metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m855-m856

Poly[(μ3-4-amino­benzene­sulfonato-κ3N:O:O)(tri­phenyl­phosphine-κP)silver(I)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title 1:1 silver 4-amino­benzene­sulfonate adduct with triphenyl­phosphine, [Ag(C6H6NO3S)(C18H15P)]n, the sulfon­ate –SO3 unit bridges, through only one O atom, two phosphine-coordinated Ag atoms, forming a centrosymmetric Ag2O2 rhombus. The Ag+ cation adopts a considerably distorted a tetra­hedral coordination. In the crystal, adjacent binuclear mol­ecules are connected into a layer motif through the amino group of the anion; the layers are perpendicular to the a axis.

Related literature

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999[Hanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55 IUC9900031.]); Ng & Othman (1997[Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.]). For the crystal structure of 4-amino­benzene­sulfonic acid, see: Banu & Golzar Hossain (2006[Banu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252-o2253.]); Low & Glidewell (2002[Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209-o211.]); Rae & Maslen (1962[Rae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285-1291.]). For literature on silver 4-amino­benzene­sulfonate, see: Léon (1945[Léon, A. P. (1945). Rev. Inst. Salubridad Enfermedades Trop. (Mex.), 6, 123-130.], 1992[Léon, A. (1992). 50 Años De Investigación en México (Fifty Years of Research in Mexico), 782 pp. Centro de Documentación Institucional, História Natural das Doenças México, Mexico.]); Pan et al. (2003[Pan, Y.-J., Meng, F.-J., Wang, X.-J., Zhu, H.-L. & Wang, D.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 253-254.]); Schreuer (1999[Schreuer, J. (1999). Z. Kristallogr. New Cryst. Struct. 214, 311-312.]). For other metal derivatives, see: Brodersen & Beck (2004[Brodersen, K. & Beck, R. (2004). Z. Anorg. Allg. Chem. 553, 35-49.]); Li et al. (2006[Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209-215.]); Liu, Ma & Yang (2007[Liu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.]); Liu, Wu et al. (2007[Liu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299-7311.]); Ou et al. (2008[Ou, G.-C., Zhang, M., Yuan, X.-Y. & Dai, Y.-Q. (2008). Acta Cryst. E64, m1587.]); Wu et al. (2008[Wu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331-5341.]); Zheng et al. (2002[Zheng, S. L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360-364.]). For a review on metal sulfonates, see: Cai (2004[Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H6NO3S)(C18H15P)]

  • Mr = 542.32

  • Monoclinic, C 2/c

  • a = 28.2593 (15) Å

  • b = 9.4085 (5) Å

  • c = 18.5765 (10) Å

  • β = 118.229 (1)°

  • V = 4351.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.946

  • 19921 measured reflections

  • 4995 independent reflections

  • 4393 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.02

  • 4995 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—P1 2.3614 (6)
Ag1—O1 2.4252 (15)
Ag1—O1i 2.5031 (16)
Ag1—N1ii 2.3749 (18)
P1—Ag1—O1 131.56 (4)
P1—Ag1—O1i 124.03 (4)
P1—Ag1—N1ii 132.96 (5)
O1—Ag1—O1i 80.21 (5)
O1—Ag1—N1ii 78.12 (6)
O1i—Ag1—N1ii 92.43 (6)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The crystal structure of silver 4-aminobenzenesulfonate, sulfargenta, a chemical whose ability to disinfect contaminated water was reported in 1945 (Léon, 1945; 1992), features a polymeric ribbon structure in which the nitrogen and three oxygen atoms are all involved in coordinating to silver centers (Schreuer, 1999; Pan et al., 2003). The 4-aminobenzenesulfonate ion has been studied in other metal salts; the sulfonate part of the ion exhibits diverse coordination modes, as summarized in a review of metal arenesulfonates (Cai, 2004).

Introducing a monodentate ligand such as triphenylphosphine to silver 4-aminobenzenesulfonate should lower the dimensionality (i.e., the adduct should exist as a monomeric molecule) following the suggestion of lowering the dimensionality of the related metal carboxylates by the use of bidentate N-heterocycles. However, the hexamethyleneteramine adduct has a layer structure in which only the hexamethylenetetramine ligand participates in µ3-bridging (Zheng et al., 2002); the 1,1'-(1,4-butanediyl)-bis(imidazole) adduct similarly features an uncoordinated 4-aminobenzesulfonate group (Li et al., 2006). Other bidentate N-heterocycles result in silver 4-aminobenzenesulfonate adducts displaying chain or ladder motifs (Liu Ma & Yang, 2007; Liu, Wy et al., 2007; Wu et al., 2008). In the present study, the donor ligand is triphenylphosphine.

In the title 1:1 adduct with triphenylphosphine the sulfonate –SO3 group bridges, through only one oxygen atom, two phosphine-coordinated silver atoms to furnish a centrosymmetric Ag2O2 rhombus (Fig. 1). The silver atom has a tetrahedral geometry as seen from the selected bond distances and angles involving atom Ag1, given in Table 1. In the –SO3 portion, one bond is distinctly longer than the other two [1.489 (2) Å compared to 1.444 (2) and 1.457 (2) Å]; the oxygen atom involved in the longer bond is that which bridges the two silver atoms. Sulfanilic acid itself exists as a zwitterion but the longest bond is only slightly longer than the other two [1.476 (1) Å compared to 1.445 (1), and 1.457 (1) Å] (Low & Glidewell, 2002). On the other hand, the bonds are more symmetrical in the two modifications of the monohydrated acid (Banu et al., 2006; Rae & Maslen, 1962).

In the crystal structures of metal 4-aminobenzesulfonates (without other ligands) for which the anion is coordinated to the metal, the amino group is not usually involved in additional coordination. The exceptions are limited to silver (Schreuer, 1999; Pan et al., 2003) and mercury (Brodersen & Beck, 2004) derivatives only. In the crystal structute of the title compound adjacent [Ag(C6H6NO3S)(C18H15P)]2 dimers are connected into a layer motif through the amino moiety. The layers are perpendicular to the a-axis of the monoclinic unit cell (Fig. 2), with the aromatic rings of the phosphine ligand protruding into the space between the layers.

Related literature top

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999); Ng & Othman (1997). For the crystal structure of 4-aminobenzenesulfonic acid, see: Banu & Golzar Hossain (2006); Low & Glidewell (2002); Rae & Maslen (1962). For literature on silver 4-aminobenzenesulfonate, see: Léon (1945, 1992); Pan et al. (2003); Schreuer (1999). For other metal derivatives, see: Brodersen & Beck (2004); Li et al. (2006); Liu, Ma & Yang (2007); Liu, Wu et al. (2007); Ou et al. (2008); Wu et al. (2008); Zheng et al. (2002). For a review on metal sulfonanates, see: Cai (2004).

Experimental top

Silver acetate (1 mmol, 0.17 g) and triphenylphosphine (2 mmol, 0.53 g) were heated in ethanol (50 ml) until the reactants dissolved completely. Gray insoluble material was removed by filtration and the solvent removed to yield bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997). The adduct (0.5 mmol, 0.69 g) and 4-aminobenzenesulfonic acid (1 mmol, 0.17 g) were placed in a convection tube; the tube was filled with methanol and kept at 343 K. Colorless crystals were collected after 3 days (m.p. > 573 K).

Refinement top

Hydrogen atoms were placed in calculated positions and treated as riding atoms: C–H 0.95, N–H 0.86 Å with Uiso(H) = 1.2Ueq(parent c- or N-atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the asymmetric unit of the two-dimensional network structure of the title compound; ellipsoids are drawn at the 70% probability level and H atoms are of arbitrary radius. Symmetry transformation: (i) = 1 - x, 1 - y, 1 - z; (ii) = 3/2 - x, y - 1/2, 3/2 - z.
[Figure 2] Fig. 2. OLEX (Dolomanov et al., 2003) representation of the layer motif in the crystal structure of the title compound.
Poly[(µ3-4-aminobenzenesulfonato- κ3N:O:O)(triphenylphosphine-κP)silver(I)] top
Crystal data top
[Ag(C6H6NO3S)(C18H15P)]F(000) = 2192
Mr = 542.32Dx = 1.656 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8286 reflections
a = 28.2593 (15) Åθ = 2.4–28.2°
b = 9.4085 (5) ŵ = 1.12 mm1
c = 18.5765 (10) ÅT = 100 K
β = 118.229 (1)°Plate, colorless
V = 4351.6 (4) Å30.35 × 0.30 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4995 independent reflections
Radiation source: fine-focus sealed tube4393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3636
Tmin = 0.695, Tmax = 0.946k = 1112
19921 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0414P)2 + 3.5194P]
where P = (Fo2 + 2Fc2)/3
4995 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ag(C6H6NO3S)(C18H15P)]V = 4351.6 (4) Å3
Mr = 542.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.2593 (15) ŵ = 1.12 mm1
b = 9.4085 (5) ÅT = 100 K
c = 18.5765 (10) Å0.35 × 0.30 × 0.05 mm
β = 118.229 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4995 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4393 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.946Rint = 0.038
19921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.93 e Å3
4995 reflectionsΔρmin = 0.46 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.692581 (6)0.726456 (18)0.523729 (10)0.01618 (6)
S10.80640 (2)0.94131 (6)0.63130 (3)0.01479 (11)
P10.61400 (2)0.83696 (6)0.51114 (3)0.01347 (12)
O10.78580 (6)0.80116 (17)0.59157 (9)0.0175 (3)
O20.86414 (6)0.94896 (18)0.66660 (10)0.0215 (3)
O30.77760 (6)1.05818 (17)0.57660 (9)0.0199 (3)
N10.76252 (7)1.0121 (2)0.91345 (11)0.0172 (4)
H1A0.77490.94310.94780.021*
H1B0.72871.02010.89780.021*
C10.55223 (9)0.7331 (2)0.45987 (14)0.0152 (4)
C20.54236 (9)0.6587 (3)0.38905 (15)0.0241 (5)
H20.56750.66180.36870.029*
C30.49531 (10)0.5800 (3)0.34867 (16)0.0283 (6)
H30.48810.53130.29980.034*
C40.45886 (9)0.5712 (2)0.37823 (15)0.0236 (5)
H40.42720.51570.35040.028*
C50.46888 (9)0.6441 (2)0.44884 (15)0.0211 (5)
H50.44400.63860.46970.025*
C60.51523 (9)0.7254 (2)0.48923 (14)0.0171 (4)
H60.52170.77610.53730.021*
C70.59882 (8)1.0046 (2)0.45534 (12)0.0149 (4)
C80.54666 (9)1.0490 (2)0.40320 (13)0.0189 (4)
H80.51720.98860.39320.023*
C90.53739 (10)1.1817 (3)0.36545 (15)0.0235 (5)
H90.50171.21150.32980.028*
C100.58010 (10)1.2702 (2)0.37993 (15)0.0228 (5)
H100.57371.36120.35480.027*
C110.63252 (10)1.2255 (2)0.43143 (14)0.0216 (5)
H110.66191.28590.44100.026*
C120.64191 (9)1.0932 (2)0.46869 (13)0.0186 (4)
H120.67771.06270.50330.022*
C130.61624 (8)0.8853 (2)0.60765 (12)0.0141 (4)
C140.63746 (9)0.7881 (2)0.67208 (14)0.0184 (5)
H140.65280.70190.66630.022*
C150.63632 (9)0.8164 (3)0.74441 (14)0.0214 (5)
H150.65010.74880.78750.026*
C160.61496 (9)0.9438 (2)0.75397 (14)0.0197 (5)
H160.61410.96300.80360.024*
C170.59487 (8)1.0430 (2)0.69125 (13)0.0171 (4)
H170.58071.13050.69810.021*
C180.59550 (8)1.0140 (2)0.61829 (13)0.0157 (4)
H180.58181.08210.57540.019*
C190.79126 (8)0.9533 (2)0.71350 (12)0.0132 (4)
C200.82240 (8)0.8805 (2)0.78608 (13)0.0154 (4)
H200.85070.82030.79060.019*
C210.81224 (8)0.8956 (2)0.85197 (13)0.0157 (4)
H210.83350.84570.90140.019*
C220.77081 (8)0.9840 (2)0.84538 (12)0.0144 (4)
C230.73961 (8)1.0556 (2)0.77244 (13)0.0166 (4)
H230.71121.11540.76770.020*
C240.74968 (8)1.0406 (2)0.70679 (13)0.0157 (4)
H240.72821.08990.65720.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01579 (9)0.01658 (10)0.01879 (10)0.00209 (6)0.01033 (7)0.00064 (6)
S10.0160 (2)0.0163 (3)0.0144 (2)0.00364 (19)0.0091 (2)0.00339 (19)
P10.0141 (2)0.0126 (3)0.0154 (3)0.00022 (19)0.0084 (2)0.0003 (2)
O10.0188 (7)0.0178 (8)0.0184 (8)0.0042 (6)0.0110 (6)0.0062 (6)
O20.0177 (7)0.0275 (9)0.0218 (8)0.0059 (6)0.0114 (6)0.0070 (7)
O30.0261 (8)0.0192 (8)0.0166 (7)0.0013 (6)0.0120 (7)0.0006 (6)
N10.0208 (9)0.0170 (9)0.0163 (9)0.0019 (7)0.0109 (7)0.0007 (7)
C10.0157 (10)0.0099 (10)0.0192 (11)0.0017 (7)0.0077 (8)0.0023 (8)
C20.0212 (11)0.0267 (13)0.0279 (12)0.0021 (9)0.0143 (10)0.0087 (10)
C30.0255 (12)0.0268 (14)0.0290 (13)0.0015 (10)0.0100 (10)0.0119 (10)
C40.0178 (10)0.0139 (11)0.0320 (13)0.0007 (8)0.0060 (9)0.0003 (9)
C50.0182 (10)0.0173 (12)0.0293 (12)0.0006 (8)0.0124 (9)0.0052 (9)
C60.0178 (10)0.0153 (11)0.0179 (11)0.0014 (8)0.0082 (9)0.0018 (8)
C70.0204 (10)0.0133 (10)0.0145 (9)0.0003 (8)0.0111 (8)0.0003 (8)
C80.0203 (10)0.0191 (11)0.0209 (11)0.0001 (9)0.0127 (9)0.0022 (9)
C90.0269 (12)0.0229 (12)0.0240 (12)0.0071 (10)0.0149 (10)0.0065 (10)
C100.0375 (14)0.0138 (11)0.0237 (12)0.0019 (9)0.0200 (11)0.0027 (9)
C110.0314 (12)0.0191 (12)0.0190 (11)0.0083 (9)0.0157 (10)0.0046 (9)
C120.0212 (10)0.0196 (11)0.0166 (10)0.0043 (9)0.0101 (9)0.0023 (9)
C130.0134 (9)0.0157 (11)0.0136 (9)0.0005 (8)0.0067 (8)0.0005 (8)
C140.0229 (11)0.0126 (11)0.0208 (11)0.0035 (8)0.0113 (9)0.0029 (8)
C150.0288 (12)0.0162 (11)0.0213 (11)0.0046 (9)0.0136 (10)0.0052 (9)
C160.0234 (11)0.0201 (12)0.0188 (10)0.0014 (9)0.0125 (9)0.0015 (9)
C170.0182 (10)0.0129 (10)0.0229 (11)0.0006 (8)0.0119 (9)0.0020 (8)
C180.0151 (9)0.0124 (10)0.0190 (10)0.0003 (8)0.0076 (8)0.0025 (8)
C190.0165 (9)0.0121 (10)0.0130 (9)0.0030 (8)0.0086 (8)0.0036 (8)
C200.0159 (9)0.0124 (10)0.0180 (10)0.0005 (8)0.0080 (8)0.0015 (8)
C210.0179 (10)0.0125 (10)0.0144 (10)0.0001 (8)0.0059 (8)0.0006 (8)
C220.0164 (9)0.0129 (10)0.0147 (9)0.0043 (8)0.0080 (8)0.0013 (8)
C230.0156 (9)0.0169 (11)0.0188 (10)0.0017 (8)0.0095 (8)0.0022 (8)
C240.0176 (10)0.0141 (10)0.0142 (10)0.0008 (8)0.0065 (8)0.0009 (8)
Geometric parameters (Å, º) top
Ag1—P12.3614 (6)C8—H80.9500
Ag1—O12.4252 (15)C9—C101.384 (4)
Ag1—O1i2.5031 (16)C9—H90.9500
Ag1—N1ii2.3749 (18)C10—C111.395 (4)
S1—O21.4441 (15)C10—H100.9500
S1—O31.4565 (17)C11—C121.388 (3)
S1—O11.4885 (16)C11—H110.9500
S1—C191.774 (2)C12—H120.9500
P1—C131.821 (2)C13—C141.396 (3)
P1—C71.824 (2)C13—C181.400 (3)
P1—C11.826 (2)C14—C151.385 (3)
O1—Ag1i2.5031 (16)C14—H140.9500
N1—C221.416 (3)C15—C161.391 (3)
N1—Ag1iii2.3749 (18)C15—H150.9500
N1—H1A0.8600C16—C171.387 (3)
N1—H1B0.8600C16—H160.9500
C1—C61.391 (3)C17—C181.391 (3)
C1—C21.397 (3)C17—H170.9500
C2—C31.391 (3)C18—H180.9500
C2—H20.9500C19—C241.390 (3)
C3—C41.380 (4)C19—C201.393 (3)
C3—H30.9500C20—C211.390 (3)
C4—C51.385 (3)C20—H200.9500
C4—H40.9500C21—C221.394 (3)
C5—C61.391 (3)C21—H210.9500
C5—H50.9500C22—C231.392 (3)
C6—H60.9500C23—C241.384 (3)
C7—C81.391 (3)C23—H230.9500
C7—C121.398 (3)C24—H240.9500
C8—C91.395 (3)
P1—Ag1—O1131.56 (4)C9—C8—H8119.9
P1—Ag1—O1i124.03 (4)C10—C9—C8120.1 (2)
P1—Ag1—N1ii132.96 (5)C10—C9—H9119.9
O1—Ag1—O1i80.21 (5)C8—C9—H9119.9
O1—Ag1—N1ii78.12 (6)C9—C10—C11119.9 (2)
O1i—Ag1—N1ii92.43 (6)C9—C10—H10120.1
O2—S1—O3114.68 (10)C11—C10—H10120.1
O2—S1—O1111.23 (9)C12—C11—C10120.2 (2)
O3—S1—O1111.38 (9)C12—C11—H11119.9
O2—S1—C19106.66 (9)C10—C11—H11119.9
O3—S1—C19105.65 (10)C11—C12—C7120.1 (2)
O1—S1—C19106.65 (9)C11—C12—H12120.0
C13—P1—C7103.46 (10)C7—C12—H12120.0
C13—P1—C1103.10 (10)C14—C13—C18119.0 (2)
C7—P1—C1104.85 (10)C14—C13—P1118.77 (17)
C13—P1—Ag1114.78 (7)C18—C13—P1122.22 (16)
C7—P1—Ag1113.23 (7)C15—C14—C13120.6 (2)
C1—P1—Ag1115.99 (7)C15—C14—H14119.7
S1—O1—Ag1126.03 (9)C13—C14—H14119.7
S1—O1—Ag1i108.65 (8)C14—C15—C16120.0 (2)
Ag1—O1—Ag1i99.79 (5)C14—C15—H15120.0
C22—N1—Ag1iii108.76 (13)C16—C15—H15120.0
C22—N1—H1A109.9C17—C16—C15120.1 (2)
Ag1iii—N1—H1A109.9C17—C16—H16119.9
C22—N1—H1B109.9C15—C16—H16119.9
Ag1iii—N1—H1B109.9C16—C17—C18119.9 (2)
H1A—N1—H1B108.3C16—C17—H17120.1
C6—C1—C2119.4 (2)C18—C17—H17120.1
C6—C1—P1122.24 (17)C17—C18—C13120.4 (2)
C2—C1—P1118.36 (18)C17—C18—H18119.8
C3—C2—C1119.3 (2)C13—C18—H18119.8
C3—C2—H2120.4C24—C19—C20119.86 (19)
C1—C2—H2120.4C24—C19—S1119.90 (16)
C4—C3—C2121.3 (2)C20—C19—S1120.19 (16)
C4—C3—H3119.3C19—C20—C21120.20 (19)
C2—C3—H3119.3C19—C20—H20119.9
C3—C4—C5119.3 (2)C21—C20—H20119.9
C3—C4—H4120.3C20—C21—C22119.88 (19)
C5—C4—H4120.3C20—C21—H21120.1
C4—C5—C6120.1 (2)C22—C21—H21120.1
C4—C5—H5119.9C23—C22—C21119.58 (19)
C6—C5—H5119.9C23—C22—N1118.87 (19)
C1—C6—C5120.5 (2)C21—C22—N1121.33 (19)
C1—C6—H6119.7C24—C23—C22120.57 (19)
C5—C6—H6119.7C24—C23—H23119.7
C8—C7—C12119.5 (2)C22—C23—H23119.7
C8—C7—P1122.84 (17)C23—C24—C19119.91 (19)
C12—C7—P1117.63 (16)C23—C24—H24120.0
C7—C8—C9120.3 (2)C19—C24—H24120.0
C7—C8—H8119.9
N1ii—Ag1—P1—C1361.30 (10)C12—C7—C8—C90.9 (3)
O1—Ag1—P1—C1355.43 (10)P1—C7—C8—C9176.62 (18)
O1i—Ag1—P1—C13164.36 (9)C7—C8—C9—C100.2 (4)
N1ii—Ag1—P1—C7179.81 (10)C8—C9—C10—C110.9 (4)
O1—Ag1—P1—C763.08 (9)C9—C10—C11—C120.5 (4)
O1i—Ag1—P1—C745.86 (9)C10—C11—C12—C70.6 (3)
N1ii—Ag1—P1—C158.88 (10)C8—C7—C12—C111.3 (3)
O1—Ag1—P1—C1175.61 (9)P1—C7—C12—C11176.36 (17)
O1i—Ag1—P1—C175.45 (9)C7—P1—C13—C14167.37 (17)
O2—S1—O1—Ag1179.26 (10)C1—P1—C13—C1483.59 (18)
O3—S1—O1—Ag151.46 (13)Ag1—P1—C13—C1443.50 (19)
C19—S1—O1—Ag163.33 (13)C7—P1—C13—C1815.24 (19)
O2—S1—O1—Ag1i62.88 (11)C1—P1—C13—C1893.81 (18)
O3—S1—O1—Ag1i66.41 (10)Ag1—P1—C13—C18139.11 (15)
C19—S1—O1—Ag1i178.80 (8)C18—C13—C14—C152.2 (3)
P1—Ag1—O1—S15.52 (14)P1—C13—C14—C15175.26 (18)
N1ii—Ag1—O1—S1143.61 (12)C13—C14—C15—C161.4 (4)
O1i—Ag1—O1—S1121.79 (13)C14—C15—C16—C170.1 (4)
P1—Ag1—O1—Ag1i127.30 (4)C15—C16—C17—C180.8 (3)
N1ii—Ag1—O1—Ag1i94.60 (6)C16—C17—C18—C130.1 (3)
O1i—Ag1—O1—Ag1i0.0C14—C13—C18—C171.6 (3)
C13—P1—C1—C610.1 (2)P1—C13—C18—C17175.83 (16)
C7—P1—C1—C697.93 (19)O2—S1—C19—C24135.67 (17)
Ag1—P1—C1—C6136.39 (16)O3—S1—C19—C2413.22 (19)
C13—P1—C1—C2169.57 (18)O1—S1—C19—C24105.38 (18)
C7—P1—C1—C282.43 (19)O2—S1—C19—C2041.5 (2)
Ag1—P1—C1—C243.2 (2)O3—S1—C19—C20163.96 (17)
C6—C1—C2—C30.9 (4)O1—S1—C19—C2077.43 (18)
P1—C1—C2—C3179.43 (19)C24—C19—C20—C210.4 (3)
C1—C2—C3—C41.6 (4)S1—C19—C20—C21176.75 (16)
C2—C3—C4—C51.1 (4)C19—C20—C21—C220.1 (3)
C3—C4—C5—C60.1 (3)C20—C21—C22—C230.6 (3)
C2—C1—C6—C50.2 (3)C20—C21—C22—N1174.11 (19)
P1—C1—C6—C5179.41 (17)Ag1iii—N1—C22—C2380.1 (2)
C4—C5—C6—C10.8 (3)Ag1iii—N1—C22—C2194.6 (2)
C13—P1—C7—C891.2 (2)C21—C22—C23—C240.5 (3)
C1—P1—C7—C816.6 (2)N1—C22—C23—C24174.28 (19)
Ag1—P1—C7—C8143.97 (17)C22—C23—C24—C190.0 (3)
C13—P1—C7—C1286.45 (18)C20—C19—C24—C230.5 (3)
C1—P1—C7—C12165.81 (17)S1—C19—C24—C23176.71 (17)
Ag1—P1—C7—C1238.43 (19)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(C6H6NO3S)(C18H15P)]
Mr542.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.2593 (15), 9.4085 (5), 18.5765 (10)
β (°) 118.229 (1)
V3)4351.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.35 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.695, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
19921, 4995, 4393
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.02
No. of reflections4995
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and OLEX (Dolomanov et al., 2003), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ag1—P12.3614 (6)Ag1—O1i2.5031 (16)
Ag1—O12.4252 (15)Ag1—N1ii2.3749 (18)
P1—Ag1—O1131.56 (4)O1—Ag1—O1i80.21 (5)
P1—Ag1—O1i124.03 (4)O1—Ag1—N1ii78.12 (6)
P1—Ag1—N1ii132.96 (5)O1i—Ag1—N1ii92.43 (6)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBanu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252–o2253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrodersen, K. & Beck, R. (2004). Z. Anorg. Allg. Chem. 553, 35–49.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55 IUC9900031.  Google Scholar
First citationLéon, A. P. (1945). Rev. Inst. Salubridad Enfermedades Trop. (Mex.), 6, 123–130.  Google Scholar
First citationLéon, A. (1992). 50 Años De Investigación en México (Fifty Years of Research in Mexico), 782 pp. Centro de Documentación Institucional, História Natural das Doenças México, Mexico.  Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299–7311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLow, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209–o211.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOu, G.-C., Zhang, M., Yuan, X.-Y. & Dai, Y.-Q. (2008). Acta Cryst. E64, m1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, Y.-J., Meng, F.-J., Wang, X.-J., Zhu, H.-L. & Wang, D.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 253–254.  CAS Google Scholar
First citationRae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285–1291.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSchreuer, J. (1999). Z. Kristallogr. New Cryst. Struct. 214, 311–312.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331–5341.  Web of Science CSD CrossRef Google Scholar
First citationZheng, S. L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m855-m856
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds