metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­carbonyl-1κ2C,3κ2C-bis­[1,3(η5)-cyclo­penta­dien­yl]di­hydroxido-2κ2O-diirontin(2 Fe—Sn) monohydrate

aInstitut für Chemie, Naturwissenschaftliche Fakulät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 14 May 2010; accepted 8 June 2010; online 18 June 2010)

In the title hydrate, [Fe2Sn(C5H5)2(OH)2(CO)4]·H2O, the central Sn atom is tetra­hedrally coordinated by two {Cp(CO)2Fe} fragments and two hydroxide groups. The [{Cp(CO)2Fe}2Sn(OH)2] and water mol­ecules are linked by O—H⋯O hydrogen bridges, giving two-dimensional arrays with 4.82 topology that stack along the c axis.

Related literature

For the crystal structures of diorganotin dihydroxides, see: Pu et al. (2001[Pu, L., Hardman, N. J. & Power, P. P. (2001). Organometallics, 20, 5105-5109.]); Tajima et al. (2006[Tajima, T., Takeda, N., Sasamori, T. & Tokitoh, N. (2006). Organometallics, 25, 3552-3553.]). For the related structure of [{Cp(CO)2Fe}2Sn(OH)2] (without experimental details), see: Nesmeyanov et al. (1966[Nesmeyanov, A. N., Anisimov, K. N., Kolobova, N. E. & Skirpkin, V. V. (1966). Izv. Akad. Nauk Ser. Khim. 7, 1292-1292.]). For related structures [{Cp(CO)2Fe}3SnOH, see: O'Connor & Corey (1967[O'Connor, J. E. & Corey, E. R. (1967). Inorg. Chem. 6, 968-971.]); Fässler & Schütz (1997[Fässler, T. F. & Schütz, U. (1997). J. Organomet. Chem. 541, 269-276.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Sn(C5H5)2(OH)2(CO)4]·H2O

  • Mr = 524.64

  • Triclinic, [P \overline 1]

  • a = 7.1760 (6) Å

  • b = 9.7262 (9) Å

  • c = 12.063 (1) Å

  • α = 92.046 (7)°

  • β = 90.822 (7)°

  • γ = 97.560 (7)°

  • V = 833.93 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 200 K

  • 0.16 × 0.15 × 0.07 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-AREA; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.607, Tmax = 0.806

  • 7904 measured reflections

  • 3641 independent reflections

  • 3374 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.05

  • 3641 reflections

  • 233 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O7i 0.80 (4) 2.01 (4) 2.778 (2) 159 (4)
O6—H2⋯O1ii 0.80 (3) 2.44 (3) 3.212 (2) 160 (3)
O7—H3⋯O5iii 0.82 (4) 1.96 (4) 2.773 (3) 176 (4)
O7—H4⋯O6 0.82 (3) 1.90 (3) 2.709 (2) 174 (4)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the structure of the title compound, (I), a known material but with limited characterisation data (Nesmeyanov et al., 1966), the tin atom is surrounded by two {Cp(CO)2Fe} fragments and two OH groups in a distorted tetrahedral arrangement (Fig. 1). The {Cp(CO)2Fe}2Sn unit shows experimentally equivalent Sn—Fe bond lengths of 2.534 (1) and 2.535 (1) Å, and a Fe—Sn—Fe angle of 122.8 (1) °. Compared to [{Cp(CO)2Fe}2SnCl2] (Sn—Fe: 2.492 (8) Å; Fe—Sn—Fe: 128.6 (3) °), the Sn—Fe distances are around 0.05 Å longer and the Fe—Sn—Fe angle is reduced by 6° (O'Connor & Corey, 1967). Compound (I) also contains two Sn—O bonds of 2.016 (2) and 2.026 (2) Å which are close to the Sn—O distance found in [{Cp(CO)2Fe}3SnOH] (Fässler & Schütz, 1997). As compared to the dihydroxy derivatives (2,6-Mes2H3C6)2Sn(OH)2 (Sn—O: 1.97 (4) Å ) (Pu et al., 2001) and (Bbt)(Titp)Sn(OH)2 (Sn—O: 1.990 (4) and 2.005 (4) Å) ((Bbt = 2,6-{(CH(SiMe3)2}2-4-{CSiMe3}3H2C6; Titp = 2,6-{2,4-(i-Pr)2H3C6}H4C6) (Tajima et al., 2006), the Sn—O bonds in (I) are slightly enlongated. This might be due to the presence of hydrogen bonds involving both OH groups but in different types of hydrogen bridges, Fig. 2. Two hydrogen bridges are formed between the O7-water molecule as donator and the hydroxyl oxygen atoms O5iii and O6 as acceptors. Additionally, the hydroxyl group O5–H1 forms a hydrogen bridge to the water oxygen atom O7i and the hydroxyl group O6–H2 is involved in a hydrogen bridge with the carbonyl oxygen atom O1ii. Consequently, a two-dimensional array is formed that comprises 8-membered O4H4 rings (I in Fig. 2), 12-membered Sn2O6H4 rings (II), 12-membered Sn2Fe2C2O4H2 rings (III) and 20-membered Sn2Fe2C2O8H6 rings (IV). The interconnection of theses rings leads to a three-connected net with 4.82 topology.

Related literature top

For the crystal structures of diorganotin dihydroxides, see: Pu et al. (2001); Tajima et al. (2006). For a short reference to [{Cp(CO)2Fe}2Sn(OH)2] (without experimental details), see: Nesmeyanov et al. (1966). For related structures [{Cp(CO)2Fe}3SnOH, see: O'Connor & Corey (1967); Fässler & Schütz (1997).

Experimental top

To a solution of 3.24 g (6.2 mmol) [{Cp(CO)2Fe}2SnCl2] in CH2Cl2 (15 ml), a solution of NaOH (2.4 g, 60 mmol) in water (9 ml) was added at 273 K. Within 3 h, yellow-orange crystals of (I) were formed at the CH2Cl2/H2O interface. The precipitate was filtered, washed with water, and dried. Yield: 2.37 g (73 %). Anal. Calcd. for C14H14Fe2O7Sn (524.64): C 32.05, H 2.69 %. Found: C 31.33, H 2.61 %. 1H-NMR (methanol-d4): d = 5.11 (s, 10 H, Cp) p.p.m. 13C-NMR (methanol-d4): d = 84.3 (Cp), 214.0 (CO) p.p.m. 119Sn-NMR (methanol-d4): d = 454 (s) p.p.m.

Refinement top

Whereas the O-bound H atoms were refined freely, the C-bound H atoms were geometrically placed (C-H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 40 % probability level.
[Figure 2] Fig. 2. Part of the hydrogen bond network of (I) exhibiting 4.82 topology (Cp groups and CO groups not involved in hydrogen bonding are omitted for clarity).
Tetracarbonyl-1κ2C,3κ2C-bis[1,3(η5)- cyclopentadienyl]dihydroxido-2κ2O-diirontin(2 Fe—Sn) monohydrate top
Crystal data top
[Fe2Sn(C5H5)2(OH)2(CO)4]·H2OZ = 2
Mr = 524.64F(000) = 512
Triclinic, P1Dx = 2.089 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1760 (6) ÅCell parameters from 8934 reflections
b = 9.7262 (9) Åθ = 5.3–53.6°
c = 12.063 (1) ŵ = 3.24 mm1
α = 92.046 (7)°T = 200 K
β = 90.822 (7)°Prism, orange
γ = 97.560 (7)°0.16 × 0.15 × 0.07 mm
V = 833.93 (12) Å3
Data collection top
Stoe IPDS 2T
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube3374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 2.7°
rotation method scansh = 99
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2009)
k = 1211
Tmin = 0.607, Tmax = 0.806l = 1515
7904 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.1254P]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max = 0.002
233 parametersΔρmax = 0.44 e Å3
4 restraintsΔρmin = 0.62 e Å3
0 constraints
Crystal data top
[Fe2Sn(C5H5)2(OH)2(CO)4]·H2Oγ = 97.560 (7)°
Mr = 524.64V = 833.93 (12) Å3
Triclinic, P1Z = 2
a = 7.1760 (6) ÅMo Kα radiation
b = 9.7262 (9) ŵ = 3.24 mm1
c = 12.063 (1) ÅT = 200 K
α = 92.046 (7)°0.16 × 0.15 × 0.07 mm
β = 90.822 (7)°
Data collection top
Stoe IPDS 2T
diffractometer
3641 independent reflections
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2009)
3374 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.806Rint = 0.018
7904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0194 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
3641 reflectionsΔρmin = 0.62 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7075 (3)1.0222 (2)0.84442 (18)0.0283 (4)
C20.7280 (4)0.9336 (2)0.64429 (19)0.0350 (5)
C31.1193 (3)0.9698 (3)0.8631 (2)0.0393 (5)
H3A1.11950.94770.93840.047*
C41.1382 (3)0.8774 (3)0.7722 (2)0.0367 (5)
H4A1.15470.78340.77610.044*
C51.1278 (3)0.9515 (3)0.6750 (2)0.0395 (5)
H5A1.13490.91510.60220.047*
C61.1047 (3)1.0908 (3)0.7051 (2)0.0418 (6)
H6A1.09461.16260.65610.050*
C71.0999 (3)1.1017 (3)0.8212 (2)0.0418 (6)
H7A1.08611.18240.86380.050*
C80.4498 (3)0.5867 (2)0.65282 (18)0.0318 (5)
C90.7911 (3)0.6018 (2)0.58481 (18)0.0298 (4)
C100.6902 (6)0.3898 (3)0.8208 (2)0.0596 (10)
H10A0.71030.42260.89480.072*
C110.5143 (4)0.3457 (3)0.7690 (2)0.0482 (7)
H11A0.39640.34550.80190.058*
C120.5462 (3)0.3020 (2)0.6590 (2)0.0356 (5)
H12A0.45340.26660.60590.043*
C130.7395 (4)0.3204 (2)0.6431 (2)0.0378 (5)
H13A0.79970.29920.57710.045*
C140.8301 (4)0.3761 (3)0.7426 (3)0.0509 (8)
H14A0.96040.39970.75430.061*
O10.5976 (3)1.06847 (19)0.89760 (16)0.0420 (4)
O20.6339 (3)0.9215 (2)0.56601 (17)0.0582 (6)
O30.3141 (3)0.6314 (2)0.63030 (16)0.0492 (5)
O40.8793 (3)0.6577 (2)0.51681 (15)0.0450 (4)
O50.9048 (2)0.67485 (17)0.94997 (13)0.0328 (3)
H10.851 (5)0.625 (4)0.994 (3)0.080 (13)*
O60.5023 (2)0.71819 (18)0.90976 (14)0.0353 (4)
H20.502 (4)0.783 (3)0.953 (2)0.049 (9)*
O70.1945 (2)0.5242 (2)0.89430 (15)0.0376 (4)
H40.292 (3)0.578 (3)0.901 (3)0.057 (10)*
H30.112 (5)0.572 (4)0.910 (4)0.090 (15)*
Sn10.740305 (17)0.716117 (13)0.821699 (10)0.02046 (5)
Fe10.87665 (4)0.95526 (3)0.76220 (2)0.02269 (7)
Fe20.65366 (4)0.51278 (3)0.68520 (2)0.02259 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (11)0.0212 (9)0.0303 (10)0.0017 (8)0.0000 (8)0.0036 (8)
C20.0458 (13)0.0272 (11)0.0330 (12)0.0079 (10)0.0006 (10)0.0060 (9)
C30.0238 (10)0.0580 (16)0.0360 (12)0.0042 (10)0.0036 (9)0.0052 (11)
C40.0243 (10)0.0338 (12)0.0533 (14)0.0064 (9)0.0080 (9)0.0078 (10)
C50.0337 (12)0.0454 (14)0.0392 (13)0.0034 (10)0.0146 (10)0.0015 (10)
C60.0324 (12)0.0335 (12)0.0581 (16)0.0056 (10)0.0098 (11)0.0155 (11)
C70.0286 (11)0.0352 (13)0.0580 (16)0.0055 (10)0.0021 (10)0.0119 (11)
C80.0340 (11)0.0346 (12)0.0260 (10)0.0036 (9)0.0002 (8)0.0065 (8)
C90.0341 (11)0.0287 (11)0.0274 (10)0.0079 (9)0.0007 (8)0.0018 (8)
C100.124 (3)0.0198 (11)0.0302 (12)0.0077 (14)0.0171 (15)0.0043 (9)
C110.0671 (18)0.0231 (11)0.0522 (15)0.0056 (11)0.0291 (14)0.0042 (10)
C120.0409 (12)0.0214 (10)0.0424 (13)0.0020 (9)0.0056 (10)0.0036 (9)
C130.0450 (13)0.0246 (11)0.0454 (13)0.0110 (10)0.0065 (10)0.0010 (9)
C140.0486 (15)0.0267 (12)0.077 (2)0.0026 (11)0.0287 (15)0.0095 (12)
O10.0448 (10)0.0374 (9)0.0466 (10)0.0143 (8)0.0139 (8)0.0006 (8)
O20.0768 (15)0.0588 (13)0.0399 (11)0.0149 (11)0.0259 (10)0.0021 (9)
O30.0404 (10)0.0665 (13)0.0441 (10)0.0240 (9)0.0098 (8)0.0100 (9)
O40.0508 (11)0.0462 (10)0.0377 (9)0.0021 (8)0.0165 (8)0.0090 (8)
O50.0357 (8)0.0326 (8)0.0294 (8)0.0022 (7)0.0083 (6)0.0059 (6)
O60.0304 (8)0.0329 (9)0.0414 (9)0.0003 (7)0.0125 (7)0.0051 (7)
O70.0282 (8)0.0444 (10)0.0398 (9)0.0015 (8)0.0035 (7)0.0093 (8)
Sn10.02214 (7)0.01840 (7)0.02058 (7)0.00165 (5)0.00004 (5)0.00084 (5)
Fe10.02485 (14)0.01989 (14)0.02322 (14)0.00213 (11)0.00141 (11)0.00217 (10)
Fe20.02546 (14)0.02059 (14)0.02121 (14)0.00140 (11)0.00051 (10)0.00018 (10)
Geometric parameters (Å, º) top
C1—O11.151 (3)C10—C141.404 (5)
C1—Fe11.754 (2)C10—C111.408 (5)
C2—O21.147 (3)C10—Fe22.094 (3)
C2—Fe11.755 (2)C10—H10A0.9500
C3—C41.412 (4)C11—C121.409 (4)
C3—C71.419 (4)C11—Fe22.093 (2)
C3—Fe12.097 (2)C11—H11A0.9500
C3—H3A0.9500C12—C131.393 (3)
C4—C51.405 (4)C12—Fe22.105 (2)
C4—Fe12.118 (2)C12—H12A0.9500
C4—H4A0.9500C13—C141.413 (4)
C5—C61.422 (4)C13—Fe22.094 (2)
C5—Fe12.103 (2)C13—H13A0.9500
C5—H5A0.9500C14—Fe22.082 (3)
C6—C71.401 (4)C14—H14A0.9500
C6—Fe12.103 (2)O5—Sn12.0164 (15)
C6—H6A0.9500O5—H10.80 (4)
C7—Fe12.097 (2)O6—Sn12.0264 (15)
C7—H7A0.9500O6—H20.80 (3)
C8—O31.150 (3)O7—H40.82 (4)
C8—Fe21.758 (2)O7—H30.82 (3)
C9—O41.151 (3)Sn1—Fe12.5344 (4)
C9—Fe21.753 (2)Sn1—Fe22.5345 (4)
O1—C1—Fe1178.8 (2)Sn1—O6—H2116 (2)
O2—C2—Fe1178.4 (2)H4—O7—H3104 (4)
C4—C3—C7108.1 (2)O5—Sn1—O696.19 (7)
C4—C3—Fe171.22 (14)O5—Sn1—Fe1105.28 (5)
C7—C3—Fe170.21 (14)O6—Sn1—Fe1112.76 (5)
C4—C3—H3A125.9O5—Sn1—Fe2114.09 (5)
C7—C3—H3A125.9O6—Sn1—Fe2102.65 (5)
Fe1—C3—H3A124.2Fe1—Sn1—Fe2122.793 (12)
C5—C4—C3107.6 (2)C1—Fe1—C293.08 (11)
C5—C4—Fe170.02 (14)C1—Fe1—C794.64 (10)
C3—C4—Fe169.62 (13)C2—Fe1—C7136.18 (11)
C5—C4—H4A126.2C1—Fe1—C3105.40 (10)
C3—C4—H4A126.2C2—Fe1—C3161.02 (11)
Fe1—C4—H4A125.7C7—Fe1—C339.57 (11)
C4—C5—C6108.6 (2)C1—Fe1—C6119.32 (10)
C4—C5—Fe171.11 (13)C2—Fe1—C6101.41 (11)
C6—C5—Fe170.21 (13)C7—Fe1—C638.99 (11)
C4—C5—H5A125.7C3—Fe1—C665.91 (11)
C6—C5—H5A125.7C1—Fe1—C5158.47 (10)
Fe1—C5—H5A124.6C2—Fe1—C595.64 (11)
C7—C6—C5107.6 (2)C7—Fe1—C565.68 (10)
C7—C6—Fe170.27 (13)C3—Fe1—C565.51 (10)
C5—C6—Fe170.28 (13)C6—Fe1—C539.51 (10)
C7—C6—H6A126.2C1—Fe1—C4142.15 (10)
C5—C6—H6A126.2C2—Fe1—C4123.75 (11)
Fe1—C6—H6A124.8C7—Fe1—C465.92 (10)
C6—C7—C3108.1 (2)C3—Fe1—C439.16 (10)
C6—C7—Fe170.73 (14)C6—Fe1—C465.89 (10)
C3—C7—Fe170.22 (13)C5—Fe1—C438.87 (10)
C6—C7—H7A125.9C1—Fe1—Sn187.56 (7)
C3—C7—H7A125.9C2—Fe1—Sn189.50 (8)
Fe1—C7—H7A124.7C7—Fe1—Sn1133.84 (8)
O3—C8—Fe2178.0 (2)C3—Fe1—Sn195.50 (8)
O4—C9—Fe2178.2 (2)C6—Fe1—Sn1149.88 (8)
C14—C10—C11108.0 (2)C5—Fe1—Sn1112.11 (8)
C14—C10—Fe269.88 (15)C4—Fe1—Sn184.64 (7)
C11—C10—Fe270.31 (16)C9—Fe2—C894.65 (11)
C14—C10—H10A126.0C9—Fe2—C14102.33 (12)
C11—C10—H10A126.0C8—Fe2—C14161.44 (12)
Fe2—C10—H10A125.4C9—Fe2—C11159.00 (10)
C10—C11—C12108.0 (3)C8—Fe2—C1195.48 (12)
C10—C11—Fe270.39 (14)C14—Fe2—C1166.05 (12)
C12—C11—Fe270.83 (13)C9—Fe2—C1394.25 (10)
C10—C11—H11A126.0C8—Fe2—C13132.50 (10)
C12—C11—H11A126.0C14—Fe2—C1339.55 (11)
Fe2—C11—H11A124.4C11—Fe2—C1365.48 (10)
C13—C12—C11107.8 (2)C9—Fe2—C10138.61 (14)
C13—C12—Fe270.21 (13)C8—Fe2—C10125.93 (14)
C11—C12—Fe269.93 (13)C14—Fe2—C1039.28 (14)
C13—C12—H12A126.1C11—Fe2—C1039.30 (13)
C11—C12—H12A126.1C13—Fe2—C1065.69 (11)
Fe2—C12—H12A125.4C9—Fe2—C12120.77 (10)
C12—C13—C14108.6 (2)C8—Fe2—C1298.94 (10)
C12—C13—Fe271.05 (13)C14—Fe2—C1265.94 (10)
C14—C13—Fe269.75 (15)C11—Fe2—C1239.23 (10)
C12—C13—H13A125.7C13—Fe2—C1238.74 (10)
C14—C13—H13A125.7C10—Fe2—C1265.76 (10)
Fe2—C13—H13A125.1C9—Fe2—Sn189.66 (7)
C10—C14—C13107.5 (2)C8—Fe2—Sn187.25 (7)
C10—C14—Fe270.84 (17)C14—Fe2—Sn1100.14 (8)
C13—C14—Fe270.70 (14)C11—Fe2—Sn1109.15 (8)
C10—C14—H14A126.2C13—Fe2—Sn1139.34 (8)
C13—C14—H14A126.2C10—Fe2—Sn185.09 (7)
Fe2—C14—H14A123.9C12—Fe2—Sn1147.97 (7)
Sn1—O5—H1114 (3)
C7—C3—C4—C50.8 (3)Fe2—Sn1—Fe1—C237.77 (8)
Fe1—C3—C4—C560.01 (17)O5—Sn1—Fe1—C72.24 (11)
C7—C3—C4—Fe160.82 (16)O6—Sn1—Fe1—C7101.40 (11)
C3—C4—C5—C60.7 (3)Fe2—Sn1—Fe1—C7135.05 (10)
Fe1—C4—C5—C660.48 (17)O5—Sn1—Fe1—C38.91 (9)
C3—C4—C5—Fe159.76 (16)O6—Sn1—Fe1—C3112.55 (9)
C4—C5—C6—C70.3 (3)Fe2—Sn1—Fe1—C3123.89 (7)
Fe1—C5—C6—C760.69 (17)O5—Sn1—Fe1—C658.28 (17)
C4—C5—C6—Fe161.04 (17)O6—Sn1—Fe1—C6161.92 (17)
C5—C6—C7—C30.2 (3)Fe2—Sn1—Fe1—C674.52 (16)
Fe1—C6—C7—C360.54 (16)O5—Sn1—Fe1—C574.68 (10)
C5—C6—C7—Fe160.69 (17)O6—Sn1—Fe1—C5178.33 (10)
C4—C3—C7—C60.6 (3)Fe2—Sn1—Fe1—C558.12 (8)
Fe1—C3—C7—C660.86 (17)O5—Sn1—Fe1—C446.59 (9)
C4—C3—C7—Fe161.46 (16)O6—Sn1—Fe1—C4150.23 (9)
C14—C10—C11—C121.2 (3)Fe2—Sn1—Fe1—C486.21 (7)
Fe2—C10—C11—C1261.16 (18)C10—C14—Fe2—C9161.03 (16)
C14—C10—C11—Fe259.95 (18)C13—C14—Fe2—C981.63 (17)
C10—C11—C12—C130.6 (3)C10—C14—Fe2—C843.2 (4)
Fe2—C11—C12—C1360.25 (17)C13—C14—Fe2—C874.2 (4)
C10—C11—C12—Fe260.88 (17)C10—C14—Fe2—C1137.42 (16)
C11—C12—C13—C140.2 (3)C13—C14—Fe2—C1179.92 (17)
Fe2—C12—C13—C1459.89 (17)C10—C14—Fe2—C13117.3 (2)
C11—C12—C13—Fe260.08 (17)C13—C14—Fe2—C10117.3 (2)
C11—C10—C14—C131.3 (3)C10—C14—Fe2—C1280.55 (17)
Fe2—C10—C14—C1361.54 (17)C13—C14—Fe2—C1236.79 (15)
C11—C10—C14—Fe260.22 (19)C10—C14—Fe2—Sn169.15 (15)
C12—C13—C14—C100.9 (3)C13—C14—Fe2—Sn1173.52 (14)
Fe2—C13—C14—C1061.63 (18)C10—C11—Fe2—C997.1 (4)
C12—C13—C14—Fe260.70 (17)C12—C11—Fe2—C921.1 (4)
C6—C7—Fe1—C1132.89 (16)C10—C11—Fe2—C8144.44 (19)
C3—C7—Fe1—C1108.66 (15)C12—C11—Fe2—C897.44 (17)
C6—C7—Fe1—C233.6 (2)C10—C11—Fe2—C1437.40 (18)
C3—C7—Fe1—C2152.00 (17)C12—C11—Fe2—C1480.73 (18)
C6—C7—Fe1—C3118.4 (2)C10—C11—Fe2—C1381.0 (2)
C3—C7—Fe1—C6118.4 (2)C12—C11—Fe2—C1337.17 (16)
C6—C7—Fe1—C538.06 (16)C12—C11—Fe2—C10118.1 (3)
C3—C7—Fe1—C580.38 (16)C10—C11—Fe2—C12118.1 (3)
C6—C7—Fe1—C480.86 (17)C10—C11—Fe2—Sn155.45 (19)
C3—C7—Fe1—C437.59 (15)C12—C11—Fe2—Sn1173.58 (14)
C6—C7—Fe1—Sn1136.03 (14)C12—C13—Fe2—C9136.65 (16)
C3—C7—Fe1—Sn117.59 (19)C14—C13—Fe2—C9104.26 (18)
C4—C3—Fe1—C1163.50 (15)C12—C13—Fe2—C836.4 (2)
C7—C3—Fe1—C178.37 (16)C14—C13—Fe2—C8155.46 (18)
C4—C3—Fe1—C230.2 (4)C12—C13—Fe2—C14119.1 (2)
C7—C3—Fe1—C288.0 (4)C12—C13—Fe2—C1137.63 (16)
C4—C3—Fe1—C7118.1 (2)C14—C13—Fe2—C1181.46 (19)
C4—C3—Fe1—C680.82 (16)C12—C13—Fe2—C1080.98 (18)
C7—C3—Fe1—C637.30 (15)C14—C13—Fe2—C1038.11 (18)
C4—C3—Fe1—C537.30 (15)C14—C13—Fe2—C12119.1 (2)
C7—C3—Fe1—C580.83 (16)C12—C13—Fe2—Sn1128.91 (14)
C7—C3—Fe1—C4118.1 (2)C14—C13—Fe2—Sn19.8 (2)
C4—C3—Fe1—Sn174.52 (14)C14—C10—Fe2—C928.7 (2)
C7—C3—Fe1—Sn1167.35 (14)C11—C10—Fe2—C9147.46 (18)
C7—C6—Fe1—C156.88 (19)C14—C10—Fe2—C8164.40 (15)
C5—C6—Fe1—C1174.86 (16)C11—C10—Fe2—C845.6 (2)
C7—C6—Fe1—C2157.02 (16)C11—C10—Fe2—C14118.8 (2)
C5—C6—Fe1—C285.00 (17)C14—C10—Fe2—C11118.8 (2)
C5—C6—Fe1—C7118.0 (2)C14—C10—Fe2—C1338.37 (15)
C7—C6—Fe1—C337.85 (16)C11—C10—Fe2—C1380.39 (17)
C5—C6—Fe1—C380.13 (17)C14—C10—Fe2—C1281.04 (16)
C7—C6—Fe1—C5118.0 (2)C11—C10—Fe2—C1237.72 (15)
C7—C6—Fe1—C480.93 (17)C14—C10—Fe2—Sn1112.59 (15)
C5—C6—Fe1—C437.05 (16)C11—C10—Fe2—Sn1128.65 (17)
C7—C6—Fe1—Sn193.7 (2)C13—C12—Fe2—C952.82 (19)
C5—C6—Fe1—Sn124.3 (3)C11—C12—Fe2—C9171.38 (18)
C4—C5—Fe1—C1106.5 (3)C13—C12—Fe2—C8153.73 (16)
C6—C5—Fe1—C112.3 (4)C11—C12—Fe2—C887.71 (19)
C4—C5—Fe1—C2140.10 (16)C13—C12—Fe2—C1437.55 (17)
C6—C5—Fe1—C2101.11 (17)C11—C12—Fe2—C1481.0 (2)
C4—C5—Fe1—C781.22 (17)C13—C12—Fe2—C11118.6 (2)
C6—C5—Fe1—C737.57 (17)C11—C12—Fe2—C13118.6 (2)
C4—C5—Fe1—C337.57 (16)C13—C12—Fe2—C1080.77 (19)
C6—C5—Fe1—C381.22 (18)C11—C12—Fe2—C1037.8 (2)
C4—C5—Fe1—C6118.8 (2)C13—C12—Fe2—Sn1107.06 (17)
C6—C5—Fe1—C4118.8 (2)C11—C12—Fe2—Sn111.5 (2)
C4—C5—Fe1—Sn148.34 (16)O5—Sn1—Fe2—C9112.12 (9)
C6—C5—Fe1—Sn1167.13 (14)O6—Sn1—Fe2—C9145.09 (9)
C5—C4—Fe1—C1145.01 (17)Fe1—Sn1—Fe2—C917.05 (8)
C3—C4—Fe1—C126.5 (2)O5—Sn1—Fe2—C8153.20 (9)
C5—C4—Fe1—C250.15 (19)O6—Sn1—Fe2—C850.41 (9)
C3—C4—Fe1—C2168.67 (16)Fe1—Sn1—Fe2—C877.63 (8)
C5—C4—Fe1—C780.53 (17)O5—Sn1—Fe2—C149.65 (11)
C3—C4—Fe1—C737.98 (16)O6—Sn1—Fe2—C14112.44 (11)
C5—C4—Fe1—C3118.5 (2)Fe1—Sn1—Fe2—C14119.52 (9)
C5—C4—Fe1—C637.65 (16)O5—Sn1—Fe2—C1158.36 (11)
C3—C4—Fe1—C680.87 (17)O6—Sn1—Fe2—C1144.43 (11)
C3—C4—Fe1—C5118.5 (2)Fe1—Sn1—Fe2—C11172.47 (10)
C5—C4—Fe1—Sn1135.96 (15)O5—Sn1—Fe2—C1315.99 (12)
C3—C4—Fe1—Sn1105.53 (14)O6—Sn1—Fe2—C13118.78 (12)
O5—Sn1—Fe1—C196.33 (9)Fe1—Sn1—Fe2—C13113.18 (11)
O6—Sn1—Fe1—C17.31 (9)O5—Sn1—Fe2—C1026.78 (13)
Fe2—Sn1—Fe1—C1130.86 (7)O6—Sn1—Fe2—C1076.01 (13)
O5—Sn1—Fe1—C2170.57 (9)Fe1—Sn1—Fe2—C10155.95 (12)
O6—Sn1—Fe1—C285.79 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O7i0.80 (4)2.01 (4)2.778 (2)159 (4)
O6—H2···O1ii0.80 (3)2.44 (3)3.212 (2)160 (3)
O7—H3···O5iii0.82 (4)1.96 (4)2.773 (3)176 (4)
O7—H4···O60.82 (3)1.90 (3)2.709 (2)174 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Fe2Sn(C5H5)2(OH)2(CO)4]·H2O
Mr524.64
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.1760 (6), 9.7262 (9), 12.063 (1)
α, β, γ (°)92.046 (7), 90.822 (7), 97.560 (7)
V3)833.93 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.16 × 0.15 × 0.07
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-AREA; Stoe & Cie, 2009)
Tmin, Tmax0.607, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
7904, 3641, 3374
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.05
No. of reflections3641
No. of parameters233
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.62

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O7i0.80 (4)2.01 (4)2.778 (2)159 (4)
O6—H2···O1ii0.80 (3)2.44 (3)3.212 (2)160 (3)
O7—H3···O5iii0.82 (4)1.96 (4)2.773 (3)176 (4)
O7—H4···O60.82 (3)1.90 (3)2.709 (2)174 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z.
 

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFässler, T. F. & Schütz, U. (1997). J. Organomet. Chem. 541, 269–276.  CSD CrossRef CAS Web of Science Google Scholar
First citationNesmeyanov, A. N., Anisimov, K. N., Kolobova, N. E. & Skirpkin, V. V. (1966). Izv. Akad. Nauk Ser. Khim. 7, 1292–1292.  Google Scholar
First citationO'Connor, J. E. & Corey, E. R. (1967). Inorg. Chem. 6, 968–971.  CSD CrossRef CAS Web of Science Google Scholar
First citationPu, L., Hardman, N. J. & Power, P. P. (2001). Organometallics, 20, 5105–5109.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTajima, T., Takeda, N., Sasamori, T. & Tokitoh, N. (2006). Organometallics, 25, 3552–3553.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds