organic compounds
2-Ethoxy-6-[(methylimino)methyl]phenol
aCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com
In the title compound, C10H13NO2, synthesized by the reaction of 2-hydroxy-3-ethoxybenzaldehyde with methylamine, there is an an intramolecular O—H⋯N hydrogen bond involving the hydroxy substituent and the amino N atom. In the crystal, molecules form inversion dimers connected by pairs of C—H⋯O hydrogen bonds.
Related literature
For similar et al. (2006); Zhang et al. (2003); Kargar et al. (2010). For related structures, see: Karadayı et al. (2003); Che et al. (2002); Jia et al. (2009); Fun et al. (2009). For structures with similar hydrogen-bonding to the title compound, see: Wang et al. (2010); Kargar et al. (2010).
see: ChatziefthimiouExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810019951/su2178sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810019951/su2178Isup2.hkl
Compound 2-hydrogen-3-ethoxy-benzaldehyde (0.166 g, 1 mmol) was dissolved in ethanol (15 ml). To this solution was added a methylamine solution (0.5 ml) and the mixture was stirred and refluxed at 323 K for 2 h. After cooling to room temperature and filtration, the filtrate was left to stand at room temperature. Yellow block-like crystals, suitable for X-ray
were obtained in a yield of 76 %. Analysis found (%): C 66.97, H 7.38, N 7.84; C10H13NO2 requires (%): C 67.02, H 7.31, N 7.82.All the H-atoms were positioned geometrically and were treated as riding atoms: O—H 0.82 Å, C—H 0.93–0.97 Å, with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.2 for H-aromatic and = 1.5 for H-methyl and H-hydroxyl.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C10H13NO2 | F(000) = 384 |
Mr = 179.21 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1611 reflections |
a = 9.2986 (19) Å | θ = 2.3–25.0° |
b = 14.713 (3) Å | µ = 0.09 mm−1 |
c = 7.0551 (15) Å | T = 296 K |
β = 108.465 (8)° | Block, yellow |
V = 915.5 (3) Å3 | 0.23 × 0.18 × 0.15 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1338 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 25.0°, θmin = 2.3° |
phi and ω scans | h = −10→11 |
5022 measured reflections | k = −17→17 |
1611 independent reflections | l = −8→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.085 | H-atom parameters constrained |
wR(F2) = 0.277 | w = 1/[σ2(Fo2) + (0.1633P)2 + 1.1252P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
1611 reflections | Δρmax = 0.86 e Å−3 |
122 parameters | Δρmin = −0.58 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.024 (11) |
C10H13NO2 | V = 915.5 (3) Å3 |
Mr = 179.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2986 (19) Å | µ = 0.09 mm−1 |
b = 14.713 (3) Å | T = 296 K |
c = 7.0551 (15) Å | 0.23 × 0.18 × 0.15 mm |
β = 108.465 (8)° |
Bruker SMART CCD area-detector diffractometer | 1338 reflections with I > 2σ(I) |
5022 measured reflections | Rint = 0.028 |
1611 independent reflections |
R[F2 > 2σ(F2)] = 0.085 | 0 restraints |
wR(F2) = 0.277 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.86 e Å−3 |
1611 reflections | Δρmin = −0.58 e Å−3 |
122 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0203 (4) | 0.1015 (2) | 0.8638 (5) | 0.0465 (9) | |
C2 | −0.1745 (4) | 0.0879 (2) | 0.8267 (5) | 0.0477 (9) | |
C3 | −0.2406 (4) | 0.1178 (3) | 0.9696 (6) | 0.0592 (10) | |
H3 | −0.3434 | 0.1084 | 0.9482 | 0.071* | |
C4 | −0.1544 (5) | 0.1603 (3) | 1.1393 (6) | 0.0654 (11) | |
H4 | −0.2000 | 0.1813 | 1.2308 | 0.078* | |
C5 | 0.0000 (5) | 0.1728 (3) | 1.1776 (6) | 0.0578 (10) | |
H5 | 0.0577 | 0.2010 | 1.2952 | 0.069* | |
C6 | 0.0682 (4) | 0.1432 (2) | 1.0401 (5) | 0.0481 (9) | |
C7 | 0.3157 (4) | 0.1927 (3) | 1.2361 (6) | 0.0579 (10) | |
H7A | 0.3057 | 0.1632 | 1.3542 | 0.069* | |
H7B | 0.2889 | 0.2563 | 1.2391 | 0.069* | |
C8 | 0.4756 (5) | 0.1841 (4) | 1.2314 (7) | 0.0727 (12) | |
H8A | 0.4942 | 0.1223 | 1.2015 | 0.109* | |
H8B | 0.5451 | 0.2007 | 1.3592 | 0.109* | |
H8C | 0.4897 | 0.2236 | 1.1304 | 0.109* | |
C9 | −0.2684 (4) | 0.0421 (3) | 0.6471 (5) | 0.0535 (9) | |
H9 | −0.3714 | 0.0343 | 0.6271 | 0.064* | |
C10 | −0.3148 (3) | −0.0314 (2) | 0.3564 (4) | 0.0407 (8) | |
H10A | −0.3663 | −0.0781 | 0.4052 | 0.061* | |
H10B | −0.2616 | −0.0583 | 0.2741 | 0.061* | |
H10C | −0.3875 | 0.0116 | 0.2792 | 0.061* | |
N1 | −0.2115 (3) | 0.0129 (2) | 0.5180 (5) | 0.0556 (9) | |
O1 | 0.0527 (3) | 0.0762 (2) | 0.7326 (4) | 0.0612 (9) | |
H1 | −0.0096 | 0.0596 | 0.6275 | 0.092* | |
O2 | 0.2187 (3) | 0.15026 (19) | 1.0599 (4) | 0.0590 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0514 (19) | 0.0426 (17) | 0.0509 (19) | 0.0052 (14) | 0.0240 (15) | 0.0028 (14) |
C2 | 0.0478 (19) | 0.0433 (17) | 0.054 (2) | 0.0058 (14) | 0.0193 (15) | 0.0042 (14) |
C3 | 0.052 (2) | 0.063 (2) | 0.070 (2) | 0.0072 (17) | 0.0295 (18) | −0.0009 (19) |
C4 | 0.065 (2) | 0.075 (3) | 0.067 (2) | 0.0070 (19) | 0.036 (2) | −0.013 (2) |
C5 | 0.063 (2) | 0.058 (2) | 0.057 (2) | 0.0007 (17) | 0.0261 (18) | −0.0085 (17) |
C6 | 0.0512 (19) | 0.0442 (17) | 0.0526 (19) | 0.0023 (14) | 0.0215 (16) | −0.0013 (14) |
C7 | 0.057 (2) | 0.061 (2) | 0.056 (2) | −0.0070 (17) | 0.0180 (17) | −0.0089 (17) |
C8 | 0.055 (2) | 0.091 (3) | 0.070 (3) | −0.003 (2) | 0.018 (2) | −0.005 (2) |
C9 | 0.0439 (18) | 0.059 (2) | 0.058 (2) | 0.0032 (15) | 0.0174 (16) | 0.0038 (17) |
C10 | 0.0279 (14) | 0.0597 (19) | 0.0317 (15) | −0.0057 (12) | 0.0057 (11) | −0.0128 (13) |
N1 | 0.0500 (17) | 0.0607 (19) | 0.0542 (18) | −0.0019 (13) | 0.0140 (15) | −0.0045 (14) |
O1 | 0.0486 (15) | 0.0812 (19) | 0.0581 (16) | −0.0025 (13) | 0.0229 (12) | −0.0191 (13) |
O2 | 0.0493 (15) | 0.0723 (17) | 0.0597 (16) | −0.0071 (12) | 0.0233 (12) | −0.0153 (12) |
C1—O1 | 1.362 (4) | C7—C8 | 1.503 (6) |
C1—C2 | 1.388 (5) | C7—H7A | 0.9700 |
C1—C6 | 1.398 (5) | C7—H7B | 0.9700 |
C2—C3 | 1.406 (5) | C8—H8A | 0.9600 |
C2—C9 | 1.457 (5) | C8—H8B | 0.9600 |
C3—C4 | 1.364 (6) | C8—H8C | 0.9600 |
C3—H3 | 0.9300 | C9—N1 | 1.264 (5) |
C4—C5 | 1.387 (6) | C9—H9 | 0.9300 |
C4—H4 | 0.9300 | C10—N1 | 1.398 (4) |
C5—C6 | 1.386 (5) | C10—H10A | 0.9600 |
C5—H5 | 0.9300 | C10—H10B | 0.9600 |
C6—O2 | 1.366 (4) | C10—H10C | 0.9600 |
C7—O2 | 1.428 (4) | O1—H1 | 0.8200 |
O1—C1—C2 | 122.7 (3) | O2—C7—H7B | 110.2 |
O1—C1—C6 | 116.4 (3) | C8—C7—H7B | 110.2 |
C2—C1—C6 | 120.8 (3) | H7A—C7—H7B | 108.5 |
C1—C2—C3 | 118.7 (3) | C7—C8—H8A | 109.5 |
C1—C2—C9 | 121.9 (3) | C7—C8—H8B | 109.5 |
C3—C2—C9 | 119.4 (3) | H8A—C8—H8B | 109.5 |
C4—C3—C2 | 120.3 (3) | C7—C8—H8C | 109.5 |
C4—C3—H3 | 119.9 | H8A—C8—H8C | 109.5 |
C2—C3—H3 | 119.9 | H8B—C8—H8C | 109.5 |
C3—C4—C5 | 121.1 (3) | N1—C9—C2 | 120.8 (3) |
C3—C4—H4 | 119.5 | N1—C9—H9 | 119.6 |
C5—C4—H4 | 119.5 | C2—C9—H9 | 119.6 |
C6—C5—C4 | 119.8 (4) | N1—C10—H10A | 109.5 |
C6—C5—H5 | 120.1 | N1—C10—H10B | 109.5 |
C4—C5—H5 | 120.1 | H10A—C10—H10B | 109.5 |
O2—C6—C5 | 125.8 (3) | N1—C10—H10C | 109.5 |
O2—C6—C1 | 114.8 (3) | H10A—C10—H10C | 109.5 |
C5—C6—C1 | 119.3 (3) | H10B—C10—H10C | 109.5 |
O2—C7—C8 | 107.5 (3) | C9—N1—C10 | 114.2 (3) |
O2—C7—H7A | 110.2 | C1—O1—H1 | 109.5 |
C8—C7—H7A | 110.2 | C6—O2—C7 | 117.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.92 | 2.616 (4) | 142 |
C10—H10B···O1i | 0.96 | 1.98 | 2.782 (4) | 140 |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H13NO2 |
Mr | 179.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.2986 (19), 14.713 (3), 7.0551 (15) |
β (°) | 108.465 (8) |
V (Å3) | 915.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5022, 1611, 1338 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.085, 0.277, 1.01 |
No. of reflections | 1611 |
No. of parameters | 122 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.86, −0.58 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.92 | 2.616 (4) | 142 |
C10—H10B···O1i | 0.96 | 1.98 | 2.782 (4) | 140 |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
We acknowledge financial support by the Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No.0842003–25), the Young Science Foundation of Guangxi Province of China (No. 0832085) and the start-up foundation for doctoral students of Guilin University of Technology.
References
Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, pp. 23701–23709. CrossRef Google Scholar
Che, C.-M., Kwong, H.-L., Chu, W.-C., Cheung, K.-F., Lee, W.-S., Yu, H.-S., Yeung, C.-T. & Cheung, K.-K. (2002). Eur. J. Inorg. Chem. pp. 1456–1463. CrossRef Google Scholar
Fun, H.-K., Kia, R., Kargar, H. & Jamshidvand, A. (2009). Acta Cryst. E65, o722–o723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jia, Z. (2009). Acta Cryst. E65, o646. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853. CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. F., Zhang, S.-H., Chen, Z. F. & Liang, H. (2010). Acta Cryst. E66, o990. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517–520. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base compounds (Zhang et al., 2003; Karadayı et al., 2003; Che et al., 2002; Fun et al., 2009; Jia et al., 2009; Wang et al., 2010) have aroused increasing interest because of their antiviral, anticancer and antibacterial activities. Herein, we report the synthesis and crystal structure of the new title Schiff base compound, prepared by the reaction of 2-hydrogen-3-ethoxy-benzaldehyde and methylamine.
The molecular structure of the title molecule is illustrated in Fig. 1. The bond distances and angles are similar to those found in the methoxy analogue (Chatziefthimiou et al., 2006). Excluding the methyl groups (C8 and C10), all the other non-hydrogen atoms (O1/O2/N1/C1-C7/C9) lie in a plane (planar to within 0.054 (3)Å). There is an intramolecular O–H···N hydrogen bond between the phenol and imido-group (Table 1), similar to the situation in crystal structures of the methoxy analogue (Chatziefthimiou et al., 2006), 6-Acetoxymethyl-3-[(2-hydroxy-3-methoxybenzylidene)-amino]-3, 4,5,6-tetrahydro-2H-pyran-2,4,5-triyl triacetate (Wang et al., 2010) and 5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol (Kargar et al., 2010).
In the crystal molecules are linked through weak intermolecular C–H···O hydrogen bond, to form dimers centered about an inversion center (Fig. 2).