metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m737-m738

Di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) fumarate tetra­hydrate

aFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, bSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2010; accepted 27 May 2010; online 5 June 2010)

The asymmetric unit of the title complex salt, [Ni(C10H24N4)(H2O)2](C4H2O4)·4H2O, comprises half of a nickel(II) complex dication, half of a fumarate dianion and two water mol­ecules. Both the NiII cation and fumarate anion lie on a crystallographic inversion center. The NiII ion in the cyclam complex is six-coordinated within a distorted N4O2 octa­hedral geometry, with the four cyclam N atoms in the equatorial plane and the two water mol­ecules in apical positions. The six-membered metalla ring adopts a chair conformation, whereas the five-membered ring exists in a twisted form. In the crystal packing, inter­molecular O—H⋯O hydrogen bonds between the water molecules and the carboxyl groups of the fumarate anions lead to the formation of layers with R42(8) ring motifs. NiII complex cations are sandwiched between two such layers, being held in place by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, consolidating a three-dimensional network.

Related literature

For the background to and the biological activity of cyclam, see: Kim et al. (2006[Kim, J. C., Lough, A. J., Park, H. & Kang, Y. C. (2006). Inorg. Chem. Commun. 9, 514-517.]); Hunter et al. (2006[Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, A. M., Moggach, S., White, F., Walkinshaw, M. D., Parsons, S. & Sadler, P. J. (2006). Chem. Eur. J. 13, 30-40.]); Gerlach et al. (2003[Gerlach, L. O., Jakbsen, J. S., Jensen, K. P., Rosenkilde, M. R., Skerlj, R. T., Ryde, U., Bridger, G. J. & Schwartz, T. W. (2003). Biochemistry, 42, 710-717.]); Paisey & Sadler (2004[Paisey, S. J. & Sadler, P. J. (2004). Chem. Commun. pp. 306-307.]). For a related structure, see: Panneerselvam et al. (1999[Panneerselvam, K., Lu, T.-H., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1999). Acta Cryst. C55, 543-545.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H24N4)(H2O)2](C4H2O4)·4H2O

  • Mr = 481.19

  • Triclinic, [P \overline 1]

  • a = 6.9913 (5) Å

  • b = 8.8313 (7) Å

  • c = 9.3147 (8) Å

  • α = 73.165 (2)°

  • β = 79.207 (2)°

  • γ = 85.227 (2)°

  • V = 540.47 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.47 × 0.44 × 0.24 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 0.805

  • 12800 measured reflections

  • 4295 independent reflections

  • 4219 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.133

  • S = 1.30

  • 4295 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3W 0.85 2.17 2.8047 (14) 131
O2W—H1W2⋯O2i 0.85 1.98 2.7026 (14) 142
O2W—H2W2⋯O2ii 0.85 1.91 2.7000 (15) 154
O3W—H1W3⋯O1iii 0.85 1.96 2.7633 (14) 157
O3W—H2W3⋯O1 0.85 2.06 2.7968 (14) 144
N1—H1N1⋯O2Wiv 0.88 (2) 2.19 (2) 3.0153 (15) 154 (2)
N2—H1N2⋯O3Wiv 0.90 (2) 2.25 (2) 3.0769 (15) 153 (2)
C3—H3B⋯O1v 0.97 2.60 3.3850 (18) 138
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The antiviral properties of cyclam (1,4,8,11-tetraazacyclotetradecane) have stimulated interest in metal complexes of this ligand (Kim et al., 2006). Besides its antiviral property, [Ni(cyclam)(OAc)2] also has protein recognition potential (Hunter et al., 2006). Amongst the metal ions investigated, coordination of NiII to cyclam rings bridged by 1,4-dimethylene(phenylene) was reported to result in greatest enhancement of its antiviral property (Gerlach et al., 2003). However, the rate of complexation of NiII to cyclam is the poorest compared to CuII, ZnII and CoII (Paisey et al., 2004). In this paper, we report the crystal structure of the title compound, obtained by the reaction of a nickel(II) salt, cyclam and sodium fumarate.

The title compound, Fig. 1, consists of one nickel(II) complex cation, one fumarate anion and four water molecules. Both NiII ion and fumarate anion lie on a crystallographic inversion center, generated by the symmetry codes -x+2, -y+1, -z and -x+1, -y, -z+1, respectively. The NiII complex of cyclam has six-coordination in a distorted octahedral geometry, with the four ligand N atoms (N1/N2/N1A/N2A) almost coplanar with the NiII ion and the two water molecules (O1W & O1WA) in apical positions. The six-membered ring (Ni1/N1/C1–C3/N2) exists in a chair conformation with the puckering parameters (Cremer & Pople, 1975) Q = 0.5900 (14) Å; Θ = 9.05 (13)° and ϕ = 192.1 (9)°. In the five-membered ring, Ni1/N1/C5/C4A/N2A is twisted about the C5–C4A bond with the puckering parameters (Cremer & Pople, 1975) Q = 0.4382 (14) Å and ϕ = 271.34 (14)°. This structure is comparable to a closely related structure (Panneerselvam et al., 1999).

In the crystal packing (Fig. 2), intermolecular Owater—H···Ocarboxylate, hydrogen bonds (Table 1) link with the carboxyl groups of the fumarate anions into a two-dimensional layers with R24(8) ring motifs (Bernstein et al., 1995). The NiII complex cations are linked to these layers by Oaquo—H···Owater, Namine—H···Owater, C3—H3B···Ocarboxylate hydrogen bonds (Table 1) to form a three-dimensional network.

Related literature top

For the background to and the biological activity of cyclam, see: Kim et al. (2006); Hunter et al. (2006); Gerlach et al. (2003); Paisey et al. (2004). For a related structure, see: Panneerselvam et al. (1999). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Nickel chloride hexahydrate (0.24 g, 1 mmol), cyclam (0.22 g, 1 mmol) and sodium fumarate (0.16 g, 1 mmol) were dissolved in water and heated overnight in a water bath at 313 K. Purple crystals were obtained from the yellow solution.

Refinement top

N-bound H atoms (H1N1 & H2N1) were located from the difference map and refined freely. The O-bound H atoms were also located in a difference map but were then fixed in their as found positions with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 or 0.97 Å; N–H = 0.85 (2) to 0.86 (2) Å; O–H = 0.8482 to 0.8537 Å]. The maximum and minimum residual electron density peaks of 1.300 and -1.178 eÅ-3, respectively, were located 0.36 Å and 0.94 Å from the N1 and Ni1 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Symmetry-related atoms of the NiII complex ion and fumarate anion are generated by the symmetry codes -x+2, -y+1, -z and -x+1, -y, -z+1, respectively.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Diaqua(1,4,8,11-tetraazacyclotetradecane)nickel(II) fumarate tetrahydrate top
Crystal data top
[Ni(C10H24N4)(H2O)2](C4H2O4)·4H2OZ = 1
Mr = 481.19F(000) = 258
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9913 (5) ÅCell parameters from 9982 reflections
b = 8.8313 (7) Åθ = 3.8–35.1°
c = 9.3147 (8) ŵ = 0.95 mm1
α = 73.165 (2)°T = 100 K
β = 79.207 (2)°Block, purple
γ = 85.227 (2)°0.47 × 0.44 × 0.24 mm
V = 540.47 (7) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4295 independent reflections
Radiation source: fine-focus sealed tube4219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 34.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.665, Tmax = 0.805k = 1313
12800 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
4295 reflectionsΔρmax = 1.27 e Å3
142 parametersΔρmin = 1.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.75 (4)
Crystal data top
[Ni(C10H24N4)(H2O)2](C4H2O4)·4H2Oγ = 85.227 (2)°
Mr = 481.19V = 540.47 (7) Å3
Triclinic, P1Z = 1
a = 6.9913 (5) ÅMo Kα radiation
b = 8.8313 (7) ŵ = 0.95 mm1
c = 9.3147 (8) ÅT = 100 K
α = 73.165 (2)°0.47 × 0.44 × 0.24 mm
β = 79.207 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4295 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4219 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.805Rint = 0.017
12800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 1.27 e Å3
4295 reflectionsΔρmin = 1.18 e Å3
142 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.00889 (11)
O1W0.70136 (13)0.43457 (11)0.07879 (11)0.01471 (17)
H1W10.58190.42840.11990.022*
H2W10.76310.35780.13130.022*
N10.90487 (15)0.73294 (12)0.04325 (12)0.01220 (18)
N20.97429 (15)0.48188 (12)0.21216 (12)0.01229 (18)
C10.97192 (19)0.83674 (14)0.19756 (15)0.0160 (2)
H1A1.11170.84760.21250.019*
H1B0.91080.94110.20680.019*
C20.9231 (2)0.77130 (15)0.32091 (15)0.0188 (2)
H2A0.78530.74970.29800.023*
H2B0.94610.85280.41730.023*
C31.0368 (2)0.62134 (16)0.34023 (14)0.0168 (2)
H3A1.01780.60320.43440.020*
H3B1.17460.63570.34740.020*
C41.08394 (18)0.33580 (15)0.22827 (14)0.0154 (2)
H4A1.22200.35630.25780.018*
H4B1.04240.30110.30700.018*
C50.95195 (18)0.79227 (14)0.07821 (15)0.0144 (2)
H5A0.87130.88550.08550.017*
H5B1.08730.82170.05450.017*
O10.52695 (16)0.26163 (11)0.55707 (11)0.01632 (18)
O20.52311 (19)0.08177 (12)0.78098 (11)0.0224 (2)
C110.51455 (17)0.12258 (13)0.64080 (13)0.0124 (2)
C120.48943 (17)0.00891 (13)0.57443 (12)0.0121 (2)
H12A0.45740.10800.64080.014*
O2W0.52940 (14)0.20503 (11)0.01387 (11)0.01441 (17)
H1W20.58310.16890.05970.022*
H2W20.52510.12970.09540.022*
O3W0.42354 (14)0.50357 (11)0.31238 (11)0.01463 (18)
H1W30.41700.58980.33620.022*
H2W30.39930.42910.39480.022*
H1N10.779 (3)0.719 (3)0.034 (3)0.018 (5)*
H1N20.849 (3)0.463 (3)0.210 (3)0.015 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00948 (13)0.00806 (13)0.00991 (13)0.00033 (7)0.00201 (7)0.00347 (8)
O1W0.0114 (4)0.0161 (4)0.0187 (4)0.0023 (3)0.0003 (3)0.0089 (3)
N10.0115 (4)0.0103 (4)0.0151 (4)0.0006 (3)0.0026 (3)0.0038 (3)
N20.0125 (4)0.0134 (4)0.0120 (4)0.0008 (3)0.0025 (3)0.0047 (3)
C10.0183 (5)0.0108 (4)0.0175 (5)0.0020 (4)0.0043 (4)0.0006 (4)
C20.0237 (6)0.0158 (5)0.0163 (5)0.0013 (4)0.0087 (4)0.0003 (4)
C30.0212 (5)0.0180 (5)0.0111 (4)0.0034 (4)0.0030 (4)0.0029 (4)
C40.0170 (5)0.0161 (5)0.0153 (5)0.0003 (4)0.0011 (4)0.0089 (4)
C50.0143 (5)0.0117 (4)0.0193 (5)0.0008 (3)0.0023 (4)0.0080 (4)
O10.0251 (5)0.0105 (4)0.0131 (4)0.0020 (3)0.0028 (3)0.0029 (3)
O20.0434 (6)0.0145 (4)0.0110 (4)0.0018 (4)0.0080 (4)0.0041 (3)
C110.0158 (5)0.0113 (4)0.0110 (4)0.0002 (3)0.0017 (3)0.0050 (3)
C120.0153 (5)0.0107 (4)0.0105 (4)0.0004 (3)0.0019 (3)0.0037 (3)
O2W0.0174 (4)0.0131 (4)0.0146 (4)0.0020 (3)0.0032 (3)0.0061 (3)
O3W0.0175 (4)0.0144 (4)0.0134 (4)0.0017 (3)0.0034 (3)0.0052 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.0564 (10)C2—H2B0.9700
Ni1—N12.0565 (10)C3—H3A0.9700
Ni1—N22.0699 (10)C3—H3B0.9700
Ni1—N2i2.0699 (10)C4—C5i1.5153 (18)
Ni1—O1W2.1478 (9)C4—H4A0.9700
Ni1—O1Wi2.1478 (9)C4—H4B0.9700
O1W—H1W10.8499C5—C4i1.5153 (18)
O1W—H2W10.8506C5—H5A0.9700
N1—C51.4747 (16)C5—H5B0.9700
N1—C11.4772 (17)O1—C111.2496 (14)
N1—H1N10.88 (2)O2—C111.2615 (14)
N2—C31.4745 (16)C11—C121.5007 (16)
N2—C41.4761 (16)C12—C12ii1.330 (2)
N2—H1N20.90 (2)C12—H12A0.9300
C1—C21.5279 (19)O2W—H1W20.8501
C1—H1A0.9700O2W—H2W20.8496
C1—H1B0.9700O3W—H1W30.8482
C2—C31.5253 (19)O3W—H2W30.8537
C2—H2A0.9700
N1i—Ni1—N1180.0C2—C1—H1B109.2
N1i—Ni1—N285.49 (4)H1A—C1—H1B107.9
N1—Ni1—N294.51 (4)C3—C2—C1115.74 (11)
N1i—Ni1—N2i94.51 (4)C3—C2—H2A108.3
N1—Ni1—N2i85.49 (4)C1—C2—H2A108.3
N2—Ni1—N2i179.999 (1)C3—C2—H2B108.3
N1i—Ni1—O1W91.94 (4)C1—C2—H2B108.3
N1—Ni1—O1W88.06 (4)H2A—C2—H2B107.4
N2—Ni1—O1W88.73 (4)N2—C3—C2111.79 (10)
N2i—Ni1—O1W91.27 (4)N2—C3—H3A109.3
N1i—Ni1—O1Wi88.06 (4)C2—C3—H3A109.3
N1—Ni1—O1Wi91.94 (4)N2—C3—H3B109.3
N2—Ni1—O1Wi91.27 (4)C2—C3—H3B109.3
N2i—Ni1—O1Wi88.73 (4)H3A—C3—H3B107.9
O1W—Ni1—O1Wi180.0N2—C4—C5i109.50 (10)
Ni1—O1W—H1W1165.2N2—C4—H4A109.8
Ni1—O1W—H2W177.0C5i—C4—H4A109.8
H1W1—O1W—H2W1107.7N2—C4—H4B109.8
C5—N1—C1113.05 (9)C5i—C4—H4B109.8
C5—N1—Ni1106.83 (7)H4A—C4—H4B108.2
C1—N1—Ni1116.66 (8)N1—C5—C4i109.30 (9)
C5—N1—H1N1112.6 (16)N1—C5—H5A109.8
C1—N1—H1N1108.2 (16)C4i—C5—H5A109.8
Ni1—N1—H1N198.8 (16)N1—C5—H5B109.8
C3—N2—C4112.55 (10)C4i—C5—H5B109.8
C3—N2—Ni1114.93 (8)H5A—C5—H5B108.3
C4—N2—Ni1105.98 (7)O1—C11—O2124.55 (11)
C3—N2—H1N2109.8 (15)O1—C11—C12119.64 (10)
C4—N2—H1N2105.3 (14)O2—C11—C12115.81 (10)
Ni1—N2—H1N2107.8 (15)C12ii—C12—C11123.39 (13)
N1—C1—C2111.84 (10)C12ii—C12—H12A118.3
N1—C1—H1A109.2C11—C12—H12A118.3
C2—C1—H1A109.2H1W2—O2W—H2W2107.7
N1—C1—H1B109.2H1W3—O3W—H2W3107.5
N2—Ni1—N1—C5166.65 (8)O1W—Ni1—N2—C4106.83 (7)
N2i—Ni1—N1—C513.35 (8)O1Wi—Ni1—N2—C473.17 (7)
O1W—Ni1—N1—C5104.78 (8)C5—N1—C1—C2179.36 (10)
O1Wi—Ni1—N1—C575.22 (8)Ni1—N1—C1—C254.91 (12)
N2—Ni1—N1—C139.09 (9)N1—C1—C2—C369.36 (15)
N2i—Ni1—N1—C1140.91 (9)C4—N2—C3—C2179.50 (10)
O1W—Ni1—N1—C1127.66 (8)Ni1—N2—C3—C258.06 (12)
O1Wi—Ni1—N1—C152.34 (8)C1—C2—C3—N271.78 (14)
N1i—Ni1—N2—C3139.74 (9)C3—N2—C4—C5i166.48 (10)
N1—Ni1—N2—C340.26 (9)Ni1—N2—C4—C5i40.06 (11)
O1W—Ni1—N2—C3128.21 (9)C1—N1—C5—C4i168.52 (10)
O1Wi—Ni1—N2—C351.79 (9)Ni1—N1—C5—C4i38.86 (11)
N1i—Ni1—N2—C414.78 (7)O1—C11—C12—C12ii11.2 (2)
N1—Ni1—N2—C4165.22 (7)O2—C11—C12—C12ii168.24 (16)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3W0.852.172.8047 (14)131
O2W—H1W2···O2iii0.851.982.7026 (14)142
O2W—H2W2···O2ii0.851.912.7000 (15)154
O3W—H1W3···O1iv0.851.962.7633 (14)157
O3W—H2W3···O10.852.062.7968 (14)144
N1—H1N1···O2Wv0.88 (2)2.19 (2)3.0153 (15)154 (2)
N2—H1N2···O3Wv0.90 (2)2.25 (2)3.0769 (15)153 (2)
C3—H3B···O1i0.972.603.3850 (18)138
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H24N4)(H2O)2](C4H2O4)·4H2O
Mr481.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9913 (5), 8.8313 (7), 9.3147 (8)
α, β, γ (°)73.165 (2), 79.207 (2), 85.227 (2)
V3)540.47 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.47 × 0.44 × 0.24
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.665, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
12800, 4295, 4219
Rint0.017
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.133, 1.30
No. of reflections4295
No. of parameters142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 1.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3W0.85002.17002.8047 (14)131.00
O2W—H1W2···O2i0.85001.98002.7026 (14)142.00
O2W—H2W2···O2ii0.85001.91002.7000 (15)154.00
O3W—H1W3···O1iii0.85001.96002.7633 (14)157.00
O3W—H2W3···O10.85002.06002.7968 (14)144.00
N1—H1N1···O2Wiv0.88 (2)2.19 (2)3.0153 (15)154 (2)
N2—H1N2···O3Wiv0.90 (2)2.25 (2)3.0769 (15)153 (2)
C3—H3B···O1v0.97002.60003.3850 (18)138.00
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SLL, CHN and SGT thank the Malaysian Government and the Ministry of Science, Technology and Innovation (MOSTI) (eSc 02–02-11-SF0033). CHN and SLL also thank the UTAR Research Fund. HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL also thanks the Malaysian Government and USM for the award of Research Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGerlach, L. O., Jakbsen, J. S., Jensen, K. P., Rosenkilde, M. R., Skerlj, R. T., Ryde, U., Bridger, G. J. & Schwartz, T. W. (2003). Biochemistry, 42, 710–717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHunter, T. M., McNae, I. W., Simpson, D. P., Smith, A. M., Moggach, S., White, F., Walkinshaw, M. D., Parsons, S. & Sadler, P. J. (2006). Chem. Eur. J. 13, 30–40.  Google Scholar
First citationKim, J. C., Lough, A. J., Park, H. & Kang, Y. C. (2006). Inorg. Chem. Commun. 9, 514–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaisey, S. J. & Sadler, P. J. (2004). Chem. Commun. pp. 306–307.  Web of Science CrossRef Google Scholar
First citationPanneerselvam, K., Lu, T.-H., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1999). Acta Cryst. C55, 543–545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m737-m738
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds