organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-7-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin-11(6H)-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 3 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C23H15ClN2O, the fused ring system is planar: the deviation of all the non-H atoms from the plane through all four fused rings is less than 0.31 Å. The plane of the phenyl ring is inclined at 71.78 (5)° to the mean plane of the 1,8-naphthrydine ring system. The crystal structure is devoid of any classical hydrogen bonds but ππ inter­actions are present.

Related literature

For the biological activity of [1,8]naphthyridine derivatives, see: Egawa et al. (1984[Egawa, H., Miyamoto, T., Minamida, A., Nishimura, Y., Okada, H., Uno, H. & Motosumoto, J. (1984). J. Med. Chem. 27, 1543-1548.]); Cooper et al. (1992[Cooper, C. S., Klock, P. L., Chu, D. T. W., Hardy, D. J., Swanson, R. N. & Plattner, J. J. (1992). J. Med. Chem. 35, 1392-1398.]); Chen et al. (1997)[Chen, K., Kuo, S., Hsiech, M. & Anthoner, K. J. (1997). J. Med. Chem. 40, 3049-3056.]; Balin & Tan (1984[Balin, G. B. & Tan, W. L. (1984). Aust. J. Chem. 37, 1065-1073.]); Nadaraj et al. (2009[Nadaraj, V., Thamarai Selvi, S. & Mohan, S. (2009). Eur. J. Med. Chem. 44, 976-980.]); Kuroda et al. (1992[Kuroda, T., Suzuki, F., Tamura, T., Ohmori, K. & Hoise, H. (1992). J. Med. Chem. 35, 1130-1136.]). For the synthesis of the title compound, see: Manoj et al. (2009[Manoj, M. & Rajendra Prasad, K. J. (2009). J. Chem. Res. pp. 713-718.]). For the crystal structures of other naphthrydine derivatives, see: Sivakumar et al. (2003[Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153-o155.]); Seebacher et al. (2010[Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15ClN2O

  • Mr = 370.82

  • Triclinic, [P \overline 1]

  • a = 8.2434 (2) Å

  • b = 8.5528 (2) Å

  • c = 13.0740 (3) Å

  • α = 89.446 (1)°

  • β = 74.362 (1)°

  • γ = 77.672 (1)°

  • V = 866.06 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.25 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.947

  • 21083 measured reflections

  • 5019 independent reflections

  • 4047 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.00

  • 5019 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
ππ inter­actions (Å).

Cg1–Cg4 are the centroids of the N1/C5–C9, N2/C8–C12, C1–C6 and C10—C16 rings, respectively.

Cg1⋯Cg2i 3.7936 (6)
Cg1⋯Cg4ii 3.7721 (7)
Cg2⋯Cg1i 3.7935 (6)
Cg2⋯Cg2ii 3.6542 (6)
Cg2⋯Cg3i 3.8725 (7)
Cg2⋯Cg4ii 3.5506 (7)
Cg3⋯Cg2i 3.8725 (7)
Cg3⋯Cg4ii 3.6485 (8)
Symmetry codes: (i) −x + 2, −y + 1, −z; (ii) −x + 2, −y, −z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In general, nitrogen containing heterocyclic compounds play important roles in biological activities. Among such compounds, [1,8]naphthyridine derivatives represent the most active class of compounds possessing a wide spectrum of biological activities, such as antibacterial (Miyamoto et al., 1984, Cooper et al., 1992), antitumour (Chen et al., 1997), antimalarial (Balin et al., 1984), antifungal (Nadaraj et al., 2009), anti-inflammatory (Kuroda et al., 1992), antihypertensive activities etc. This paper describes the crystal structure of the title compound, which will help us in our studies on drug design.

The title compound consists of a [1,8]napthyridine core with methyl, chloro-phenyl and phenyl group substituents (Fig. 1). The dihedral angle between the two fused rings of the napthyridine moiety is found to be 3.08 (3)°, indicating that it is almost planar. The phenyl ring is inclined to the mean plane of the [1,8]naphthrydine ring system by 72.51 (3)°. The bond lengths of the formal single bonds, and C2—Cl1 = 1.7392 (14) and C12–O1 = 1.2240 (14) Å, are in normal ranges (Allen et al., 1987), and similar to those observed in other naphthrydine derivatives (Sivakumar et al., 2003; Seebacher et al., 2010).

The crystal packing of the molecules in the crystal is influenced by ππ interactions and van der Waals forces (Fig. 2 and Table 1).

Footnote for Table 1: Symmetry codes : (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z.

Related literature top

For the biological activity of [1,8]naphthyridine derivatives, see: Miyamoto et al. (1984); Cooper et al. (1992); Chen et al. (1997); Balin et al. (1984); Nadaraj et al. (2009); Kuroda et al. (1992). For the synthesis of the title compound, see: Manoj et al. (2009). For the crystal structures of other naphthrydine derivatives, see: Sivakumar et al. (2003); Seebacher et al. (2010). For bond-length data, see: Allen et al. (1987). For related literatur [on what subject?], see: Egawa et al. (1984).

Experimental top

The title compund was synthesized according to the published procedure (Manoj et al., 2009). 2[(2'-Benzoyl-4'-chlorophenyl)amino]-4-chloroquinoline (2 mmol) was added to polyphosphoric acid (6 g of P2O5 in 3 ml of H3PO4) and heated at 478–483 K for 5 h. The reaction was monitored by using TLC. After completion of the reaction, the reaction mixture was poured into ice water and extracted with ethyl acetate. It was then purified by column chromatography using silica gel and the product eluted with a petroleum ether:ethyl acetate (96:4) mixture, to give the title compound as a pale yellow solid. It was recrystallized using methanol.

Refinement top

The H-atoms were positioned geometrically and treated as riding atoms: C—H = 0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing of the title compound, illustrating the ππ interactions as dotted lines [the centroids are marked by large black dots; see Table 1 for details].
2-Chloro-7-methyl-12-phenyldibenzo[b,g][1,8]naphthyridin- 11(6H)-one top
Crystal data top
C23H15ClN2OZ = 2
Mr = 370.82F(000) = 384
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2434 (2) ÅCell parameters from 5019 reflections
b = 8.5528 (2) Åθ = 1.6–30.0°
c = 13.0740 (3) ŵ = 0.24 mm1
α = 89.446 (1)°T = 293 K
β = 74.362 (1)°Block, pale yellow
γ = 77.672 (1)°0.25 × 0.24 × 0.23 mm
V = 866.06 (4) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed tube4047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.943, Tmax = 0.947k = 1212
21083 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1735P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H15ClN2Oγ = 77.672 (1)°
Mr = 370.82V = 866.06 (4) Å3
Triclinic, P1Z = 2
a = 8.2434 (2) ÅMo Kα radiation
b = 8.5528 (2) ŵ = 0.24 mm1
c = 13.0740 (3) ÅT = 293 K
α = 89.446 (1)°0.25 × 0.24 × 0.23 mm
β = 74.362 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4047 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.947Rint = 0.025
21083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
5019 reflectionsΔρmin = 0.35 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43107 (6)0.82442 (6)0.41605 (3)0.06692 (16)
C80.97978 (14)0.28540 (13)0.08976 (9)0.0295 (2)
N10.75659 (13)0.43848 (12)0.01596 (8)0.0347 (2)
C60.75767 (14)0.49589 (13)0.19809 (9)0.0321 (2)
C70.91173 (14)0.37615 (13)0.18528 (9)0.0303 (2)
C111.19508 (14)0.07433 (13)0.03719 (9)0.0318 (2)
N20.96411 (13)0.24442 (12)0.08970 (8)0.0349 (2)
H20.91040.26940.13760.042*
C50.68564 (14)0.52218 (14)0.11069 (9)0.0329 (2)
C90.89694 (14)0.32538 (13)0.00739 (9)0.0298 (2)
O11.18861 (13)0.08963 (12)0.14332 (7)0.0456 (2)
C161.17758 (17)0.05651 (15)0.22018 (10)0.0375 (3)
C121.12754 (15)0.14578 (14)0.07187 (9)0.0318 (2)
C101.11201 (14)0.12564 (13)0.11549 (9)0.0317 (2)
C151.32690 (18)0.06129 (16)0.24169 (11)0.0443 (3)
H151.37300.10750.31030.053*
C191.15161 (16)0.40958 (15)0.25824 (10)0.0390 (3)
H191.19850.45510.19530.047*
C180.99944 (15)0.35745 (14)0.27169 (9)0.0334 (2)
C131.34488 (16)0.04709 (15)0.06305 (11)0.0392 (3)
H131.39980.08290.01100.047*
C10.67473 (16)0.59156 (15)0.29368 (10)0.0388 (3)
H10.71900.57540.35220.047*
C40.53475 (16)0.64433 (16)0.12077 (12)0.0423 (3)
H40.48680.66190.06380.051*
C230.92949 (19)0.29264 (18)0.36673 (11)0.0451 (3)
H230.82520.26110.37750.054*
C171.0871 (2)0.11093 (18)0.30353 (10)0.0472 (3)
H17A1.16010.06800.37210.071*
H17B1.06160.22590.30300.071*
H17C0.98150.07380.28900.071*
C20.53032 (17)0.70682 (16)0.29904 (11)0.0424 (3)
C201.23394 (19)0.39418 (18)0.33819 (12)0.0494 (3)
H201.33510.43080.32930.059*
C211.1663 (2)0.3246 (2)0.43107 (12)0.0584 (4)
H211.22370.31140.48390.070*
C141.41133 (18)0.11368 (17)0.16453 (12)0.0465 (3)
H141.51210.19330.18180.056*
C221.0139 (2)0.2747 (2)0.44566 (12)0.0584 (4)
H220.96780.22880.50860.070*
C30.45924 (17)0.73618 (17)0.21266 (13)0.0468 (3)
H30.36180.81740.21810.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0572 (2)0.0680 (3)0.0571 (2)0.00139 (19)0.00421 (18)0.01642 (19)
C80.0295 (5)0.0310 (5)0.0304 (5)0.0063 (4)0.0127 (4)0.0058 (4)
N10.0342 (5)0.0353 (5)0.0368 (5)0.0039 (4)0.0166 (4)0.0056 (4)
C60.0303 (5)0.0321 (5)0.0349 (5)0.0068 (4)0.0106 (4)0.0034 (4)
C70.0309 (5)0.0330 (5)0.0305 (5)0.0087 (4)0.0130 (4)0.0063 (4)
C110.0307 (5)0.0314 (5)0.0345 (5)0.0076 (4)0.0103 (4)0.0035 (4)
N20.0372 (5)0.0389 (5)0.0299 (5)0.0033 (4)0.0155 (4)0.0034 (4)
C50.0309 (5)0.0322 (5)0.0382 (6)0.0067 (4)0.0140 (4)0.0053 (4)
C90.0318 (5)0.0313 (5)0.0298 (5)0.0080 (4)0.0133 (4)0.0066 (4)
O10.0491 (5)0.0473 (5)0.0404 (5)0.0056 (4)0.0247 (4)0.0027 (4)
C160.0418 (6)0.0399 (6)0.0325 (6)0.0139 (5)0.0091 (5)0.0031 (4)
C120.0315 (5)0.0326 (5)0.0340 (5)0.0059 (4)0.0143 (4)0.0053 (4)
C100.0320 (5)0.0317 (5)0.0324 (5)0.0092 (4)0.0091 (4)0.0041 (4)
C150.0437 (7)0.0443 (7)0.0405 (6)0.0096 (5)0.0038 (5)0.0056 (5)
C190.0381 (6)0.0406 (6)0.0405 (6)0.0065 (5)0.0159 (5)0.0020 (5)
C180.0359 (5)0.0350 (5)0.0305 (5)0.0035 (4)0.0144 (4)0.0003 (4)
C130.0341 (6)0.0363 (6)0.0474 (7)0.0034 (4)0.0147 (5)0.0014 (5)
C10.0369 (6)0.0410 (6)0.0377 (6)0.0077 (5)0.0092 (5)0.0008 (5)
C40.0352 (6)0.0403 (6)0.0525 (7)0.0018 (5)0.0190 (5)0.0055 (5)
C230.0489 (7)0.0552 (8)0.0357 (6)0.0156 (6)0.0161 (5)0.0082 (5)
C170.0581 (8)0.0523 (7)0.0315 (6)0.0100 (6)0.0144 (6)0.0013 (5)
C20.0353 (6)0.0403 (6)0.0466 (7)0.0070 (5)0.0033 (5)0.0034 (5)
C200.0447 (7)0.0542 (8)0.0553 (8)0.0081 (6)0.0259 (6)0.0069 (6)
C210.0677 (10)0.0708 (10)0.0445 (8)0.0060 (8)0.0353 (7)0.0027 (7)
C140.0369 (6)0.0438 (7)0.0534 (8)0.0012 (5)0.0088 (6)0.0056 (6)
C220.0709 (10)0.0748 (11)0.0352 (7)0.0160 (8)0.0242 (7)0.0126 (7)
C30.0319 (6)0.0414 (7)0.0624 (9)0.0008 (5)0.0106 (6)0.0006 (6)
Geometric parameters (Å, º) top
Cl1—C21.7392 (14)C19—C201.3828 (18)
C8—C71.3899 (15)C19—C181.3863 (17)
C8—C91.4256 (14)C19—H190.9300
C8—C121.4816 (15)C18—C231.3859 (18)
N1—C91.3196 (14)C13—C141.3690 (19)
N1—C51.3551 (15)C13—H130.9300
C6—C51.4187 (16)C1—C21.3598 (18)
C6—C11.4210 (16)C1—H10.9300
C6—C71.4223 (15)C4—C31.362 (2)
C7—C181.4873 (15)C4—H40.9300
C11—C101.3965 (16)C23—C221.3824 (19)
C11—C131.3971 (16)C23—H230.9300
C11—C121.4697 (16)C17—H17A0.9600
N2—C91.3681 (15)C17—H17B0.9600
N2—C101.3741 (15)C17—H17C0.9600
N2—H20.8600C2—C31.404 (2)
C5—C41.4197 (16)C20—C211.379 (2)
O1—C121.2240 (14)C20—H200.9300
C16—C151.3780 (18)C21—C221.376 (2)
C16—C101.4126 (16)C21—H210.9300
C16—C171.4970 (18)C14—H140.9300
C15—C141.393 (2)C22—H220.9300
C15—H150.9300C3—H30.9300
C7—C8—C9117.71 (10)C23—C18—C7121.22 (11)
C7—C8—C12123.22 (9)C19—C18—C7119.52 (10)
C9—C8—C12119.00 (10)C14—C13—C11120.42 (12)
C9—N1—C5117.25 (10)C14—C13—H13119.8
C5—C6—C1118.78 (10)C11—C13—H13119.8
C5—C6—C7118.27 (10)C2—C1—C6119.61 (12)
C1—C6—C7122.95 (10)C2—C1—H1120.2
C8—C7—C6118.53 (10)C6—C1—H1120.2
C8—C7—C18122.12 (10)C3—C4—C5120.95 (12)
C6—C7—C18119.28 (10)C3—C4—H4119.5
C10—C11—C13119.38 (11)C5—C4—H4119.5
C10—C11—C12121.14 (10)C22—C23—C18120.35 (13)
C13—C11—C12119.48 (11)C22—C23—H23119.8
C9—N2—C10124.08 (10)C18—C23—H23119.8
C9—N2—H2118.0C16—C17—H17A109.5
C10—N2—H2118.0C16—C17—H17B109.5
N1—C5—C6123.07 (10)H17A—C17—H17B109.5
N1—C5—C4117.74 (11)C16—C17—H17C109.5
C6—C5—C4119.16 (11)H17A—C17—H17C109.5
N1—C9—N2115.15 (10)H17B—C17—H17C109.5
N1—C9—C8125.05 (10)C1—C2—C3122.28 (12)
N2—C9—C8119.80 (10)C1—C2—Cl1119.20 (11)
C15—C16—C10117.34 (11)C3—C2—Cl1118.51 (10)
C15—C16—C17122.02 (12)C21—C20—C19120.08 (13)
C10—C16—C17120.64 (11)C21—C20—H20120.0
O1—C12—C11121.25 (11)C19—C20—H20120.0
O1—C12—C8122.72 (11)C22—C21—C20120.06 (13)
C11—C12—C8116.02 (9)C22—C21—H21120.0
N2—C10—C11119.27 (10)C20—C21—H21120.0
N2—C10—C16119.86 (11)C13—C14—C15119.50 (12)
C11—C10—C16120.87 (11)C13—C14—H14120.3
C16—C15—C14122.47 (12)C15—C14—H14120.3
C16—C15—H15118.8C21—C22—C23120.02 (14)
C14—C15—H15118.8C21—C22—H22120.0
C20—C19—C18120.20 (13)C23—C22—H22120.0
C20—C19—H19119.9C4—C3—C2119.20 (12)
C18—C19—H19119.9C4—C3—H3120.4
C23—C18—C19119.24 (11)C2—C3—H3120.4
C9—C8—C7—C64.14 (15)C13—C11—C10—C160.06 (17)
C12—C8—C7—C6172.83 (10)C12—C11—C10—C16179.99 (10)
C9—C8—C7—C18172.72 (10)C15—C16—C10—N2179.56 (11)
C12—C8—C7—C1810.31 (17)C17—C16—C10—N20.24 (17)
C5—C6—C7—C83.06 (16)C15—C16—C10—C110.77 (17)
C1—C6—C7—C8177.96 (10)C17—C16—C10—C11179.43 (11)
C5—C6—C7—C18173.90 (10)C10—C16—C15—C140.73 (19)
C1—C6—C7—C185.09 (17)C17—C16—C15—C14179.47 (13)
C9—N1—C5—C61.61 (17)C20—C19—C18—C231.18 (19)
C9—N1—C5—C4179.91 (10)C20—C19—C18—C7179.49 (12)
C1—C6—C5—N1179.14 (11)C8—C7—C18—C23111.25 (14)
C7—C6—C5—N10.11 (17)C6—C7—C18—C2371.91 (15)
C1—C6—C5—C40.86 (17)C8—C7—C18—C1970.48 (15)
C7—C6—C5—C4178.16 (10)C6—C7—C18—C19106.37 (13)
C5—N1—C9—N2179.86 (10)C10—C11—C13—C140.97 (19)
C5—N1—C9—C80.39 (17)C12—C11—C13—C14179.07 (11)
C10—N2—C9—N1178.18 (10)C5—C6—C1—C20.80 (18)
C10—N2—C9—C81.32 (17)C7—C6—C1—C2178.18 (11)
C7—C8—C9—N12.55 (17)N1—C5—C4—C3178.17 (12)
C12—C8—C9—N1174.55 (10)C6—C5—C4—C30.19 (19)
C7—C8—C9—N2176.90 (10)C19—C18—C23—C222.4 (2)
C12—C8—C9—N26.00 (16)C7—C18—C23—C22179.30 (13)
C10—C11—C12—O1171.91 (11)C6—C1—C2—C30.3 (2)
C13—C11—C12—O18.05 (17)C6—C1—C2—Cl1179.41 (9)
C10—C11—C12—C86.49 (16)C18—C19—C20—C211.0 (2)
C13—C11—C12—C8173.55 (10)C19—C20—C21—C221.9 (2)
C7—C8—C12—O18.09 (18)C11—C13—C14—C151.0 (2)
C9—C8—C12—O1168.84 (11)C16—C15—C14—C130.2 (2)
C7—C8—C12—C11173.54 (10)C20—C21—C22—C230.7 (3)
C9—C8—C12—C119.53 (15)C18—C23—C22—C211.5 (2)
C9—N2—C10—C114.61 (17)C5—C4—C3—C21.3 (2)
C9—N2—C10—C16175.71 (10)C1—C2—C3—C41.4 (2)
C13—C11—C10—N2179.62 (11)Cl1—C2—C3—C4179.52 (11)
C12—C11—C10—N20.34 (17)

Experimental details

Crystal data
Chemical formulaC23H15ClN2O
Mr370.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2434 (2), 8.5528 (2), 13.0740 (3)
α, β, γ (°)89.446 (1), 74.362 (1), 77.672 (1)
V3)866.06 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.943, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
21083, 5019, 4047
Rint0.025
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.00
No. of reflections5019
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

ππ interactions (Å). Cg1–Cg4 are the centroids of rings N1/C5–C9, N2/C8–C12, C1–C6 and C10-C16, respectively. top
Cg1–Cg4 are the centroids of the N1/C5–C9, N2/C8–C12, C1–C6 and C10-C16 rings, respectively.
Cg1···Cg2i3.7936 (6)
Cg1···Cg4ii3.7721 (7)
Cg2···Cg1i3.7935 (6)
Cg2···Cg2ii3.6542 (6)
Cg2···Cg3i3.8725 (7)
Cg2···Cg4ii3.5506 (7)
Cg3···Cg2i3.8725 (7)
Cg3···Cg4ii3.6485 (8)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z.
 

Acknowledgements

DV acknowledges the Department of Science and Technology (DST) for providing computing facilities under major research projects and for financial support under the UGC-SAP and DST-FIST programs.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalin, G. B. & Tan, W. L. (1984). Aust. J. Chem. 37, 1065–1073.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K., Kuo, S., Hsiech, M. & Anthoner, K. J. (1997). J. Med. Chem. 40, 3049–3056.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCooper, C. S., Klock, P. L., Chu, D. T. W., Hardy, D. J., Swanson, R. N. & Plattner, J. J. (1992). J. Med. Chem. 35, 1392–1398.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEgawa, H., Miyamoto, T., Minamida, A., Nishimura, Y., Okada, H., Uno, H. & Motosumoto, J. (1984). J. Med. Chem. 27, 1543–1548.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuroda, T., Suzuki, F., Tamura, T., Ohmori, K. & Hoise, H. (1992). J. Med. Chem. 35, 1130–1136.  CrossRef PubMed CAS Web of Science Google Scholar
First citationManoj, M. & Rajendra Prasad, K. J. (2009). J. Chem. Res. pp. 713–718.  Google Scholar
First citationNadaraj, V., Thamarai Selvi, S. & Mohan, S. (2009). Eur. J. Med. Chem. 44, 976–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds