396 (3)
C2—C31.394 (3)C16—C211.400 (3)
C2—C71.396 (3)C17—C181.377 (3)
C3—C41.378 (3)C17—H170.96 (2)
C3—H30.93 (3)C18—C191.400 (3)
C4—C51.391 (3)C18—H180.92 (2)
C4—H40.94 (3)C19—N61.381 (3)
C5—N21.390 (3)C19—C201.396 (3)
C5—C61.395 (3)N6—H1N60.84 (2)
N2—H1N20.80 (3)N6—H2N60.82 (3)
N2—H2N20.90 (3)C20—C211.380 (3)
C6—C71.380 (3)C20—H200.90 (2)
C6—H60.96 (3)C21—H210.94 (2)
C7—H70.92 (3)O7—C221.417 (3)
O4—N31.378 (2)O7—H1O70.78 (3)
N3—C81.304 (3)C22—C23B1.438 (8)
N3—H1N30.86 (3)C22—C23A1.446 (5)
C8—O31.283 (2)C22—H22A0.9900
C8—C91.470 (3)C22—H22B0.9900
C9—C101.398 (3)C22—H22C0.9900
C9—C141.401 (3)C22—H22D0.9900
C10—C111.382 (3)C23A—H23A0.9800
C10—H100.92 (2)C23A—H23B0.9800
C11—C121.402 (3)C23A—H23C0.9800
C11—H110.95 (2)C23B—H23D0.9800
C12—N41.368 (3)C23B—H23E0.9800
C12—C131.402 (3)C23B—H23F0.9800
O2—Fe—O690.72 (6)C12—C13—H13119.8 (15)
O2—Fe—O492.73 (6)C13—C14—C9120.68 (18)
O6—Fe—O491.70 (6)C13—C14—H14119.0 (13)
O2—Fe—O5104.13 (6)C9—C14—H14120.3 (13)
O6—Fe—O578.92 (5)N5—O6—Fe112.13 (11)
O4—Fe—O5160.68 (6)C15—N5—O6117.38 (16)
O2—Fe—O179.40 (5)C15—N5—H1N5127.0 (15)
O6—Fe—O1162.99 (6)O6—N5—H1N5114.4 (15)
O4—Fe—O1102.49 (6)O5—C15—N5118.19 (17)
O5—Fe—O190.01 (6)O5—C15—C16121.59 (17)
O2—Fe—O3163.96 (6)N5—C15—C16120.18 (17)
O6—Fe—O3102.91 (6)C15—O5—Fe113.19 (12)
O4—Fe—O378.63 (5)C17—C16—C21118.42 (18)
O5—Fe—O386.98 (5)C17—C16—C15119.09 (18)
O1—Fe—O389.21 (5)C21—C16—C15122.41 (18)
N1—O2—Fe111.18 (11)C18—C17—C16121.01 (19)
C1—N1—O2117.85 (16)C18—C17—H17120.6 (14)
C1—N1—H1N1129.3 (18)C16—C17—H17118.4 (14)
O2—N1—H1N1112.1 (18)C17—C18—C19120.58 (19)
O1—C1—N1117.72 (18)C17—C18—H18118.3 (15)
O1—C1—C2122.48 (17)C19—C18—H18121.1 (15)
N1—C1—C2119.79 (17)N6—C19—C20120.91 (19)
C1—O1—Fe112.64 (12)N6—C19—C18120.57 (19)
C3—C2—C7118.2 (2)C20—C19—C18118.49 (18)
C3—C2—C1119.10 (18)C19—N6—H1N6115.4 (14)
C7—C2—C1122.69 (19)C19—N6—H2N6117 (2)
C4—C3—C2121.1 (2)H1N6—N6—H2N6115 (2)
C4—C3—H3119.6 (17)C21—C20—C19120.82 (19)
C2—C3—H3119.3 (17)C21—C20—H20119.1 (14)
C3—C4—C5120.8 (2)C19—C20—H20119.9 (14)
C3—C4—H4121.3 (16)C20—C21—C16120.62 (19)
C5—C4—H4117.9 (16)C20—C21—H21118.1 (13)
N2—C5—C4120.7 (2)C16—C21—H21121.3 (13)
N2—C5—C6121.0 (2)C22—O7—H1O7113 (2)
C4—C5—C6118.3 (2)O7—C22—C23B118.2 (4)
C5—N2—H1N2114 (2)O7—C22—C23A113.5 (3)
C5—N2—H2N2112.1 (19)C23B—C22—C23A37.0 (4)
H1N2—N2—H2N2114 (3)O7—C22—H22A108.9
C7—C6—C5121.0 (2)C23B—C22—H22A73.0
C7—C6—H6120.4 (17)C23A—C22—H22A108.9
C5—C6—H6118.6 (17)O7—C22—H22B108.9
C6—C7—C2120.6 (2)C23B—C22—H22B129.9
C6—C7—H7120.1 (17)C23A—C22—H22B108.9
C2—C7—H7119.2 (17)H22A—C22—H22B107.7
N3—O4—Fe111.77 (11)O7—C22—H22C107.7
C8—N3—O4118.68 (16)C23B—C22—H22C107.9
C8—N3—H1N3127.3 (17)C23A—C22—H22C75.6
O4—N3—H1N3113.2 (17)H22A—C22—H22C136.9
O3—C8—N3117.74 (17)H22B—C22—H22C37.7
O3—C8—C9122.39 (17)O7—C22—H22D107.7
N3—C8—C9119.87 (17)C23B—C22—H22D107.6
C8—O3—Fe113.04 (12)C23A—C22—H22D135.6
C10—C9—C14118.69 (18)H22A—C22—H22D39.5
C10—C9—C8121.53 (18)H22B—C22—H22D71.1
C14—C9—C8119.73 (17)H22C—C22—H22D107.1
C11—C10—C9120.73 (19)C22—C23A—H22C38.6
C11—C10—H10118.5 (13)C22—C23A—H23A109.5
C9—C10—H10120.7 (13)H22C—C23A—H23A142.0
C10—C11—C12120.61 (19)C22—C23A—H23B109.5
C10—C11—H11118.6 (13)H22C—C23A—H23B102.8
C12—C11—H11120.8 (13)C22—C23A—H23C109.5
N4—C12—C13121.5 (2)H22C—C23A—H23C76.8
N4—C12—C11119.96 (19)C22—C23B—H23D109.5
C13—C12—C11118.58 (18)C22—C23B—H23E109.5
C12—N4—H1N4114.5 (18)H23D—C23B—H23E109.5
C12—N4—H2N4117.8 (18)C22—C23B—H23F109.5
H1N4—N4—H2N4125 (3)H23D—C23B—H23F109.5
C14—C13—C12120.63 (19)H23E—C23B—H23F109.5
C14—C13—H13119.5 (15)
O6—Fe—O2—N1175.55 (12)O3—C8—C9—C10149.8 (2)
O4—Fe—O2—N192.72 (12)N3—C8—C9—C1029.2 (3)
O5—Fe—O2—N196.80 (12)O3—C8—C9—C1427.4 (3)
O1—Fe—O2—N19.49 (11)N3—C8—C9—C14153.54 (19)
O3—Fe—O2—N136.0 (3)C14—C9—C10—C111.0 (3)
Fe—O2—N1—C111.7 (2)C8—C9—C10—C11178.25 (19)
O2—N1—C1—O16.1 (3)C9—C10—C11—C121.7 (3)
O2—N1—C1—C2174.36 (16)C10—C11—C12—N4177.0 (2)
N1—C1—O1—Fe2.5 (2)C10—C11—C12—C132.9 (3)
C2—C1—O1—Fe176.99 (14)N4—C12—C13—C14178.27 (19)
O2—Fe—O1—C16.88 (13)C11—C12—C13—C141.6 (3)
O6—Fe—O1—C162.3 (2)C12—C13—C14—C91.0 (3)
O4—Fe—O1—C183.59 (13)C10—C9—C14—C132.3 (3)
O5—Fe—O1—C1111.26 (13)C8—C9—C14—C13179.61 (18)
O3—Fe—O1—C1161.76 (13)O2—Fe—O6—N5100.53 (12)
O1—C1—C2—C320.6 (3)O4—Fe—O6—N5166.72 (12)
N1—C1—C2—C3158.8 (2)O5—Fe—O6—N53.73 (11)
O1—C1—C2—C7160.5 (2)O1—Fe—O6—N546.5 (3)
N1—C1—C2—C720.0 (3)O3—Fe—O6—N588.00 (12)
C7—C2—C3—C41.3 (3)Fe—O6—N5—C154.7 (2)
C1—C2—C3—C4177.7 (2)O6—N5—C15—O52.6 (3)
C2—C3—C4—C50.9 (4)O6—N5—C15—C16175.01 (16)
C3—C4—C5—N2178.1 (2)N5—C15—O5—Fe0.8 (2)
C3—C4—C5—C60.6 (4)C16—C15—O5—Fe178.37 (13)
N2—C5—C6—C7179.2 (2)O2—Fe—O5—C1585.37 (13)
C4—C5—C6—C71.7 (4)O6—Fe—O5—C152.56 (12)
C5—C6—C7—C21.3 (4)O4—Fe—O5—C1564.7 (2)
C3—C2—C7—C60.2 (4)O1—Fe—O5—C15164.44 (12)
C1—C2—C7—C6178.7 (2)O3—Fe—O5—C15106.35 (12)
O2—Fe—O4—N3166.76 (12)O5—C15—C16—C1718.8 (3)
O6—Fe—O4—N3102.43 (12)N5—C15—C16—C17163.68 (18)
O5—Fe—O4—N342.2 (2)O5—C15—C16—C21157.92 (18)
O1—Fe—O4—N387.02 (12)N5—C15—C16—C2119.6 (3)
O3—Fe—O4—N30.40 (11)C21—C16—C17—C181.2 (3)
Fe—O4—N3—C81.7 (2)C15—C16—C17—C18175.66 (18)
O4—N3—C8—O34.0 (3)C16—C17—C18—C190.4 (3)
O4—N3—C8—C9175.04 (16)C17—C18—C19—N6179.44 (18)
N3—C8—O3—Fe4.1 (2)C17—C18—C19—C202.4 (3)
C9—C8—O3—Fe174.89 (14)N6—C19—C20—C21178.92 (19)
O2—Fe—O3—C860.9 (3)C18—C19—C20—C213.0 (3)
O6—Fe—O3—C886.72 (13)C19—C20—C21—C161.4 (3)
O4—Fe—O3—C82.41 (12)C17—C16—C21—C200.6 (3)
O5—Fe—O3—C8164.62 (13)C15—C16—C21—C20176.07 (18)
O1—Fe—O3—C8105.33 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O6i0.78 (3)1.91 (3)2.694 (2)175 (3)
N6—H1N6···O3ii0.84 (2)2.15 (2)2.968 (2)163.9 (19)
N5—H1N5···O70.84 (2)1.91 (2)2.740 (2)176 (2)
N3—H1N3···O4iii0.86 (3)1.98 (3)2.755 (2)150 (2)
N1—H1N1···O2iv0.84 (3)1.99 (3)2.737 (2)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C7H7N2O2)3]·C2H6O
Mr555.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.6232 (18), 10.6455 (18), 13.225 (2)
α, β, γ (°)107.550 (3), 91.085 (4), 112.217 (3)
V3)1305.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.30 × 0.20 × 0.03
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.883, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
24614, 5739, 5065
Rint0.044
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.06
No. of reflections5739
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97(Sheldrick, 2008).

Selected bond lengths (Å) top
Fe—O21.9615 (14)Fe—O52.0444 (14)
Fe—O61.9769 (14)Fe—O12.0470 (14)
Fe—O41.9822 (14)Fe—O32.0654 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O6i0.78 (3)1.91 (3)2.694 (2)175 (3)
N6—H1N6···O3ii0.84 (2)2.15 (2)2.968 (2)163.9 (19)
N5—H1N5···O70.84 (2)1.91 (2)2.740 (2)176 (2)
N3—H1N3···O4iii0.86 (3)1.98 (3)2.755 (2)150 (2)
N1—H1N1···O2iv0.84 (3)1.99 (3)2.737 (2)149 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z.
 

Acknowledgements

We thank the Irish Government under its Programme for Research in Third Level Institutions (Cycle 3), Enterprise Ireland (International Collaboration programme) and EU COST D8 for support.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMarmion, C. J., Murphy, T., Starikova, Z. & Nolan, K. B. (2000). Acta Cryst. C56, e491–e492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMulcahy, C., Krot, K. A., Griffith, D. M., Suponitsky, K. Y., Starikova, Z. A. & Marmion, C. J. (2007). Eur. J. Inorg. Chem. pp. 1373–1380.  Web of Science CSD CrossRef Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRio-Echevarria, I. M., White, F. J., Brechin, E. K., Tasker, P. A. & Harris, S. G. (2008). Chem. Commun. pp. 4570–4572.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m853-m854
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds