metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m726-m727

Bis[μ-(E)-N′-(4-oxido-4-phenyl­but-3-en-2-yl­­idene)benzohydrazidato]bis­­[pyridine­copper(II)]

aChemistry Department, Shahid Bahonar University, Kerman, Iran, bDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 16 May 2010; accepted 26 May 2010; online 5 June 2010)

In the crystal structure of the title centrosymmetric dimer, [Cu2(C17H14N2O2)2(C5H5N)2], the CuII atom has an almost perfect square-pyramidal geometry. The CuII ion is coordin­ated by the NO2 donor atoms of the hydrazide Schiff base ligand, the N atom of the pyridine group and an O atom of the symmetry-related unit. The dihedral angles between the pyridine ring and the two phenyl rings of the ligand are 21.4 (3) and 24.0 (2)°. The mol­ecular structure is stabilized by intra­molecular C—H⋯O inter­actions.

Related literature

For background to the properties of hydrazide Schiff base–metal complexes, see: Rao et al. (1990[Rao, S., Mishra, D. D., Mourya, R. V. & Nageswara, N. (1990). Polyhedron, 16, 1825-1829.]); West et al. (1993[West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yarande, R. G. (1993). Coord. Chem. Rev. 123 49-72.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C17H14N2O2)2(C5H5N)2]

  • Mr = 841.88

  • Monoclinic, P 21 /c

  • a = 9.2678 (19) Å

  • b = 20.903 (4) Å

  • c = 11.907 (4) Å

  • β = 122.65 (2)°

  • V = 1942.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.08 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.791, Tmax = 1.179

  • 22473 measured reflections

  • 3419 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.091

  • S = 0.98

  • 3419 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1 0.93 2.34 2.892 (6) 117
C22—H22A⋯O2 0.93 2.37 2.940 (5) 119

Data collection: X-AREA (Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Among ligand systems hydrazines and hydrazones occupy a special place because the transition metal complexes of these ligands, developed due to their chelating capacity and structural flexibility, have interesting electrical as well as magnetic properties (Rao et al., 1990), and pharmacological activities, such as antibacterial, antitumoural, antiviral antimalaria, antituberculosis (West et al., 1993).

The molecular structure of the title molecule is illustrated in Fig. I. It is a novel hydrazido-Schiff base copper(II) complex, with the CuII atom having a N2O2 square-pyramidal geometry. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angles between the pyridine ring (N3/C18-C22) and the phenyl rings, A (C1-C6) and B (C12-C17), of the ligand are 21.4 (3) and 24.0 (2)°, respectively. The molecular structure is stabilized by intramolecular C—H···O interactions (Fig. 2, Table 1).

In the crystal the molecules are held together by normal van der Waals interactions (Fig. 3).

Related literature top

For background to the properties of hydrazide Schiff base–metal complexes, see: Rao et al. (1990); West et al. (1993). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding (E)-N'- (4-oxo-4-phenyl butane-2-ylidene) benzohydrazide (1 mmol) to a solution of Cu(OAc)2. H2O (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 30 min. It was then placed under a fume hood, near to the a solution of another sample which had pyridine as solvent of crystallization. As a consequence pyridine diffused into the methanol solution and resulted in the formation of brown single crystals of the title complex, over several days.

Refinement top

The H-atoms were positioned geometrically and refined using a riding model approximation: C-H = 0.96 Å for H-methyl and 0.93 Å for all other H-atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for H-methyl and = 1.2 for all other H-atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2007); cell refinement: X-AREA (Stoe & Cie, 2007); data reduction: X-RED (Stoe & Cie, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, showing 40% probability displacement ellipsoids (H-toms have been omitted for clarity).
[Figure 2] Fig. 2. The asymmetric unit of the title compound. The dashed lines show the intramolecular C-H···O interactions.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed down the b-axis.
Bis[µ-(E)-N'-(4-oxido-4-phenylbut-3-en-2- ylidene)benzohydrazidato]bis[pyridinecopper(II)] top
Crystal data top
[Cu2(C17H14N2O2)2(C5H5N)2]F(000) = 868
Mr = 841.88Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2500 reflections
a = 9.2678 (19) Åθ = 2.3–27.8°
b = 20.903 (4) ŵ = 1.15 mm1
c = 11.907 (4) ÅT = 296 K
β = 122.65 (2)°Block, brown
V = 1942.2 (8) Å30.25 × 0.19 × 0.08 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
3419 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
h = 1111
Tmin = 0.791, Tmax = 1.179k = 2423
22473 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
3419 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cu2(C17H14N2O2)2(C5H5N)2]V = 1942.2 (8) Å3
Mr = 841.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2678 (19) ŵ = 1.15 mm1
b = 20.903 (4) ÅT = 296 K
c = 11.907 (4) Å0.25 × 0.19 × 0.08 mm
β = 122.65 (2)°
Data collection top
Stoe IPDS II
diffractometer
3419 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
2396 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 1.179Rint = 0.086
22473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.98Δρmax = 0.60 e Å3
3419 reflectionsΔρmin = 0.24 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72076 (6)0.989490 (19)0.59789 (4)0.03829 (14)
O10.8469 (3)0.91348 (12)0.6768 (2)0.0487 (6)
O20.5995 (3)1.06734 (11)0.5062 (2)0.0483 (7)
N10.7488 (4)0.98572 (15)0.4481 (3)0.0472 (5)
N20.6903 (4)1.04093 (15)0.3654 (3)0.0472 (5)
N30.7158 (4)1.01066 (15)0.7612 (3)0.0414 (7)
C11.0439 (5)0.8085 (2)0.8269 (4)0.0516 (10)
H1A1.04690.84450.87380.062*
C21.1150 (5)0.7523 (2)0.8941 (4)0.0604 (12)
H2A1.16790.75100.98620.073*
C31.1088 (6)0.6981 (2)0.8270 (5)0.0641 (12)
H3A1.15660.66010.87300.077*
C41.0307 (6)0.7005 (2)0.6901 (5)0.0635 (12)
H4A1.02510.66370.64380.076*
C50.9611 (5)0.75679 (18)0.6218 (4)0.0517 (10)
H5A0.90940.75800.52970.062*
C60.9678 (4)0.81204 (17)0.6902 (4)0.0404 (9)
C70.8931 (5)0.87399 (17)0.6172 (4)0.0435 (9)
C80.8818 (5)0.88587 (18)0.5004 (4)0.0486 (10)
H8A0.92090.85350.46960.058*
C90.8162 (5)0.94287 (19)0.4177 (4)0.0509 (10)
C100.8303 (6)0.9466 (2)0.2981 (4)0.0630 (12)
H10A0.89920.98290.30680.095*
H10B0.71800.95120.21900.095*
H10C0.88260.90820.29210.095*
C110.6189 (4)1.07952 (16)0.4061 (3)0.0377 (8)
C120.5563 (4)1.14232 (16)0.3377 (3)0.0390 (8)
C130.5943 (5)1.16228 (19)0.2453 (4)0.0555 (11)
H13A0.65811.13600.22490.067*
C140.5383 (6)1.2207 (2)0.1837 (5)0.0695 (13)
H14A0.56621.23380.12310.083*
C150.4425 (6)1.2595 (2)0.2104 (5)0.0663 (13)
H15A0.40331.29850.16690.080*
C160.4035 (5)1.2407 (2)0.3021 (5)0.0625 (12)
H16A0.33881.26730.32110.075*
C170.4606 (5)1.18260 (17)0.3654 (4)0.0476 (10)
H17A0.43471.17020.42760.057*
C180.7643 (6)0.96766 (19)0.8587 (4)0.0561 (11)
H18A0.79960.92740.84950.067*
C190.7642 (7)0.9806 (3)0.9721 (4)0.0797 (15)
H19A0.80040.94981.03850.096*
C200.7102 (7)1.0389 (2)0.9855 (5)0.0814 (16)
H20A0.70941.04861.06140.098*
C210.6573 (6)1.0830 (2)0.8863 (4)0.0700 (13)
H21A0.61881.12300.89310.084*
C220.6618 (5)1.06729 (19)0.7760 (4)0.0514 (10)
H22A0.62561.09760.70870.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0494 (3)0.0364 (2)0.0337 (2)0.0004 (2)0.02546 (19)0.0017 (2)
O10.0575 (17)0.0441 (15)0.0517 (16)0.0063 (13)0.0342 (14)0.0053 (12)
O20.0690 (18)0.0422 (15)0.0389 (15)0.0001 (13)0.0324 (14)0.0067 (11)
N10.0515 (13)0.0442 (12)0.0462 (13)0.0004 (11)0.0266 (12)0.0062 (10)
N20.0515 (13)0.0442 (12)0.0462 (13)0.0004 (11)0.0266 (12)0.0062 (10)
N30.0501 (17)0.0420 (17)0.0330 (15)0.0047 (15)0.0231 (14)0.0017 (15)
C10.049 (2)0.059 (3)0.049 (2)0.010 (2)0.028 (2)0.007 (2)
C20.057 (3)0.079 (3)0.047 (2)0.015 (2)0.029 (2)0.021 (2)
C30.058 (3)0.059 (3)0.072 (3)0.014 (2)0.033 (3)0.029 (3)
C40.064 (3)0.045 (3)0.077 (3)0.009 (2)0.035 (3)0.003 (2)
C50.056 (3)0.049 (3)0.048 (2)0.008 (2)0.027 (2)0.007 (2)
C60.034 (2)0.044 (2)0.044 (2)0.0040 (17)0.0213 (18)0.0074 (17)
C70.038 (2)0.041 (2)0.052 (2)0.0006 (17)0.0237 (19)0.0020 (18)
C80.059 (3)0.039 (2)0.047 (2)0.0087 (19)0.028 (2)0.0037 (18)
C90.056 (3)0.061 (3)0.047 (2)0.007 (2)0.036 (2)0.008 (2)
C100.087 (3)0.064 (3)0.058 (3)0.016 (2)0.053 (3)0.012 (2)
C110.038 (2)0.035 (2)0.0330 (19)0.0079 (16)0.0148 (17)0.0002 (15)
C120.040 (2)0.036 (2)0.0319 (19)0.0064 (16)0.0139 (17)0.0040 (16)
C130.068 (3)0.054 (3)0.054 (3)0.005 (2)0.039 (2)0.014 (2)
C140.081 (3)0.066 (3)0.068 (3)0.001 (3)0.044 (3)0.031 (2)
C150.056 (3)0.047 (3)0.074 (3)0.001 (2)0.020 (3)0.022 (2)
C160.054 (3)0.045 (3)0.087 (3)0.004 (2)0.036 (3)0.002 (2)
C170.051 (2)0.043 (2)0.051 (2)0.0061 (19)0.029 (2)0.0037 (18)
C180.080 (3)0.049 (2)0.045 (2)0.004 (2)0.038 (2)0.0058 (18)
C190.126 (4)0.078 (3)0.051 (3)0.012 (3)0.058 (3)0.013 (3)
C200.127 (5)0.082 (3)0.052 (3)0.007 (3)0.059 (3)0.002 (3)
C210.102 (4)0.058 (3)0.058 (3)0.006 (3)0.048 (3)0.009 (2)
C220.072 (3)0.041 (2)0.046 (2)0.003 (2)0.034 (2)0.0011 (18)
Geometric parameters (Å, º) top
Cu1—O11.894 (2)C9—C101.500 (5)
Cu1—N11.938 (3)C10—H10A0.9600
Cu1—O21.944 (2)C10—H10B0.9600
Cu1—N32.018 (3)C10—H10C0.9600
O1—C71.301 (4)C11—C121.488 (5)
O2—C111.323 (4)C12—C171.385 (5)
N1—C91.252 (5)C12—C131.389 (5)
N1—N21.421 (4)C13—C141.373 (6)
N2—C111.292 (4)C13—H13A0.9300
N3—C221.333 (5)C14—C151.361 (6)
N3—C181.340 (4)C14—H14A0.9300
C1—C21.372 (5)C15—C161.379 (6)
C1—C61.383 (5)C15—H15A0.9300
C1—H1A0.9300C16—C171.376 (5)
C2—C31.370 (6)C16—H16A0.9300
C2—H2A0.9300C17—H17A0.9300
C3—C41.381 (6)C18—C191.377 (6)
C3—H3A0.9300C18—H18A0.9300
C4—C51.378 (5)C19—C201.359 (6)
C4—H4A0.9300C19—H19A0.9300
C5—C61.395 (5)C20—C211.365 (6)
C5—H5A0.9300C20—H20A0.9300
C6—C71.504 (5)C21—C221.376 (5)
C7—C81.361 (5)C21—H21A0.9300
C8—C91.453 (5)C22—H22A0.9300
C8—H8A0.9300
O1—Cu1—N193.94 (12)C9—C10—H10A109.5
O1—Cu1—O2174.68 (10)C9—C10—H10B109.5
N1—Cu1—O280.87 (12)H10A—C10—H10B109.5
O1—Cu1—N392.01 (12)C9—C10—H10C109.5
N1—Cu1—N3168.38 (13)H10A—C10—H10C109.5
O2—Cu1—N392.90 (11)H10B—C10—H10C109.5
C7—O1—Cu1123.9 (2)N2—C11—O2124.3 (3)
C11—O2—Cu1110.4 (2)N2—C11—C12118.2 (3)
C9—N1—N2116.4 (3)O2—C11—C12117.4 (3)
C9—N1—Cu1129.1 (3)C17—C12—C13118.3 (3)
N2—N1—Cu1114.5 (2)C17—C12—C11121.1 (3)
C11—N2—N1109.2 (3)C13—C12—C11120.6 (3)
C22—N3—C18117.1 (3)C14—C13—C12120.4 (4)
C22—N3—Cu1121.8 (2)C14—C13—H13A119.8
C18—N3—Cu1121.1 (3)C12—C13—H13A119.8
C2—C1—C6120.8 (4)C15—C14—C13120.8 (4)
C2—C1—H1A119.6C15—C14—H14A119.6
C6—C1—H1A119.6C13—C14—H14A119.6
C3—C2—C1120.8 (4)C14—C15—C16119.9 (4)
C3—C2—H2A119.6C14—C15—H15A120.1
C1—C2—H2A119.6C16—C15—H15A120.1
C2—C3—C4119.3 (4)C17—C16—C15119.8 (4)
C2—C3—H3A120.4C17—C16—H16A120.1
C4—C3—H3A120.4C15—C16—H16A120.1
C5—C4—C3120.5 (4)C16—C17—C12120.9 (4)
C5—C4—H4A119.7C16—C17—H17A119.6
C3—C4—H4A119.7C12—C17—H17A119.6
C4—C5—C6120.2 (4)N3—C18—C19122.7 (4)
C4—C5—H5A119.9N3—C18—H18A118.6
C6—C5—H5A119.9C19—C18—H18A118.6
C1—C6—C5118.4 (3)C20—C19—C18119.1 (4)
C1—C6—C7120.6 (3)C20—C19—H19A120.4
C5—C6—C7120.9 (3)C18—C19—H19A120.4
O1—C7—C8125.1 (3)C19—C20—C21119.1 (4)
O1—C7—C6114.6 (3)C19—C20—H20A120.4
C8—C7—C6120.3 (3)C21—C20—H20A120.4
C7—C8—C9128.0 (3)C20—C21—C22118.9 (4)
C7—C8—H8A116.0C20—C21—H21A120.5
C9—C8—H8A116.0C22—C21—H21A120.5
N1—C9—C8118.9 (3)N3—C22—C21123.0 (4)
N1—C9—C10123.3 (4)N3—C22—H22A118.5
C8—C9—C10117.8 (3)C21—C22—H22A118.5
N1—Cu1—O1—C711.1 (3)O1—C7—C8—C90.8 (7)
N3—Cu1—O1—C7178.8 (3)C6—C7—C8—C9179.0 (4)
N1—Cu1—O2—C117.6 (2)N2—N1—C9—C8178.7 (3)
N3—Cu1—O2—C11162.6 (2)Cu1—N1—C9—C81.6 (6)
O1—Cu1—N1—C95.3 (4)N2—N1—C9—C102.4 (6)
O2—Cu1—N1—C9175.9 (4)Cu1—N1—C9—C10179.5 (3)
N3—Cu1—N1—C9125.9 (6)C7—C8—C9—N15.9 (7)
O1—Cu1—N1—N2171.9 (2)C7—C8—C9—C10175.2 (4)
O2—Cu1—N1—N26.9 (2)N1—N2—C11—O22.3 (5)
N3—Cu1—N1—N251.3 (7)N1—N2—C11—C12176.8 (3)
C9—N1—N2—C11177.7 (3)Cu1—O2—C11—N28.0 (4)
Cu1—N1—N2—C114.7 (4)Cu1—O2—C11—C12171.2 (2)
O1—Cu1—N3—C22169.8 (3)N2—C11—C12—C17172.2 (3)
N1—Cu1—N3—C2249.0 (8)O2—C11—C12—C178.7 (5)
O2—Cu1—N3—C228.2 (3)N2—C11—C12—C138.5 (5)
O1—Cu1—N3—C1811.3 (3)O2—C11—C12—C13170.6 (3)
N1—Cu1—N3—C18132.1 (6)C17—C12—C13—C140.2 (6)
O2—Cu1—N3—C18170.7 (3)C11—C12—C13—C14179.1 (4)
C6—C1—C2—C31.5 (6)C12—C13—C14—C151.1 (7)
C1—C2—C3—C40.4 (7)C13—C14—C15—C161.2 (7)
C2—C3—C4—C50.6 (7)C14—C15—C16—C170.5 (7)
C3—C4—C5—C60.4 (6)C15—C16—C17—C120.4 (6)
C2—C1—C6—C51.7 (6)C13—C12—C17—C160.5 (6)
C2—C1—C6—C7178.8 (4)C11—C12—C17—C16179.8 (3)
C4—C5—C6—C10.7 (6)C22—N3—C18—C191.7 (6)
C4—C5—C6—C7179.8 (4)Cu1—N3—C18—C19179.4 (4)
Cu1—O1—C7—C810.8 (5)N3—C18—C19—C201.0 (8)
Cu1—O1—C7—C6170.9 (2)C18—C19—C20—C210.2 (8)
C1—C6—C7—O124.9 (5)C19—C20—C21—C220.7 (8)
C5—C6—C7—O1154.6 (3)C18—N3—C22—C211.1 (6)
C1—C6—C7—C8153.5 (4)Cu1—N3—C22—C21179.9 (3)
C5—C6—C7—C827.0 (5)C20—C21—C22—N30.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O10.932.342.892 (6)117
C22—H22A···O20.932.372.940 (5)119

Experimental details

Crystal data
Chemical formula[Cu2(C17H14N2O2)2(C5H5N)2]
Mr841.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.2678 (19), 20.903 (4), 11.907 (4)
β (°) 122.65 (2)
V3)1942.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.25 × 0.19 × 0.08
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
Tmin, Tmax0.791, 1.179
No. of measured, independent and
observed [I > 2σ(I)] reflections
22473, 3419, 2396
Rint0.086
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.091, 0.98
No. of reflections3419
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.24

Computer programs: X-AREA (Stoe & Cie, 2007), X-RED (Stoe & Cie, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O10.932.342.892 (6)117
C22—H22A···O20.932.372.940 (5)119
 

Footnotes

Additional corresponding author: e-mail: rkia@srbiau.ac.ir; zsrkk@yahoo.com.

Acknowledgements

The support of this work by the Shahid Bahonar University of Kerman is acknowledged. RK thanks the Science and Research Branch, Islamic Azad University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRao, S., Mishra, D. D., Mourya, R. V. & Nageswara, N. (1990). Polyhedron, 16, 1825–1829.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2007). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWest, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yarande, R. G. (1993). Coord. Chem. Rev. 123 49–72.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m726-m727
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds