organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-6-[(methyl­imino)­meth­yl]phenol

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 9 May 2010; accepted 26 May 2010; online 5 June 2010)

In the title compound, C10H13NO2, synthesized by the reaction of 2-hy­droxy-3-eth­oxy­benzaldehyde with methyl­amine, there is an an intra­molecular O—H⋯N hydrogen bond involving the hy­droxy substituent and the amino N atom. In the crystal, mol­ecules form inversion dimers connected by pairs of C—H⋯O hydrogen bonds.

Related literature

For similar Schiff bases, see: Chatziefthimiou et al. (2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, pp. 23701-23709.]); Zhang et al. (2003[Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517-520.]); Kargar et al. (2010[Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.]). For related structures, see: Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.]); Che et al. (2002[Che, C.-M., Kwong, H.-L., Chu, W.-C., Cheung, K.-F., Lee, W.-S., Yu, H.-S., Yeung, C.-T. & Cheung, K.-K. (2002). Eur. J. Inorg. Chem. pp. 1456-1463.]); Jia et al. (2009[Jia, Z. (2009). Acta Cryst. E65, o646.]); Fun et al. (2009[Fun, H.-K., Kia, R., Kargar, H. & Jamshidvand, A. (2009). Acta Cryst. E65, o722-o723.]). For structures with similar hydrogen-bonding to the title compound, see: Wang et al. (2010[Wang, Y. F., Zhang, S.-H., Chen, Z. F. & Liang, H. (2010). Acta Cryst. E66, o990.]); Kargar et al. (2010[Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO2

  • Mr = 179.21

  • Monoclinic, P 21 /c

  • a = 9.2986 (19) Å

  • b = 14.713 (3) Å

  • c = 7.0551 (15) Å

  • β = 108.465 (8)°

  • V = 915.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 5022 measured reflections

  • 1611 independent reflections

  • 1338 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.277

  • S = 1.01

  • 1611 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.616 (4) 142
C10—H10B⋯O1i 0.96 1.98 2.782 (4) 140
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds (Zhang et al., 2003; Karadayı et al., 2003; Che et al., 2002; Fun et al., 2009; Jia et al., 2009; Wang et al., 2010) have aroused increasing interest because of their antiviral, anticancer and antibacterial activities. Herein, we report the synthesis and crystal structure of the new title Schiff base compound, prepared by the reaction of 2-hydrogen-3-ethoxy-benzaldehyde and methylamine.

The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are similar to those found in the methoxy analogue (Chatziefthimiou et al., 2006). Excluding the methyl groups (C8 and C10), all the other non-hydrogen atoms (O1/O2/N1/C1-C7/C9) lie in a plane (planar to within 0.054 (3)Å). There is an intramolecular O–H···N hydrogen bond between the phenol and imido-group (Table 1), similar to the situation in crystal structures of the methoxy analogue (Chatziefthimiou et al., 2006), 6-Acetoxymethyl-3-[(2-hydroxy-3-methoxybenzylidene)-amino]-3, 4,5,6-tetrahydro-2H-pyran-2,4,5-triyl triacetate (Wang et al., 2010) and 5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol (Kargar et al., 2010).

In the crystal molecules are linked through weak intermolecular C–H···O hydrogen bond, to form dimers centered about an inversion center (Fig. 2).

Related literature top

For similar Schiff bases, see: Chatziefthimiou et al. (2006); Zhang et al. (2003); Kargar et al. (2010). For related structures, see: Karadayı et al. (2003); Che et al. (2002); Jia et al. (2009); Fun et al. (2009). For structures with similar hydrogen-bonding to the title compound, see: Wang et al. (2010); Kargar et al. (2010).

Experimental top

Compound 2-hydrogen-3-ethoxy-benzaldehyde (0.166 g, 1 mmol) was dissolved in ethanol (15 ml). To this solution was added a methylamine solution (0.5 ml) and the mixture was stirred and refluxed at 323 K for 2 h. After cooling to room temperature and filtration, the filtrate was left to stand at room temperature. Yellow block-like crystals, suitable for X-ray diffraction analysis, were obtained in a yield of 76 %. Analysis found (%): C 66.97, H 7.38, N 7.84; C10H13NO2 requires (%): C 67.02, H 7.31, N 7.82.

Refinement top

All the H-atoms were positioned geometrically and were treated as riding atoms: O—H 0.82 Å, C—H 0.93–0.97 Å, with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.2 for H-aromatic and = 1.5 for H-methyl and H-hydroxyl.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 30 % probability displacement ellipsoids. The intramolecular O-H···N hydrogen bond is shown as a dashed red line.
[Figure 2] Fig. 2. A view along the c-axis of the crystal packing of the title compound. The O-H···N and C-H···O hydrogen bonds are shown as dashed lines.
2-Ethoxy-6-[(methylimino)methyl]phenol top
Crystal data top
C10H13NO2F(000) = 384
Mr = 179.21Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1611 reflections
a = 9.2986 (19) Åθ = 2.3–25.0°
b = 14.713 (3) ŵ = 0.09 mm1
c = 7.0551 (15) ÅT = 296 K
β = 108.465 (8)°Block, yellow
V = 915.5 (3) Å30.23 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
phi and ω scansh = 1011
5022 measured reflectionsk = 1717
1611 independent reflectionsl = 86
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.277 w = 1/[σ2(Fo2) + (0.1633P)2 + 1.1252P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
1611 reflectionsΔρmax = 0.86 e Å3
122 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (11)
Crystal data top
C10H13NO2V = 915.5 (3) Å3
Mr = 179.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2986 (19) ŵ = 0.09 mm1
b = 14.713 (3) ÅT = 296 K
c = 7.0551 (15) Å0.23 × 0.18 × 0.15 mm
β = 108.465 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1338 reflections with I > 2σ(I)
5022 measured reflectionsRint = 0.028
1611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.277H-atom parameters constrained
S = 1.01Δρmax = 0.86 e Å3
1611 reflectionsΔρmin = 0.58 e Å3
122 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0203 (4)0.1015 (2)0.8638 (5)0.0465 (9)
C20.1745 (4)0.0879 (2)0.8267 (5)0.0477 (9)
C30.2406 (4)0.1178 (3)0.9696 (6)0.0592 (10)
H30.34340.10840.94820.071*
C40.1544 (5)0.1603 (3)1.1393 (6)0.0654 (11)
H40.20000.18131.23080.078*
C50.0000 (5)0.1728 (3)1.1776 (6)0.0578 (10)
H50.05770.20101.29520.069*
C60.0682 (4)0.1432 (2)1.0401 (5)0.0481 (9)
C70.3157 (4)0.1927 (3)1.2361 (6)0.0579 (10)
H7A0.30570.16321.35420.069*
H7B0.28890.25631.23910.069*
C80.4756 (5)0.1841 (4)1.2314 (7)0.0727 (12)
H8A0.49420.12231.20150.109*
H8B0.54510.20071.35920.109*
H8C0.48970.22361.13040.109*
C90.2684 (4)0.0421 (3)0.6471 (5)0.0535 (9)
H90.37140.03430.62710.064*
C100.3148 (3)0.0314 (2)0.3564 (4)0.0407 (8)
H10A0.36630.07810.40520.061*
H10B0.26160.05830.27410.061*
H10C0.38750.01160.27920.061*
N10.2115 (3)0.0129 (2)0.5180 (5)0.0556 (9)
O10.0527 (3)0.0762 (2)0.7326 (4)0.0612 (9)
H10.00960.05960.62750.092*
O20.2187 (3)0.15026 (19)1.0599 (4)0.0590 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (19)0.0426 (17)0.0509 (19)0.0052 (14)0.0240 (15)0.0028 (14)
C20.0478 (19)0.0433 (17)0.054 (2)0.0058 (14)0.0193 (15)0.0042 (14)
C30.052 (2)0.063 (2)0.070 (2)0.0072 (17)0.0295 (18)0.0009 (19)
C40.065 (2)0.075 (3)0.067 (2)0.0070 (19)0.036 (2)0.013 (2)
C50.063 (2)0.058 (2)0.057 (2)0.0007 (17)0.0261 (18)0.0085 (17)
C60.0512 (19)0.0442 (17)0.0526 (19)0.0023 (14)0.0215 (16)0.0013 (14)
C70.057 (2)0.061 (2)0.056 (2)0.0070 (17)0.0180 (17)0.0089 (17)
C80.055 (2)0.091 (3)0.070 (3)0.003 (2)0.018 (2)0.005 (2)
C90.0439 (18)0.059 (2)0.058 (2)0.0032 (15)0.0174 (16)0.0038 (17)
C100.0279 (14)0.0597 (19)0.0317 (15)0.0057 (12)0.0057 (11)0.0128 (13)
N10.0500 (17)0.0607 (19)0.0542 (18)0.0019 (13)0.0140 (15)0.0045 (14)
O10.0486 (15)0.0812 (19)0.0581 (16)0.0025 (13)0.0229 (12)0.0191 (13)
O20.0493 (15)0.0723 (17)0.0597 (16)0.0071 (12)0.0233 (12)0.0153 (12)
Geometric parameters (Å, º) top
C1—O11.362 (4)C7—C81.503 (6)
C1—C21.388 (5)C7—H7A0.9700
C1—C61.398 (5)C7—H7B0.9700
C2—C31.406 (5)C8—H8A0.9600
C2—C91.457 (5)C8—H8B0.9600
C3—C41.364 (6)C8—H8C0.9600
C3—H30.9300C9—N11.264 (5)
C4—C51.387 (6)C9—H90.9300
C4—H40.9300C10—N11.398 (4)
C5—C61.386 (5)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C6—O21.366 (4)C10—H10C0.9600
C7—O21.428 (4)O1—H10.8200
O1—C1—C2122.7 (3)O2—C7—H7B110.2
O1—C1—C6116.4 (3)C8—C7—H7B110.2
C2—C1—C6120.8 (3)H7A—C7—H7B108.5
C1—C2—C3118.7 (3)C7—C8—H8A109.5
C1—C2—C9121.9 (3)C7—C8—H8B109.5
C3—C2—C9119.4 (3)H8A—C8—H8B109.5
C4—C3—C2120.3 (3)C7—C8—H8C109.5
C4—C3—H3119.9H8A—C8—H8C109.5
C2—C3—H3119.9H8B—C8—H8C109.5
C3—C4—C5121.1 (3)N1—C9—C2120.8 (3)
C3—C4—H4119.5N1—C9—H9119.6
C5—C4—H4119.5C2—C9—H9119.6
C6—C5—C4119.8 (4)N1—C10—H10A109.5
C6—C5—H5120.1N1—C10—H10B109.5
C4—C5—H5120.1H10A—C10—H10B109.5
O2—C6—C5125.8 (3)N1—C10—H10C109.5
O2—C6—C1114.8 (3)H10A—C10—H10C109.5
C5—C6—C1119.3 (3)H10B—C10—H10C109.5
O2—C7—C8107.5 (3)C9—N1—C10114.2 (3)
O2—C7—H7A110.2C1—O1—H1109.5
C8—C7—H7A110.2C6—O2—C7117.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.616 (4)142
C10—H10B···O1i0.961.982.782 (4)140
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H13NO2
Mr179.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.2986 (19), 14.713 (3), 7.0551 (15)
β (°) 108.465 (8)
V3)915.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5022, 1611, 1338
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.277, 1.01
No. of reflections1611
No. of parameters122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.58

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.616 (4)142
C10—H10B···O1i0.961.982.782 (4)140
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We acknowledge financial support by the Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No.0842003–25), the Young Science Foundation of Guangxi Province of China (No. 0832085) and the start-up foundation for doctoral students of Guilin University of Technology.

References

First citationBruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, pp. 23701–23709.  CrossRef Google Scholar
First citationChe, C.-M., Kwong, H.-L., Chu, W.-C., Cheung, K.-F., Lee, W.-S., Yu, H.-S., Yeung, C.-T. & Cheung, K.-K. (2002). Eur. J. Inorg. Chem. pp. 1456–1463.  CrossRef Google Scholar
First citationFun, H.-K., Kia, R., Kargar, H. & Jamshidvand, A. (2009). Acta Cryst. E65, o722–o723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, Z. (2009). Acta Cryst. E65, o646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.  CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. F., Zhang, S.-H., Chen, Z. F. & Liang, H. (2010). Acta Cryst. E66, o990.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517–520.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds