metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­benzene­sulfonato)tri­aqua­bis­(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate

aDepartment of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 23 April 2010; accepted 17 June 2010; online 23 June 2010)

The title complex, [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2O, comprises a mononuclear cation, an NO3 anion and two uncoordinated water mol­ecules; the NdIII cation, one coordinated water mol­ecule, and the NO3 anion each lie on a twofold axis of symmetry. The NdIII ion exhibits an NdN4O5 coordination environment comprising two O atoms of two monodentate 4-amino­benzene­sulfonato ligands, four N atoms of the bidentate 1,10-phenanthroline ligands, and three water-O atoms. The coordination geometry is based on a tricapped triangular-prismatic arrangement. The components are consolidated into a three-dimensional network via O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions

Related literature

For background to the applications of rare earth complexes, see: Li et al. (2007[Li, Y. Q., Ju, Y. L., Zhang, Y. B., Wang, C. Y., Zhang, T. T. & Li, X. (2007). Chin. J. Inorg. Chem. 23, 969-974.]); Tang et al. (2006[Tang, Y., Tang, K. Z., Zhang, J., Qin, M. Y., Liu, M. Y. & Sun, Y. X. (2006). Acta Chim. Sin. 64, 444-449.]); Xie et al. (2009[Xie, Q. F., Huang, M. L. & Chen, Y. M. (2009). Chin. J. Inorg. Chem. 25, 249-255.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2O

  • Mr = 1037.13

  • Orthorhombic, P c c n

  • a = 17.4990 (18) Å

  • b = 14.2788 (15) Å

  • c = 16.7045 (17) Å

  • V = 4173.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 0.789

  • 34751 measured reflections

  • 3883 independent reflections

  • 3287 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.21

  • 3883 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1 2.4007 (18)
Nd1—O5 2.462 (2)
Nd1—O4 2.528 (3)
Nd1—N3 2.703 (2)
Nd1—N2 2.763 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H6W⋯O3 0.85 1.97 2.810 (3) 171
O8—H5W⋯N4 0.86 2.61 3.391 (3) 152
O8—H5W⋯O7 0.86 2.53 3.109 (4) 126
O8—H5W⋯O6 0.86 1.99 2.842 (3) 170
O8—H4W⋯O3 0.83 2.03 2.861 (3) 174
O9—H7W⋯N1i 0.86 2.24 2.982 (4) 145
O5—H3W⋯O8ii 0.85 1.96 2.793 (3) 168
O5—H2W⋯O9iii 0.85 1.83 2.670 (3) 171
O4—H1W⋯O2iii 0.83 1.95 2.773 (3) 171
N1—H1A⋯O8iv 0.89 2.29 3.127 (4) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rare earth complexes have been extensively studied owing to their unique structures and potential applications as biomedical, catalytic, and magnetic agents, as well as nonlinear optical materials (Tang et al., 2006; Li et al., 2007). Therefore, the rational design and synthesis of rare earth supramolecular complexes are highlighted in supramolecular and biochemical research.

The molecules comprising the asymmetric unit of the title compound, (I), are presented in Fig 1. The structure comprises a mononuclear [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]+ cation, one NO3- anion and two lattice water molecules. The Nd(III) cation, one coordinated water molecule (O4) and the NO3- anion are each located on a crystallographic 2-fold axis. The Nd(III) ion is within a distorted tricapped triangular prismatic coordination polyhedron completed by two O atoms from two 4-aminobenzenesulfonato ligands, three O atoms from three coordinated water, and four N atom from two 1,10-phenanthroline ligands; see Table 1 for bond distances. The average bond lengths of Nd—O and Nd—N are shorter than the averages of the comparable bond lengths in [Ln(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3.(H2O)2 for Ln = LaIII and CeIII (Xie et al., 2009), consistent with the lanthanide contraction.

The components of the structure are consolidated into a 3-D network via hydrogen bonding interactions, Table 2.

Related literature top

For background to the applications of rare earth complexes, see: Li et al. (2007); Tang et al. (2006); Xie et al. (2009).

Experimental top

An aqueous solution (5 ml) of Nd(NO3)3.6H2O (1.0 mmol) was added slowly to a solution of p-aminobenzenesulfonilic acid (1.0 mmol) in H2O (5 ml). After refluxing for 2 h, a solution of 1,10-phenanthroline (1.0 mmol) in ethanol (95%, 5 ml) was added slowly to the solution. Refluxing was continued for 2 h followed by filteration of the hot mixture. The purple single crystals suitable for X-ray analysis were obtained after three weeks by slow evaporation of the above filtrate held at room temperature. Yield 52%. IR (KBr): 3425(vs), 1666(s), 1624(s), 1600(s), 1572(m), 1515(s), 1506(s), 1419(vs), 1384(vs), 1342(w), 1316(m), 1304(m), 1231(s), 1122(vs), 1039(vs), 1012(s), 848(s), 825(m), 776(m), 729(s), 700(s), 632(m), 574(s) cm-1.

Refinement top

H atoms bonded to N and C were placed geometrically and treated as riding, (N–H = 0.89 Å and C—H = 0.93 Å), with Uiso(H) = 1.5Ueq(N) or 1.2Ueq(C). The water-bound H atoms were found from Fourier difference maps, fixed at these positions (0.83-0.86 Å), and were refined as riding with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for reasons of clarity. Symmetry operation a: 1-x, 1-y, -z.
Bis(4-aminobenzenesulfonato)triaquabis(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate top
Crystal data top
[Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2OF(000) = 2108
Mr = 1037.13Dx = 1.650 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2148 reflections
a = 17.4990 (18) Åθ = 2.5–23.3°
b = 14.2788 (15) ŵ = 1.42 mm1
c = 16.7045 (17) ÅT = 293 K
V = 4173.9 (7) Å3Block, pink
Z = 40.32 × 0.22 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3883 independent reflections
Radiation source: fine-focus sealed tube3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2121
Tmin = 0.656, Tmax = 0.789k = 1717
34751 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0264P)2 + 3.2531P]
where P = (Fo2 + 2Fc2)/3
3883 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2OV = 4173.9 (7) Å3
Mr = 1037.13Z = 4
Orthorhombic, PccnMo Kα radiation
a = 17.4990 (18) ŵ = 1.42 mm1
b = 14.2788 (15) ÅT = 293 K
c = 16.7045 (17) Å0.32 × 0.22 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3883 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3287 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.789Rint = 0.027
34751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.21Δρmax = 0.31 e Å3
3883 reflectionsΔρmin = 0.76 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.25000.25000.038262 (10)0.02429 (7)
S10.36306 (4)0.36807 (5)0.20699 (4)0.03383 (16)
O10.31177 (10)0.33811 (14)0.14217 (11)0.0411 (5)
O20.35809 (13)0.3088 (2)0.27640 (12)0.0611 (7)
O30.35040 (13)0.46714 (16)0.22412 (13)0.0529 (6)
O40.25000.25000.11307 (15)0.0374 (6)
H1W0.28620.23320.14220.056*
O50.24704 (12)0.08714 (15)0.01000 (13)0.0483 (5)
H2W0.24730.06580.05760.073*
H3W0.24170.04180.02260.073*
O60.25000.75000.1311 (3)0.0821 (12)
H4W0.31050.53990.12830.123*
H5W0.27340.61800.10170.123*
O70.2625 (2)0.6779 (2)0.2436 (2)0.0967 (10)
H6W0.28050.49110.31420.145*
H7W0.24020.55710.35680.145*
O80.29153 (17)0.56444 (16)0.08766 (14)0.0662 (7)
O90.24465 (15)0.49835 (19)0.34785 (14)0.0708 (8)
N10.67660 (15)0.3332 (2)0.0745 (2)0.0696 (9)
H1A0.67630.35060.02330.104*
H1B0.69110.27360.07800.104*
N20.36395 (12)0.14185 (16)0.10577 (13)0.0346 (5)
N30.39407 (13)0.26033 (15)0.01948 (13)0.0311 (5)
N40.25000.75000.2066 (3)0.0571 (11)
C10.45674 (14)0.35885 (18)0.16953 (14)0.0292 (6)
C20.50570 (16)0.2901 (2)0.19801 (16)0.0371 (6)
H20.48950.24950.23810.045*
C30.57842 (17)0.2820 (2)0.1670 (2)0.0450 (7)
H30.61130.23650.18710.054*
C40.60297 (16)0.3411 (2)0.10621 (18)0.0426 (7)
C50.55417 (17)0.4112 (2)0.07957 (17)0.0422 (7)
H50.57070.45280.04040.051*
C60.48166 (16)0.4196 (2)0.11059 (16)0.0370 (6)
H60.44930.46630.09180.044*
C70.35188 (18)0.0874 (2)0.16914 (19)0.0480 (8)
H70.30470.09080.19460.058*
C80.4070 (2)0.0249 (3)0.1995 (2)0.0576 (9)
H80.39590.01180.24410.069*
C90.4759 (2)0.0187 (2)0.1636 (2)0.0548 (9)
H90.51250.02300.18270.066*
C100.49175 (16)0.0758 (2)0.09720 (18)0.0423 (7)
C110.56503 (18)0.0738 (3)0.0574 (2)0.0541 (9)
H110.60230.03180.07430.065*
C120.57972 (17)0.1318 (3)0.0037 (2)0.0528 (9)
H120.62710.12930.02880.063*
C130.52349 (16)0.1980 (2)0.03103 (17)0.0397 (7)
C140.53933 (17)0.2646 (2)0.09115 (18)0.0467 (8)
H140.58690.26570.11590.056*
C150.48461 (17)0.3270 (2)0.11248 (17)0.0427 (7)
H150.49480.37270.15060.051*
C160.41244 (16)0.3217 (2)0.07639 (16)0.0361 (6)
H160.37510.36360.09320.043*
C170.44996 (14)0.19932 (19)0.00458 (16)0.0305 (6)
C180.43377 (15)0.13720 (18)0.07021 (16)0.0319 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02232 (11)0.02820 (11)0.02233 (11)0.00157 (8)0.0000.000
S10.0281 (3)0.0459 (4)0.0275 (3)0.0015 (3)0.0001 (3)0.0048 (3)
O10.0293 (10)0.0500 (12)0.0442 (11)0.0011 (9)0.0082 (8)0.0131 (10)
O20.0438 (13)0.099 (2)0.0406 (12)0.0019 (13)0.0119 (10)0.0245 (12)
O30.0455 (13)0.0524 (13)0.0607 (14)0.0027 (10)0.0018 (10)0.0276 (11)
O40.0294 (13)0.0596 (18)0.0231 (13)0.0086 (12)0.0000.000
O50.0782 (16)0.0345 (11)0.0323 (10)0.0046 (10)0.0075 (10)0.0015 (9)
O60.112 (4)0.070 (3)0.064 (3)0.030 (2)0.0000.000
O70.136 (3)0.0635 (19)0.091 (2)0.0118 (18)0.003 (2)0.0209 (19)
O80.095 (2)0.0502 (14)0.0531 (14)0.0019 (14)0.0048 (14)0.0095 (12)
O90.099 (2)0.0661 (17)0.0477 (14)0.0286 (14)0.0217 (13)0.0124 (13)
N10.0397 (16)0.081 (2)0.088 (2)0.0044 (15)0.0208 (16)0.0120 (19)
N20.0288 (12)0.0390 (13)0.0359 (12)0.0026 (10)0.0036 (10)0.0035 (10)
N30.0296 (12)0.0345 (13)0.0291 (11)0.0014 (9)0.0006 (9)0.0023 (10)
N40.055 (3)0.052 (3)0.064 (3)0.0073 (19)0.0000.000
C10.0276 (13)0.0366 (15)0.0233 (12)0.0038 (11)0.0015 (10)0.0030 (11)
C20.0365 (16)0.0398 (15)0.0352 (15)0.0041 (13)0.0041 (12)0.0061 (13)
C30.0324 (16)0.0465 (17)0.0559 (19)0.0029 (13)0.0060 (14)0.0006 (15)
C40.0315 (15)0.0512 (18)0.0449 (17)0.0100 (13)0.0041 (13)0.0140 (15)
C50.0458 (17)0.0458 (17)0.0349 (15)0.0116 (14)0.0068 (13)0.0031 (14)
C60.0400 (16)0.0374 (15)0.0337 (14)0.0013 (12)0.0018 (12)0.0031 (12)
C70.0408 (17)0.056 (2)0.0474 (18)0.0022 (15)0.0044 (14)0.0198 (16)
C80.057 (2)0.060 (2)0.056 (2)0.0021 (17)0.0161 (17)0.0238 (17)
C90.052 (2)0.0476 (19)0.065 (2)0.0147 (15)0.0201 (17)0.0099 (17)
C100.0363 (16)0.0383 (16)0.0523 (18)0.0098 (13)0.0122 (13)0.0072 (14)
C110.0380 (18)0.056 (2)0.068 (2)0.0207 (15)0.0120 (16)0.0133 (18)
C120.0272 (15)0.068 (2)0.064 (2)0.0101 (15)0.0037 (15)0.0190 (19)
C130.0302 (15)0.0477 (18)0.0412 (16)0.0022 (13)0.0007 (12)0.0165 (14)
C140.0310 (15)0.069 (2)0.0399 (16)0.0109 (15)0.0081 (13)0.0170 (16)
C150.0450 (17)0.0521 (18)0.0312 (14)0.0155 (14)0.0048 (13)0.0052 (14)
C160.0361 (15)0.0407 (16)0.0315 (14)0.0054 (12)0.0002 (12)0.0016 (13)
C170.0242 (13)0.0335 (15)0.0337 (14)0.0001 (11)0.0038 (11)0.0110 (12)
C180.0283 (14)0.0320 (14)0.0354 (14)0.0015 (11)0.0072 (11)0.0072 (12)
Geometric parameters (Å, º) top
Nd1—O12.4007 (18)C1—C21.387 (4)
Nd1—O1i2.4007 (18)C1—C61.383 (4)
Nd1—O5i2.462 (2)C2—C31.379 (4)
Nd1—O52.462 (2)C2—H20.9300
Nd1—O42.528 (3)C3—C41.389 (4)
Nd1—N3i2.703 (2)C3—H30.9300
Nd1—N32.703 (2)C4—C51.389 (4)
Nd1—N22.763 (2)C5—C61.376 (4)
Nd1—N2i2.763 (2)C5—H50.9300
S1—O21.438 (2)C6—H60.9300
S1—O31.460 (2)C7—C81.408 (4)
S1—O11.4701 (18)C7—H70.9300
S1—C11.760 (3)C8—C91.350 (5)
O4—H1W0.8343C8—H80.9300
O5—H2W0.8517C9—C101.404 (4)
O5—H3W0.8502C9—H90.9300
O6—N41.262 (6)C10—C181.415 (4)
O7—N41.220 (4)C10—C111.445 (4)
O8—H4W0.8327C11—C121.339 (5)
O8—H5W0.8602C11—H110.9300
O9—H6W0.8478C12—C131.439 (4)
O9—H7W0.8562C12—H120.9300
N1—C41.398 (4)C13—C141.411 (4)
N1—H1A0.8900C13—C171.418 (4)
N1—H1B0.8900C14—C151.355 (4)
N2—C71.330 (4)C14—H140.9300
N2—C181.360 (3)C15—C161.401 (4)
N3—C161.332 (3)C15—H150.9300
N3—C171.370 (3)C16—H160.9300
N4—O7ii1.220 (4)C17—C181.438 (4)
O1—Nd1—O1i87.40 (10)O7ii—N4—O7119.2 (5)
O1—Nd1—O5i74.47 (7)O7ii—N4—O6120.4 (3)
O1i—Nd1—O5i137.84 (7)O7—N4—O6120.4 (3)
O1—Nd1—O5137.84 (7)C2—C1—C6119.6 (2)
O1i—Nd1—O574.47 (7)C2—C1—S1120.4 (2)
O5i—Nd1—O5141.77 (10)C6—C1—S1120.0 (2)
O1—Nd1—O4136.30 (5)C1—C2—C3120.1 (3)
O1i—Nd1—O4136.30 (5)C1—C2—H2120.0
O5i—Nd1—O470.89 (5)C3—C2—H2120.0
O5—Nd1—O470.89 (5)C2—C3—C4120.6 (3)
O1—Nd1—N3i134.94 (6)C2—C3—H3119.7
O1i—Nd1—N3i79.02 (6)C4—C3—H3119.7
O5i—Nd1—N3i87.38 (7)C5—C4—C3118.8 (3)
O5—Nd1—N3i79.16 (7)C5—C4—N1120.2 (3)
O4—Nd1—N3i69.10 (5)C3—C4—N1120.9 (3)
O1—Nd1—N379.02 (6)C6—C5—C4120.6 (3)
O1i—Nd1—N3134.94 (6)C6—C5—H5119.7
O5i—Nd1—N379.16 (7)C4—C5—H5119.7
O5—Nd1—N387.38 (7)C5—C6—C1120.3 (3)
O4—Nd1—N369.10 (5)C5—C6—H6119.9
N3i—Nd1—N3138.20 (9)C1—C6—H6119.9
O1—Nd1—N270.91 (7)N2—C7—C8123.3 (3)
O1i—Nd1—N274.75 (6)N2—C7—H7118.4
O5i—Nd1—N2130.28 (7)C8—C7—H7118.4
O5—Nd1—N267.72 (7)C9—C8—C7119.5 (3)
O4—Nd1—N2114.09 (5)C9—C8—H8120.2
N3i—Nd1—N2142.02 (6)C7—C8—H8120.2
N3—Nd1—N260.20 (7)C8—C9—C10119.3 (3)
O1—Nd1—N2i74.75 (6)C8—C9—H9120.3
O1i—Nd1—N2i70.91 (7)C10—C9—H9120.3
O5i—Nd1—N2i67.72 (7)C9—C10—C18118.0 (3)
O5—Nd1—N2i130.28 (7)C9—C10—C11121.9 (3)
O4—Nd1—N2i114.09 (5)C18—C10—C11120.1 (3)
N3i—Nd1—N2i60.20 (7)C12—C11—C10120.6 (3)
N3—Nd1—N2i142.02 (6)C12—C11—H11119.7
N2—Nd1—N2i131.82 (9)C10—C11—H11119.7
O2—S1—O3113.77 (15)C11—C12—C13121.1 (3)
O2—S1—O1112.68 (14)C11—C12—H12119.4
O3—S1—O1109.49 (12)C13—C12—H12119.4
O2—S1—C1107.40 (13)C14—C13—C17117.9 (3)
O3—S1—C1106.48 (13)C14—C13—C12122.3 (3)
O1—S1—C1106.57 (11)C17—C13—C12119.8 (3)
S1—O1—Nd1163.72 (13)C15—C14—C13119.4 (3)
Nd1—O4—H1W125.7C15—C14—H14120.3
Nd1—O5—H2W130.1C13—C14—H14120.3
Nd1—O5—H3W120.8C14—C15—C16119.2 (3)
H2W—O5—H3W109.0C14—C15—H15120.4
H4W—O8—H5W107.4C16—C15—H15120.4
H6W—O9—H7W107.6N3—C16—C15124.0 (3)
C4—N1—H1A109.6N3—C16—H16118.0
C4—N1—H1B108.3C15—C16—H16118.0
H1A—N1—H1B109.5N3—C17—C13122.2 (3)
C7—N2—C18117.5 (2)N3—C17—C18118.4 (2)
C7—N2—Nd1122.47 (18)C13—C17—C18119.4 (2)
C18—N2—Nd1119.83 (17)N2—C18—C10122.4 (3)
C16—N3—C17117.1 (2)N2—C18—C17118.7 (2)
C16—N3—Nd1121.03 (18)C10—C18—C17118.9 (2)
C17—N3—Nd1121.76 (17)
O2—S1—O1—Nd161.6 (5)O1—S1—C1—C669.4 (2)
O3—S1—O1—Nd1170.7 (4)C6—C1—C2—C30.7 (4)
C1—S1—O1—Nd155.9 (5)S1—C1—C2—C3178.5 (2)
O1i—Nd1—O1—S177.3 (4)C1—C2—C3—C41.2 (4)
O5i—Nd1—O1—S1141.2 (5)C2—C3—C4—C52.8 (4)
O5—Nd1—O1—S114.0 (5)C2—C3—C4—N1179.9 (3)
O4—Nd1—O1—S1102.7 (4)C3—C4—C5—C62.6 (4)
N3i—Nd1—O1—S1148.9 (4)N1—C4—C5—C6179.9 (3)
N3—Nd1—O1—S159.5 (4)C4—C5—C6—C10.8 (4)
N2—Nd1—O1—S12.5 (4)C2—C1—C6—C50.9 (4)
N2i—Nd1—O1—S1148.2 (5)S1—C1—C6—C5178.3 (2)
O1—Nd1—N2—C788.4 (2)C18—N2—C7—C81.2 (5)
O1i—Nd1—N2—C74.2 (2)Nd1—N2—C7—C8173.5 (3)
O5i—Nd1—N2—C7136.7 (2)N2—C7—C8—C90.0 (5)
O5—Nd1—N2—C783.3 (2)C7—C8—C9—C100.9 (5)
O4—Nd1—N2—C7138.5 (2)C8—C9—C10—C180.6 (5)
N3i—Nd1—N2—C752.1 (3)C8—C9—C10—C11178.6 (3)
N3—Nd1—N2—C7176.5 (2)C9—C10—C11—C12177.1 (3)
N2i—Nd1—N2—C741.5 (2)C18—C10—C11—C122.1 (5)
O1—Nd1—N2—C1896.98 (19)C10—C11—C12—C130.4 (5)
O1i—Nd1—N2—C18170.5 (2)C11—C12—C13—C14175.2 (3)
O5i—Nd1—N2—C1848.6 (2)C11—C12—C13—C172.9 (5)
O5—Nd1—N2—C1891.31 (19)C17—C13—C14—C150.2 (4)
O4—Nd1—N2—C1836.1 (2)C12—C13—C14—C15177.9 (3)
N3i—Nd1—N2—C18122.54 (18)C13—C14—C15—C162.3 (4)
N3—Nd1—N2—C188.93 (17)C17—N3—C16—C150.1 (4)
N2i—Nd1—N2—C18143.9 (2)Nd1—N3—C16—C15175.9 (2)
O1—Nd1—N3—C16101.0 (2)C14—C15—C16—N32.3 (4)
O1i—Nd1—N3—C16176.01 (18)C16—N3—C17—C132.5 (4)
O5i—Nd1—N3—C1624.94 (19)Nd1—N3—C17—C13173.55 (18)
O5—Nd1—N3—C16119.1 (2)C16—N3—C17—C18175.2 (2)
O4—Nd1—N3—C1648.57 (18)Nd1—N3—C17—C188.8 (3)
N3i—Nd1—N3—C1648.57 (18)C14—C13—C17—N32.3 (4)
N2—Nd1—N3—C16175.2 (2)C12—C13—C17—N3179.5 (3)
N2i—Nd1—N3—C1654.2 (2)C14—C13—C17—C18175.3 (2)
O1—Nd1—N3—C1783.12 (19)C12—C13—C17—C182.8 (4)
O1i—Nd1—N3—C178.1 (2)C7—N2—C18—C101.5 (4)
O5i—Nd1—N3—C17159.2 (2)Nd1—N2—C18—C10173.37 (19)
O5—Nd1—N3—C1756.76 (19)C7—N2—C18—C17176.3 (3)
O4—Nd1—N3—C17127.28 (19)Nd1—N2—C18—C178.8 (3)
N3i—Nd1—N3—C17127.28 (19)C9—C10—C18—N20.6 (4)
N2—Nd1—N3—C178.96 (17)C11—C10—C18—N2179.8 (3)
N2i—Nd1—N3—C17129.96 (18)C9—C10—C18—C17177.2 (3)
O2—S1—C1—C211.2 (3)C11—C10—C18—C172.0 (4)
O3—S1—C1—C2133.4 (2)N3—C17—C18—N20.3 (4)
O1—S1—C1—C2109.8 (2)C13—C17—C18—N2177.5 (2)
O2—S1—C1—C6169.6 (2)N3—C17—C18—C10178.1 (2)
O3—S1—C1—C647.4 (2)C13—C17—C18—C100.4 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H6W···S10.852.903.646 (2)149
O9—H6W···O30.851.972.810 (3)171
O8—H5W···N40.862.613.391 (3)152
O8—H5W···O70.862.533.109 (4)126
O8—H5W···O60.861.992.842 (3)170
O8—H4W···S10.832.933.661 (3)148
O8—H4W···O30.832.032.861 (3)174
O9—H7W···N1iii0.862.242.982 (4)145
O5—H3W···O8i0.851.962.793 (3)168
O5—H2W···O9iv0.851.832.670 (3)171
O4—H1W···O2iv0.831.952.773 (3)171
N1—H1A···O8v0.892.293.127 (4)158
Symmetry codes: (i) x+1/2, y+1/2, z; (iii) x1/2, y+1, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2O
Mr1037.13
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)17.4990 (18), 14.2788 (15), 16.7045 (17)
V3)4173.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.32 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.656, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
34751, 3883, 3287
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.21
No. of reflections3883
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.76

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—O12.4007 (18)Nd1—N32.703 (2)
Nd1—O52.462 (2)Nd1—N22.763 (2)
Nd1—O42.528 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H6W···S10.852.903.646 (2)149
O9—H6W···O30.851.972.810 (3)171
O8—H5W···N40.862.613.391 (3)152
O8—H5W···O70.862.533.109 (4)126
O8—H5W···O60.861.992.842 (3)170
O8—H4W···S10.832.933.661 (3)148
O8—H4W···O30.832.032.861 (3)174
O9—H7W···N1i0.862.242.982 (4)145
O5—H3W···O8ii0.851.962.793 (3)168
O5—H2W···O9iii0.851.832.670 (3)171
O4—H1W···O2iii0.831.952.773 (3)171
N1—H1A···O8iv0.892.293.127 (4)158
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Technology Gallery Foundation of Fujian Province of China (grant No. 2008 F5053).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y. Q., Ju, Y. L., Zhang, Y. B., Wang, C. Y., Zhang, T. T. & Li, X. (2007). Chin. J. Inorg. Chem. 23, 969–974.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y., Tang, K. Z., Zhang, J., Qin, M. Y., Liu, M. Y. & Sun, Y. X. (2006). Acta Chim. Sin. 64, 444–449.  CAS Google Scholar
First citationXie, Q. F., Huang, M. L. & Chen, Y. M. (2009). Chin. J. Inorg. Chem. 25, 249–255.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds