organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1854-o1855

3-(2-Amino­eth­yl)-2-[4-(tri­fluoro­meth­­oxy)anilino]quinazolin-4(3H)-one

aDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, Hubei, People's Republic of China, bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, Hubei, People's Republic of China, and cCollege of Life and Environmental Science, Kaili University, Kaili 556000, Guizhou, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 18 June 2010; accepted 23 June 2010; online 30 June 2010)

In the title compound, C17H15F3N4O2, the dihedral angle between the trifluoro­meth­oxy-substituted benzene ring and the pyrimidinone ring is 45.1 (5)°, while that between the fused benzene ring and the pyrimidinone ring is 0.67 (1)°. Part of one of the benzene rings and its trifluoro­meth­oxy substituent are disordered over two positions of approximately equal occupancy (0.51:0.49). Inter­molecular N—H⋯O and N—H⋯N hydrogen bonds contribute to the stability of the crystal structure. A weak intra­molecular C—H⋯F contact is also found. In addition, ππ stacking inter­actions, with centroid–centroid distances in the range 3.673 (6)–3.780 (8) Å, and weak C—H⋯π inter­actions are also observed.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999[Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11-17.]); Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]), Malamas & Millen (1991[Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.]); Palmer et al. (1997[Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519-1529.]); Tsou et al. (2001[Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719-2734.]); Matsuno et al. (2002[Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057-3066.]). For the synthesis of the title compound, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15F3N4O2

  • Mr = 364.33

  • Orthorhombic, P b c n

  • a = 11.9675 (13) Å

  • b = 12.9579 (13) Å

  • c = 21.280 (2) Å

  • V = 3300.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.]) Tmin = 0.973, Tmax = 0.987

  • 15599 measured reflections

  • 3076 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.12

  • 3076 reflections

  • 311 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N2i 0.86 (1) 2.40 (2) 3.150 (3) 145 (3)
N3—H3A⋯O1ii 0.86 (1) 2.46 (2) 3.147 (3) 137 (3)
C15—H15⋯F2 0.93 2.40 2.93 (3) 116
C12—H12⋯Cg1i 0.93 2.88 3.560 (3) 131
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999 and Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al.,2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We have reported the synthesis of the title compound (Yang et al., 2008). We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the fused benzene ring and the pyrimidinone ring are not completely co-planar, but are inclined at 0.67 (1) °. Significant and intermolecular N—H···O and N—H···N hydrogen bonds contribute strongly to the stability of the structure (Fig. 2). An intramolecular C—H···F hydrogen bond is also found. (Table 1). The crystal structure (Fig. 2) is also stabilized by weak intermolecular C—H···π hydrogen bonds (Table 1) and ππ stacking interactions with centroid-centroid separations of 3.673 (6), 3.779 (8), 3.674 (6) and 3.780 (8) Å for Cg1···Cg3i, Cg1···Cg4i, Cg3···Cg1ii and Cg4···Cg1ii, respectively, where Cg1, Cg3 and Cg4 are the centroids of the N1/C7/C1—C2/N2/C8, C11—C16 and C11—C13/C14'-C16' rings, respectively [symmetry code: (i) 3/2-X, 1/2+Y, Z, (ii) 3/2-X, -1/2+Y, Z,].

Related literature top

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999); Shiba et al. (1997), Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis of the title compound, see: Yang et al. (2008).

Experimental top

The title compound was prepared by a literature method (Yang et al., 2008). Single crystals suitable for X-ray diffraction were obtained from a methanol-dichloromethane (1:1 v/v) solution at room temperature.

Refinement top

H atoms bonded to C were placed in calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(methyl C). The H atoms bound to N were refined with distance restraints N—H = 0.86 (2)Å and with Uiso(H) = 1.2Ueq (N). The C14···C16 atoms of the trifluoromethoxy-substituted benzene ring and all atoms of the trifluoromethoxy substituent were disordered over two sites. The site occupancies refined to 0.51 and 0.49 and were fixed at these values in the final refinement cycles.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level. Both disorder components are shown with bonds involving the minor disorder component drawn as dashed lines.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of N—H···N and N—H···O hydrogen-bonds as dashed lines.
3-(2-Aminoethyl)-2-[4-(trifluoromethoxy)anilino]quinazolin-4(3H)-one top
Crystal data top
C17H15F3N4O2F(000) = 1504
Mr = 364.33Dx = 1.467 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4600 reflections
a = 11.9675 (13) Åθ = 2.5–23.5°
b = 12.9579 (13) ŵ = 0.12 mm1
c = 21.280 (2) ÅT = 298 K
V = 3300.0 (6) Å3Block, colorless
Z = 80.23 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3076 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1014
Tmin = 0.973, Tmax = 0.987k = 1514
15599 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.8235P]
where P = (Fo2 + 2Fc2)/3
3076 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.39 e Å3
19 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H15F3N4O2V = 3300.0 (6) Å3
Mr = 364.33Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 11.9675 (13) ŵ = 0.12 mm1
b = 12.9579 (13) ÅT = 298 K
c = 21.280 (2) Å0.23 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2573 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.987Rint = 0.083
15599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06119 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.39 e Å3
3076 reflectionsΔρmin = 0.29 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9187 (2)1.31297 (18)0.55231 (11)0.0445 (6)
C20.9408 (2)1.24194 (18)0.60015 (11)0.0443 (6)
C30.9930 (2)1.2767 (2)0.65508 (12)0.0556 (7)
H31.00931.23040.68710.067*
C41.0200 (2)1.3792 (2)0.66172 (14)0.0623 (7)
H41.05461.40140.69840.075*
C50.9967 (2)1.4498 (2)0.61481 (14)0.0631 (8)
H51.01561.51890.61990.076*
C60.9457 (2)1.41721 (19)0.56101 (14)0.0549 (7)
H60.92861.46480.52970.066*
C70.8649 (2)1.27789 (18)0.49482 (11)0.0453 (6)
C80.8673 (2)1.10775 (18)0.54329 (10)0.0425 (6)
C90.7649 (2)1.1385 (2)0.44173 (12)0.0522 (6)
H9A0.72571.19790.42490.063*
H9B0.70921.09150.45850.063*
C100.8258 (2)1.0850 (2)0.38838 (11)0.0555 (7)
H10A0.77951.08610.35100.067*
H10B0.89431.12200.37910.067*
C110.8519 (2)0.92710 (18)0.57795 (12)0.0463 (6)
C120.8785 (2)0.82950 (18)0.55666 (12)0.0463 (6)
H120.89700.82000.51460.056*
C130.8781 (2)0.74562 (19)0.59680 (13)0.0523 (7)
H130.89870.68080.58210.063*
C140.8473 (13)0.7581 (8)0.6583 (5)0.065 (5)0.51
C150.812 (2)0.855 (2)0.6764 (13)0.071 (6)0.51
H150.78050.86160.71610.085*0.51
C160.8208 (17)0.9417 (9)0.6397 (8)0.050 (3)0.51
H160.80651.00720.65580.060*0.51
C170.8238 (9)0.6670 (8)0.7538 (5)0.0637 (12)0.51
O20.8387 (12)0.6644 (9)0.6922 (5)0.089 (4)0.51
F10.8935 (8)0.7216 (9)0.7869 (6)0.119 (4)0.51
F20.7234 (6)0.7043 (7)0.7658 (5)0.122 (4)0.51
F30.8159 (10)0.5681 (5)0.7691 (4)0.082 (2)0.51
C14'0.8582 (12)0.7631 (9)0.6591 (6)0.063 (5)0.49
C15'0.842 (3)0.8590 (19)0.6855 (14)0.071 (6)0.49
H15'0.83740.87000.72860.085*0.49
C16'0.834 (3)0.9368 (16)0.6418 (13)0.101 (8)0.49
H16'0.81481.00200.65660.121*0.49
C17'0.8114 (10)0.6564 (9)0.7475 (6)0.0637 (12)0.49
O2'0.8747 (11)0.6749 (8)0.6976 (5)0.070 (3)0.49
F1'0.8435 (10)0.7198 (6)0.7928 (4)0.105 (4)0.49
F2'0.7057 (9)0.6717 (8)0.7373 (5)0.122 (4)0.49
F3'0.8383 (15)0.5654 (9)0.7708 (7)0.145 (6)0.49
N10.83729 (16)1.17338 (14)0.49385 (9)0.0428 (5)
N20.91631 (18)1.13823 (14)0.59417 (9)0.0469 (5)
N30.8525 (2)0.97796 (19)0.40455 (11)0.0605 (6)
H3A0.7992 (19)0.936 (2)0.3949 (14)0.073*
H3B0.9115 (17)0.952 (2)0.3871 (14)0.073*
N40.8435 (2)1.00667 (16)0.53333 (9)0.0510 (6)
H4A0.843 (2)0.988 (2)0.4945 (6)0.061*
O10.84285 (17)1.33377 (14)0.45034 (9)0.0620 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0419 (13)0.0403 (12)0.0513 (13)0.0033 (10)0.0089 (11)0.0027 (10)
C20.0470 (13)0.0410 (13)0.0449 (13)0.0008 (10)0.0068 (10)0.0003 (10)
C30.0640 (17)0.0577 (16)0.0452 (13)0.0084 (13)0.0010 (12)0.0015 (11)
C40.0643 (18)0.0622 (18)0.0604 (16)0.0108 (14)0.0069 (14)0.0154 (14)
C50.0644 (18)0.0428 (14)0.082 (2)0.0098 (12)0.0113 (16)0.0141 (13)
C60.0550 (15)0.0397 (13)0.0702 (17)0.0013 (11)0.0113 (13)0.0066 (12)
C70.0455 (13)0.0415 (13)0.0490 (13)0.0078 (10)0.0076 (11)0.0077 (10)
C80.0465 (13)0.0402 (12)0.0410 (12)0.0001 (10)0.0031 (10)0.0038 (10)
C90.0521 (15)0.0527 (15)0.0519 (13)0.0026 (11)0.0113 (12)0.0054 (11)
C100.0634 (16)0.0601 (16)0.0431 (13)0.0049 (13)0.0077 (12)0.0038 (12)
C110.0535 (14)0.0399 (13)0.0455 (13)0.0049 (10)0.0006 (11)0.0033 (10)
C120.0491 (14)0.0431 (13)0.0466 (13)0.0014 (10)0.0007 (11)0.0015 (10)
C130.0601 (16)0.0386 (13)0.0583 (16)0.0076 (11)0.0039 (13)0.0029 (11)
C140.121 (10)0.032 (7)0.043 (7)0.017 (6)0.026 (6)0.002 (4)
C150.118 (13)0.063 (7)0.033 (7)0.014 (7)0.003 (6)0.004 (4)
C160.097 (7)0.014 (4)0.040 (6)0.001 (4)0.011 (5)0.001 (4)
C170.084 (3)0.054 (2)0.053 (2)0.002 (2)0.004 (2)0.0146 (19)
O20.167 (12)0.046 (3)0.055 (3)0.033 (5)0.014 (5)0.013 (2)
F10.111 (6)0.144 (6)0.101 (6)0.025 (4)0.036 (4)0.008 (4)
F20.084 (5)0.107 (6)0.177 (9)0.021 (4)0.060 (6)0.059 (6)
F30.132 (5)0.045 (3)0.070 (4)0.001 (3)0.018 (3)0.038 (3)
C14'0.071 (6)0.050 (9)0.069 (9)0.024 (5)0.032 (6)0.027 (6)
C15'0.139 (17)0.036 (6)0.037 (8)0.003 (8)0.006 (9)0.006 (5)
C16'0.164 (19)0.075 (11)0.064 (12)0.026 (9)0.035 (11)0.001 (8)
C17'0.084 (3)0.054 (2)0.053 (2)0.002 (2)0.004 (2)0.0146 (19)
O2'0.098 (6)0.038 (4)0.076 (5)0.016 (4)0.022 (5)0.011 (3)
F1'0.197 (12)0.074 (4)0.045 (3)0.000 (5)0.031 (5)0.014 (2)
F2'0.107 (5)0.116 (7)0.144 (7)0.005 (4)0.023 (5)0.038 (5)
F3'0.186 (11)0.112 (8)0.137 (9)0.059 (6)0.005 (7)0.054 (6)
N10.0465 (11)0.0404 (11)0.0416 (10)0.0029 (8)0.0018 (8)0.0038 (8)
N20.0591 (13)0.0395 (11)0.0421 (11)0.0024 (9)0.0030 (9)0.0057 (8)
N30.0730 (17)0.0565 (15)0.0518 (13)0.0004 (12)0.0036 (12)0.0049 (11)
N40.0754 (15)0.0385 (11)0.0389 (11)0.0060 (10)0.0015 (10)0.0022 (9)
O10.0760 (13)0.0527 (11)0.0573 (11)0.0087 (9)0.0023 (9)0.0205 (9)
Geometric parameters (Å, º) top
C1—C21.398 (3)C11—N41.405 (3)
C1—C61.401 (3)C12—C131.382 (3)
C1—C71.455 (4)C12—H120.9300
C2—N21.381 (3)C13—C14'1.366 (14)
C2—C31.399 (3)C13—C141.369 (13)
C3—C41.374 (4)C13—H130.9300
C3—H30.9300C14—C151.38 (3)
C4—C51.382 (4)C14—O21.416 (9)
C4—H40.9300C15—C161.38 (4)
C5—C61.364 (4)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300C17—F11.302 (9)
C7—O11.221 (3)C17—F21.321 (9)
C7—N11.394 (3)C17—O21.324 (9)
C8—N21.293 (3)C17—F31.326 (8)
C8—N41.357 (3)C14'—C15'1.38 (3)
C8—N11.400 (3)C14'—O2'1.421 (8)
C9—N11.478 (3)C15'—C16'1.37 (4)
C9—C101.517 (4)C15'—H15'0.9300
C9—H9A0.9700C16'—H16'0.9300
C9—H9B0.9700C17'—F2'1.299 (9)
C10—N31.464 (4)C17'—F3'1.320 (9)
C10—H10A0.9700C17'—F1'1.325 (9)
C10—H10B0.9700C17'—O2'1.325 (9)
C11—C161.379 (18)N3—H3A0.862 (11)
C11—C121.381 (3)N3—H3B0.864 (11)
C11—C16'1.38 (3)N4—H4A0.863 (11)
C2—C1—C6119.7 (2)C14—C13—C12119.9 (5)
C2—C1—C7119.4 (2)C14'—C13—H13121.6
C6—C1—C7120.9 (2)C14—C13—H13120.1
N2—C2—C1122.2 (2)C12—C13—H13120.1
N2—C2—C3119.0 (2)C13—C14—C15117.3 (15)
C1—C2—C3118.7 (2)C13—C14—O2113.9 (9)
C4—C3—C2120.1 (3)C15—C14—O2127.9 (17)
C4—C3—H3119.9C14—C15—C16124 (2)
C2—C3—H3119.9C14—C15—H15117.9
C3—C4—C5121.2 (3)C16—C15—H15117.9
C3—C4—H4119.4C15—C16—C11116.7 (16)
C5—C4—H4119.4C15—C16—H16121.7
C6—C5—C4119.4 (2)C11—C16—H16121.7
C6—C5—H5120.3F1—C17—F2106.2 (9)
C4—C5—H5120.3F1—C17—O2117.7 (11)
C5—C6—C1120.8 (3)F2—C17—O2108.9 (11)
C5—C6—H6119.6F1—C17—F3116.0 (10)
C1—C6—H6119.6F2—C17—F3104.0 (9)
O1—C7—N1120.9 (2)O2—C17—F3103.2 (9)
O1—C7—C1124.2 (2)C17—O2—C14119.5 (11)
N1—C7—C1114.88 (19)C13—C14'—C15'124.8 (15)
N2—C8—N4121.4 (2)C13—C14'—O2'113.7 (10)
N2—C8—N1124.1 (2)C15'—C14'—O2'120.6 (16)
N4—C8—N1114.5 (2)C16'—C15'—C14'113 (2)
N1—C9—C10114.8 (2)C16'—C15'—H15'123.3
N1—C9—H9A108.6C14'—C15'—H15'123.3
C10—C9—H9A108.6C15'—C16'—C11126 (2)
N1—C9—H9B108.6C15'—C16'—H16'117.0
C10—C9—H9B108.6C11—C16'—H16'117.0
H9A—C9—H9B107.5F2'—C17'—F3'115.9 (11)
N3—C10—C9111.2 (2)F2'—C17'—F1'108.1 (9)
N3—C10—H10A109.4F3'—C17'—F1'102.1 (10)
C9—C10—H10A109.4F2'—C17'—O2'113.3 (11)
N3—C10—H10B109.4F3'—C17'—O2'108.8 (11)
C9—C10—H10B109.4F1'—C17'—O2'107.8 (10)
H10A—C10—H10B108.0C17'—O2'—C14'121.8 (11)
C16—C11—C12120.0 (6)C7—N1—C8121.2 (2)
C16—C11—C16'7 (2)C7—N1—C9116.56 (19)
C12—C11—C16'116.2 (10)C8—N1—C9121.9 (2)
C16—C11—N4121.6 (6)C8—N2—C2118.07 (19)
C12—C11—N4117.8 (2)C10—N3—H3A112 (2)
C16'—C11—N4125.9 (10)C10—N3—H3B116 (2)
C11—C12—C13121.1 (2)H3A—N3—H3B105 (3)
C11—C12—H12119.4C8—N4—C11126.0 (2)
C13—C12—H12119.4C8—N4—H4A115.3 (19)
C14'—C13—C146.1 (12)C11—N4—H4A115.9 (19)
C14'—C13—C12118.0 (5)
C6—C1—C2—N2179.8 (2)C15—C14—O2—C1720 (2)
C7—C1—C2—N21.9 (3)C14—C13—C14'—C15'112 (10)
C6—C1—C2—C32.0 (3)C12—C13—C14'—C15'2 (2)
C7—C1—C2—C3179.8 (2)C14—C13—C14'—O2'79 (9)
N2—C2—C3—C4178.9 (2)C12—C13—C14'—O2'171.7 (9)
C1—C2—C3—C41.0 (4)C13—C14'—C15'—C16'8 (3)
C2—C3—C4—C50.0 (4)O2'—C14'—C15'—C16'176 (2)
C3—C4—C5—C60.2 (4)C14'—C15'—C16'—C117 (4)
C4—C5—C6—C11.2 (4)C16—C11—C16'—C15'124 (12)
C2—C1—C6—C52.2 (4)C12—C11—C16'—C15'1 (3)
C7—C1—C6—C5179.6 (2)N4—C11—C16'—C15'180 (2)
C2—C1—C7—O1179.5 (2)F2'—C17'—O2'—C14'43.8 (16)
C6—C1—C7—O12.3 (4)F3'—C17'—O2'—C14'174.2 (14)
C2—C1—C7—N11.6 (3)F1'—C17'—O2'—C14'75.8 (15)
C6—C1—C7—N1176.6 (2)C13—C14'—O2'—C17'144.6 (11)
N1—C9—C10—N378.7 (3)C15'—C14'—O2'—C17'45 (2)
C16—C11—C12—C132.0 (10)O1—C7—N1—C8176.8 (2)
C16'—C11—C12—C135.1 (15)C1—C7—N1—C84.3 (3)
N4—C11—C12—C13173.9 (2)O1—C7—N1—C99.6 (3)
C11—C12—C13—C14'4.5 (8)C1—C7—N1—C9169.3 (2)
C11—C12—C13—C142.2 (8)N2—C8—N1—C73.8 (4)
C14'—C13—C14—C1577 (9)N4—C8—N1—C7174.5 (2)
C12—C13—C14—C153.3 (19)N2—C8—N1—C9169.5 (2)
C14'—C13—C14—O2113 (9)N4—C8—N1—C912.2 (3)
C12—C13—C14—O2173.4 (8)C10—C9—N1—C7100.9 (3)
C13—C14—C15—C1610 (3)C10—C9—N1—C885.5 (3)
O2—C14—C15—C16178.0 (19)N4—C8—N2—C2178.1 (2)
C14—C15—C16—C1110 (3)N1—C8—N2—C20.1 (4)
C12—C11—C16—C154 (2)C1—C2—N2—C82.7 (3)
C16'—C11—C16—C1564 (10)C3—C2—N2—C8179.4 (2)
N4—C11—C16—C15168.0 (16)N2—C8—N4—C1110.1 (4)
F1—C17—O2—C1452.8 (17)N1—C8—N4—C11171.5 (2)
F2—C17—O2—C1468.0 (15)C16—C11—N4—C839.3 (10)
F3—C17—O2—C14178.0 (13)C12—C11—N4—C8148.9 (2)
C13—C14—O2—C17171.3 (11)C16'—C11—N4—C832.2 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.86 (1)2.40 (2)3.150 (3)145 (3)
N3—H3A···O1ii0.86 (1)2.46 (2)3.147 (3)137 (3)
C15—H15···F20.932.402.93 (3)116
C12—H12···Cg1i0.932.883.560 (3)131
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H15F3N4O2
Mr364.33
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)11.9675 (13), 12.9579 (13), 21.280 (2)
V3)3300.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
15599, 3076, 2573
Rint0.083
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.12
No. of reflections3076
No. of parameters311
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.864 (11)2.40 (2)3.150 (3)145 (3)
N3—H3A···O1ii0.862 (11)2.46 (2)3.147 (3)137 (3)
C15—H15···F20.932.402.93 (3)116
C12—H12···Cg1i0.932.883.560 (3)131
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3/2, y1/2, z.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Guizhou Educational Committee (grant No.20090079) for financial support, and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Whuhan, for the data collection.

References

First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492–1503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationMatsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationTsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1854-o1855
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds