organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2,3-Di­methyl-N-(2-nitro­benzyl­­idene)aniline

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 June 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound, C15H14N2O2, the 2,3-dimethyl­anilinic and benzaldehyde groups are planar, with r.m.s. deviations of 0.0101 and 0.0241 Å, respectively, and are oriented at a dihedral angle of 11.69 (3)°. The nitro group is inclined to the benzaldehyde group by 34.02 (9)°. The mol­ecule adopts an E configuration about the C=N bond. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, giving rise to the formation of zigzag polymeric chains extending along [010]. They are also linked by C—H⋯π, and ππ inter­actions [centroid–centroid distance of 3.7185 (11) Å] involving symmetry-related aniline and benzene rings. The H atoms of the ortho-methyl group are disordered over two sites with a refined occupancy ratio of 0.69 (2):0.31 (2).

Related literature

For the crystal structures of similar compounds, see: Tahir et al. (2010[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1562.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Monoclinic, P 21 /c

  • a = 12.2910 (6) Å

  • b = 15.1422 (9) Å

  • c = 7.3384 (3) Å

  • β = 107.091 (2)°

  • V = 1305.46 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.15 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.987

  • 10220 measured reflections

  • 2362 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.03

  • 2362 reflections

  • 171 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.96 2.51 3.438 (2) 162.00
C8—H8BCg1ii 0.96 2.89 3.680 (2) 141
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our research on the synthesis and crystal structure analysis of various Schiff bases of 2,3-dimethylaniline (Tariq et al., 2010; Tahir et al., 2010), we report herein on the crystal structure of the title compound, where the nitro group is in the ortho position. This structure differs from that reported earlier (Tariq et al., 2010) for 2,3-dimethyl-N-[(E)-4-nitrobenzylidene]aniline, where the nitro group is in the para-position.

In the title molecule (Fig. 1) the 2,3-dimethylaniline group A (C1—C8/N1) is planar, to within 0.0101 Å, and the benzylidene group B (C9—C15) is also planar, to within 0.0241 Å. The dihedral angle between mean planes A and B is 11.69 (3)°. The nitro group (O1/N2/O2) is oriented at 34.02 (9)° with respect to the mean plane of the parent group B. The molecule adopts an E configuration about the C1 N9 bond, whose bond length is 1.263 (2) Å. The bond lengths are comparable with those in the structures cited above.

In the crystal structure the molecules are linked by C—H···O interactions to form zigzag polymeric chains extending along [010] (Table 1, Fig. 2). There also exist C-H···π interactions, and ππ interactions [centroid-to-centroid distance = 3.7185 (11) Å] between symmetry related aniline benzene rings (Table 1).

Footnote for Table 1: Cg1 is the centroid of benzene ring (C1-C6).

Related literature top

For the crystal structures of similar compounds, see: Tahir et al. (2010); Tariq et al. (2010).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and 2-nitrobenzaldehyde were refluxed in methanol for 45 min resulting in an orange solution. The solution was kept at RT and affoarded palepink rod-like crystals, suitable for X-ray diffraction analysis, after 24 h.

Refinement top

The H-atoms of the methyl group in the ortho position are disordered over two sites with a refined occupancy ratio of 0.69 (2):0.31 (2). All the H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = k × Ueq(C), where k = 1.2 for aryl H-atoms and k = 1.5 for methyl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structuite of the title molecule, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. A partial crystal packing which shows that molecules form polymeric chains extending along [010].
(E)-2,3-Dimethyl-N-(2-nitrobenzylidene)aniline top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1705 reflections
a = 12.2910 (6) Åθ = 2.2–25.3°
b = 15.1422 (9) ŵ = 0.09 mm1
c = 7.3384 (3) ÅT = 296 K
β = 107.091 (2)°Rod, pale pink
V = 1305.46 (11) Å30.32 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.985, Tmax = 0.987l = 58
10220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
2362 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H14N2O2V = 1305.46 (11) Å3
Mr = 254.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2910 (6) ŵ = 0.09 mm1
b = 15.1422 (9) ÅT = 296 K
c = 7.3384 (3) Å0.32 × 0.15 × 0.15 mm
β = 107.091 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1705 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.029
10220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
2362 reflectionsΔρmin = 0.16 e Å3
171 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.57216 (14)0.48517 (10)0.7186 (2)0.0898 (6)
O20.66972 (12)0.41328 (10)0.5671 (3)0.0865 (7)
N10.72326 (11)0.16848 (9)0.60756 (19)0.0440 (4)
N20.59423 (13)0.41809 (10)0.6438 (2)0.0602 (6)
C10.84205 (12)0.15240 (10)0.6480 (2)0.0411 (5)
C20.88063 (13)0.06562 (10)0.6889 (2)0.0432 (5)
C30.99754 (14)0.04808 (12)0.7314 (2)0.0508 (6)
C41.07104 (15)0.11659 (15)0.7281 (3)0.0629 (7)
C51.03219 (15)0.20131 (14)0.6825 (3)0.0670 (8)
C60.91756 (14)0.21936 (12)0.6413 (3)0.0541 (6)
C70.79775 (11)0.00684 (9)0.6917 (3)0.0630 (7)
C81.04291 (11)0.04434 (9)0.7794 (3)0.0704 (7)
C90.69105 (12)0.23778 (11)0.6723 (2)0.0423 (5)
C100.56911 (12)0.25563 (10)0.6417 (2)0.0398 (5)
C110.52334 (13)0.34016 (11)0.6387 (2)0.0444 (5)
C120.41029 (14)0.35494 (13)0.6243 (3)0.0556 (6)
C130.33943 (15)0.28376 (14)0.6115 (3)0.0609 (7)
C140.38193 (15)0.19944 (13)0.6158 (3)0.0596 (7)
C150.49477 (14)0.18559 (11)0.6304 (2)0.0501 (6)
H41.148630.105200.757440.0755*
H51.083120.246310.679510.0804*
H60.890950.276450.609050.0649*
H7A0.799090.018500.820930.0945*0.69 (2)
H7B0.818630.059360.636770.0945*0.69 (2)
H7C0.722540.011020.619210.0945*0.69 (2)
H8A1.124300.043850.807820.1056*
H8B1.010860.082550.672750.1056*
H8C1.022440.065410.888320.1056*
H90.744950.278080.740060.0507*
H120.382660.412180.623250.0667*
H130.262790.292450.599910.0730*
H140.333850.151330.608840.0714*
H150.521740.128100.632750.0601*
H7D0.746500.012760.759990.0945*0.31 (2)
H7E0.838510.057910.753580.0945*0.31 (2)
H7F0.755250.021680.563330.0945*0.31 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0974 (12)0.0457 (8)0.1170 (13)0.0068 (8)0.0169 (9)0.0163 (8)
O20.0608 (9)0.0664 (10)0.1409 (15)0.0066 (7)0.0428 (9)0.0129 (9)
N10.0396 (7)0.0394 (8)0.0527 (8)0.0020 (6)0.0129 (6)0.0001 (6)
N20.0526 (9)0.0436 (9)0.0793 (11)0.0034 (7)0.0114 (8)0.0045 (8)
C10.0369 (8)0.0433 (9)0.0425 (8)0.0001 (7)0.0109 (7)0.0041 (7)
C20.0447 (9)0.0447 (10)0.0398 (8)0.0039 (7)0.0117 (7)0.0027 (7)
C30.0464 (9)0.0624 (11)0.0427 (9)0.0125 (8)0.0119 (7)0.0040 (8)
C40.0397 (9)0.0864 (15)0.0628 (12)0.0059 (10)0.0152 (8)0.0087 (10)
C50.0492 (11)0.0747 (14)0.0821 (14)0.0164 (10)0.0270 (9)0.0100 (11)
C60.0517 (10)0.0456 (10)0.0680 (11)0.0040 (8)0.0222 (8)0.0034 (8)
C70.0612 (11)0.0442 (11)0.0811 (13)0.0018 (9)0.0170 (10)0.0018 (9)
C80.0676 (12)0.0758 (14)0.0636 (12)0.0317 (11)0.0127 (9)0.0010 (10)
C90.0399 (9)0.0414 (9)0.0434 (9)0.0004 (7)0.0088 (7)0.0006 (7)
C100.0394 (8)0.0431 (9)0.0367 (8)0.0030 (7)0.0108 (6)0.0007 (7)
C110.0425 (9)0.0448 (9)0.0463 (9)0.0001 (7)0.0137 (7)0.0002 (7)
C120.0480 (10)0.0585 (11)0.0634 (11)0.0117 (9)0.0213 (8)0.0006 (9)
C130.0405 (9)0.0798 (15)0.0660 (12)0.0026 (9)0.0215 (8)0.0020 (10)
C140.0493 (10)0.0675 (13)0.0632 (12)0.0134 (9)0.0186 (9)0.0005 (10)
C150.0505 (10)0.0440 (10)0.0547 (10)0.0020 (8)0.0138 (8)0.0002 (8)
Geometric parameters (Å, º) top
O1—N21.222 (2)C14—C151.375 (3)
O2—N21.221 (2)C4—H40.9300
N1—C11.423 (2)C5—H50.9300
N1—C91.263 (2)C6—H60.9300
N2—C111.461 (2)C7—H7A0.9600
C1—C21.399 (2)C7—H7B0.9600
C1—C61.385 (2)C7—H7C0.9600
C2—C31.403 (2)C7—H7D0.9600
C2—C71.501 (2)C7—H7E0.9600
C3—C41.381 (3)C7—H7F0.9600
C3—C81.509 (2)C8—H8A0.9600
C4—C51.375 (3)C8—H8B0.9600
C5—C61.379 (3)C8—H8C0.9600
C9—C101.474 (2)C9—H90.9300
C10—C111.396 (2)C12—H120.9300
C10—C151.386 (2)C13—H130.9300
C11—C121.381 (2)C14—H140.9300
C12—C131.372 (3)C15—H150.9300
C13—C141.376 (3)
O1···C15i3.413 (2)H6···C8iv2.8800
O1···N2ii3.194 (2)H7B···C82.6600
O1···O1ii3.209 (2)H7B···H8B2.3300
O2···C92.758 (2)H7B···H14xi2.5900
O1···H15i2.8200H7C···N12.3900
O1···H14i2.9000H7D···O2iii2.9100
O1···H7Fiii2.9000H7D···N12.5900
O1···H122.4900H7D···H12vi2.5200
O2···H92.4400H7E···H8C2.1900
O2···H8Aiv2.5100H7E···H8B2.3900
O2···H7Dv2.9100H7E···C82.4700
N1···C9v3.410 (2)H7F···H14xi2.4200
N2···O1ii3.194 (2)H7F···O1v2.9000
N1···H7D2.5900H7F···N12.9400
N1···H7F2.9400H8A···H42.3200
N1···H152.6100H8A···O2ix2.5100
N1···H9v2.9000H8B···C72.9000
N1···H7C2.3900H8B···C3viii2.9800
N2···H92.7700H8B···C4viii2.8600
C9···N1iii3.410 (2)H8B···C5viii3.0800
C9···O22.758 (2)H8B···H7B2.3300
C13···C14iii3.591 (3)H8B···H7E2.3900
C14···C13v3.591 (3)H8C···C72.8600
C15···O1vi3.413 (2)H8C···C3vii2.8800
C1···H9v3.0700H8C···H7E2.1900
C2···H8Cvii2.9800H8C···C2vii2.9800
C3···H8Cvii2.8800H9···N22.7700
C3···H8Bviii2.9800H9···C62.5900
C4···H8Bviii2.8600H9···H62.2700
C5···H8Bviii3.0800H9···N1iii2.9000
C6···H9v3.0800H9···C1iii3.0700
C6···H92.5900H9···C6iii3.0800
C7···H8B2.9000H9···O22.4400
C7···H8C2.8600H12···H7Di2.5200
C8···H7B2.6600H12···O12.4900
C8···H6ix2.8800H13···H5xii2.5400
C8···H7E2.4700H14···H7Bxi2.5900
C9···H62.7000H14···O1vi2.9000
H4···H8A2.3200H14···H7Fxi2.4200
H5···H13x2.5400H15···O1vi2.8200
H6···C92.7000H15···N12.6100
H6···H92.2700
C1—N1—C9118.67 (14)C1—C6—H6120.00
O1—N2—O2123.76 (17)C5—C6—H6120.00
O1—N2—C11118.25 (16)C2—C7—H7A109.00
O2—N2—C11117.94 (15)C2—C7—H7B109.00
N1—C1—C2117.89 (14)C2—C7—H7C109.00
N1—C1—C6121.64 (14)C2—C7—H7D109.00
C2—C1—C6120.44 (15)C2—C7—H7E109.00
C1—C2—C3119.06 (15)C2—C7—H7F109.00
C1—C2—C7120.05 (14)H7A—C7—H7B109.00
C3—C2—C7120.88 (14)H7A—C7—H7C109.00
C2—C3—C4119.11 (17)H7B—C7—H7C109.00
C2—C3—C8120.75 (15)H7D—C7—H7E109.00
C4—C3—C8120.14 (16)H7D—C7—H7F109.00
C3—C4—C5121.53 (18)H7E—C7—H7F109.00
C4—C5—C6119.84 (19)C3—C8—H8A109.00
C1—C6—C5119.95 (17)C3—C8—H8B109.00
N1—C9—C10120.82 (14)C3—C8—H8C109.00
C9—C10—C11123.90 (14)H8A—C8—H8B109.00
C9—C10—C15119.45 (14)H8A—C8—H8C109.00
C11—C10—C15116.43 (15)H8B—C8—H8C109.00
N2—C11—C10120.39 (15)N1—C9—H9120.00
N2—C11—C12116.77 (15)C10—C9—H9120.00
C10—C11—C12122.81 (16)C11—C12—H12121.00
C11—C12—C13118.85 (18)C13—C12—H12121.00
C12—C13—C14119.89 (18)C12—C13—H13120.00
C13—C14—C15120.70 (18)C14—C13—H13120.00
C10—C15—C14121.32 (16)C13—C14—H14120.00
C3—C4—H4119.00C15—C14—H14120.00
C5—C4—H4119.00C10—C15—H15119.00
C4—C5—H5120.00C14—C15—H15119.00
C6—C5—H5120.00
C9—N1—C1—C2140.61 (15)C2—C3—C4—C50.6 (3)
C9—N1—C1—C641.5 (2)C8—C3—C4—C5179.15 (18)
C1—N1—C9—C10177.30 (13)C3—C4—C5—C60.9 (3)
O1—N2—C11—C10149.86 (15)C4—C5—C6—C10.7 (3)
O1—N2—C11—C1232.3 (2)N1—C9—C10—C11153.88 (15)
O2—N2—C11—C1032.6 (2)N1—C9—C10—C1531.7 (2)
O2—N2—C11—C12145.21 (18)C9—C10—C11—N27.4 (2)
N1—C1—C2—C3179.29 (13)C9—C10—C11—C12174.92 (16)
N1—C1—C2—C70.8 (2)C15—C10—C11—N2178.04 (13)
C6—C1—C2—C32.8 (2)C15—C10—C11—C120.4 (2)
C6—C1—C2—C7178.69 (16)C9—C10—C15—C14175.24 (15)
N1—C1—C6—C5179.62 (17)C11—C10—C15—C140.4 (2)
C2—C1—C6—C52.6 (3)N2—C11—C12—C13177.48 (17)
C1—C2—C3—C41.2 (2)C10—C11—C12—C130.3 (3)
C1—C2—C3—C8179.01 (15)C11—C12—C13—C140.9 (3)
C7—C2—C3—C4179.72 (16)C12—C13—C14—C150.8 (3)
C7—C2—C3—C80.5 (2)C13—C14—C15—C100.2 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z1/2; (vi) x+1, y1/2, z+3/2; (vii) x+2, y, z+2; (viii) x+2, y, z+1; (ix) x+2, y1/2, z+3/2; (x) x+1, y, z; (xi) x+1, y, z+1; (xii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2ix0.962.513.438 (2)162.00
C8—H8B···Cg1viii0.962.893.680 (2)141
Symmetry codes: (viii) x+2, y, z+1; (ix) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.2910 (6), 15.1422 (9), 7.3384 (3)
β (°) 107.091 (2)
V3)1305.46 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.15 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
10220, 2362, 1705
Rint0.029
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.03
No. of reflections2362
No. of parameters171
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.962.513.438 (2)162.00
C8—H8B···Cg1ii0.962.893.680 (2)141
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds