metal-organic compounds
trans-Dichlorido(2,2-dimethylpropane-1,3-diamine)bis(triphenylphosphane)ruthenium(II)
aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and bDepartment of Chemistry, King Saud University, PO Box 2455, Riyadh-11451, Saudi Arabia
*Correspondence e-mail: m.khanfar@ju.edu.jo
In the title compound, [RuCl2(C5H14N2)(C18H15P)2], the RuII atom is six-coordinated, forming a slightly distorted octahedral geometry, with two chloride ions in an axial arrangement, and two P atoms of two triphenylphosphane and two chelating N atoms of the bidentate 2,2-dimethylpropane-1,3-diamine ligand located in the equatorial plane. The average Ru—P, Ru—N and Ru—Cl bond lengths are 2.325 (18), 2.1845 (7) and 2.4123 (12) Å, respectively.
Related literature
For the reduction of ). For enantioselective hydrogenation of prochiral to chiral see: Drozdzak et al. (2005). For background to stereo-, regio- and enantio-selective ruthenium catalysis, see: Clarke (2002); Noyori (2003) and references therein. For RuII catalysts, see: Noyori & Ohkuma (2001); Ohkuma et al. (2002); Lindner et al. (2005). For related structures, see: Nachtigall et al. (2002); Lindner et al. (2003a,b); Doucet et al. (1998); Warad et al. (2006).
to secondary see: Noyori (1994Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536810019276/tk2679sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810019276/tk2679Isup2.hkl
All the reactions were performed using Schlenk-type flask under argon and standard high vacuum-line techniques. Solvents were of analytical grade and distilled under argon. The title compound was prepared starting from trans-RuCl2(PPh3)3 in a similar procedure described previously (Lindner et al., 2003b). Mixing of 2,2-dimethylpropane-1,3-diamine (0.059 ml, 0.49 mmol) in dichloromethane (10 ml) dropwise with trans-RuCl2(PPh3)3 (0.454 mmol) dissolved in the same solvent (15 ml). The reaction mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo. Then the residue was washed well with hexane then diethylether and dried, to yield 310 mg (90%) of yellow powder. The recrystallization was performed by slow diffusion of diethylether into a solution of the complex in dichloromethane to yield orange-brown-plated crystals. 1H NMR (CD2Cl2): δ (p.p.m.) 0.79 (s, 6H, C(CH3)2), 2.57 (m, 4H, NCH2), 3.12 (br, s, 4H, NH2), 7.2–7.7 (m, 20H, C6H5). 31P{1H} NMR (CD2Cl2):δ (p.p.m.) 46.02 (s). 13C{1H} NMR (CD2Cl2): δ (p.p.m.) 25.3 (s, C(CH3)2), 34.2 (s, C(CH3)2), 49.2 (s, CH2N), 127.7 (t, N = 4.04 Hz, m-C6H5), 129.3 (s, p-C6H5), 135.4 (t, N=7.42 Hz,o-C6H5), 135.8 (d, N = 18.8 Hz, 1-C6H5). FAB MS: (m/z) 798.1 (M+). Anal. Calc. for C41H44Cl2N2P2Ru: C, 66.65.12; H, 5.55; Cl, 8.88; N, 3.51. Found: C, 66.94; H, 5.52; Cl, 9.20; N, 3.59%.
Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for
R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. All Hydrogen atoms were refined isotropically.All H atoms were fixed and subsequently refined using a riding model with Uiso(H) = 1.2Ueq of the carrier atom.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).Fig. 1. : The structure of the compound, showing 30% probability displacement ellipsoids and the atom numbering scheme. |
[RuCl2(C5H14N2)(C18H15P)2] | F(000) = 1648 |
Mr = 798.69 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.70930 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 17.393 (2) Å | θ = 7.8–12.3° |
b = 10.3493 (16) Å | µ = 0.68 mm−1 |
c = 21.315 (2) Å | T = 293 K |
β = 102.181 (15)° | Plate, brown |
V = 3750.4 (9) Å3 | 0.60 × 0.60 × 0.05 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 5387 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 25.9°, θmin = 3.1° |
ω scans | h = −21→21 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→12 |
Tmin = 0.687, Tmax = 0.967 | l = −1→26 |
7922 measured reflections | 3 standard reflections every 400 reflections |
7319 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | Only H-atom coordinates refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.027P)2 + 1.9538P] where P = (Fo2 + 2Fc2)/3 |
7319 reflections | (Δ/σ)max = 0.001 |
436 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[RuCl2(C5H14N2)(C18H15P)2] | V = 3750.4 (9) Å3 |
Mr = 798.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.393 (2) Å | µ = 0.68 mm−1 |
b = 10.3493 (16) Å | T = 293 K |
c = 21.315 (2) Å | 0.60 × 0.60 × 0.05 mm |
β = 102.181 (15)° |
Enraf–Nonius CAD-4 diffractometer | 5387 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.025 |
Tmin = 0.687, Tmax = 0.967 | 3 standard reflections every 400 reflections |
7922 measured reflections | intensity decay: 2% |
7319 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.078 | Only H-atom coordinates refined |
S = 1.03 | Δρmax = 0.39 e Å−3 |
7319 reflections | Δρmin = −0.51 e Å−3 |
436 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.293247 (13) | 0.49329 (2) | 0.344643 (10) | 0.02586 (7) | |
Cl1 | 0.39278 (5) | 0.65793 (8) | 0.37293 (4) | 0.0421 (2) | |
Cl2 | 0.22021 (5) | 0.29446 (7) | 0.32284 (4) | 0.0424 (2) | |
P1 | 0.19157 (4) | 0.59121 (7) | 0.38125 (4) | 0.02806 (17) | |
C111 | 0.09258 (16) | 0.5977 (3) | 0.32882 (14) | 0.0316 (7) | |
C112 | 0.07724 (19) | 0.6794 (3) | 0.27611 (15) | 0.0386 (7) | |
H11A | 0.1169 | 0.7326 | 0.2675 | 0.046* | |
C113 | 0.0032 (2) | 0.6825 (3) | 0.23610 (17) | 0.0494 (9) | |
H11B | −0.0067 | 0.7391 | 0.2014 | 0.059* | |
C114 | −0.0553 (2) | 0.6028 (4) | 0.24725 (18) | 0.0520 (10) | |
H11C | −0.1048 | 0.6050 | 0.2202 | 0.062* | |
C115 | −0.04061 (19) | 0.5199 (4) | 0.29828 (18) | 0.0508 (9) | |
H11D | −0.0801 | 0.4647 | 0.3054 | 0.061* | |
C116 | 0.03250 (18) | 0.5174 (3) | 0.33944 (16) | 0.0417 (8) | |
H11E | 0.0415 | 0.4616 | 0.3744 | 0.050* | |
C121 | 0.20843 (17) | 0.7563 (3) | 0.41445 (14) | 0.0315 (7) | |
C122 | 0.2748 (2) | 0.7740 (3) | 0.46276 (16) | 0.0452 (8) | |
H12A | 0.3091 | 0.7052 | 0.4751 | 0.054* | |
C123 | 0.2907 (2) | 0.8923 (4) | 0.49275 (19) | 0.0559 (10) | |
H12B | 0.3345 | 0.9016 | 0.5261 | 0.067* | |
C124 | 0.2429 (2) | 0.9950 (4) | 0.47395 (19) | 0.0562 (10) | |
H12C | 0.2542 | 1.0745 | 0.4942 | 0.067* | |
C125 | 0.1782 (2) | 0.9815 (3) | 0.42524 (19) | 0.0547 (10) | |
H12D | 0.1461 | 1.0523 | 0.4116 | 0.066* | |
C126 | 0.1605 (2) | 0.8617 (3) | 0.39623 (16) | 0.0430 (8) | |
H12E | 0.1156 | 0.8526 | 0.3640 | 0.052* | |
C131 | 0.16632 (17) | 0.5131 (3) | 0.45301 (14) | 0.0350 (7) | |
C132 | 0.1386 (2) | 0.5845 (4) | 0.49815 (18) | 0.0578 (10) | |
H13A | 0.1363 | 0.6740 | 0.4942 | 0.069* | |
C133 | 0.1142 (3) | 0.5270 (4) | 0.5490 (2) | 0.0828 (16) | |
H13B | 0.0953 | 0.5775 | 0.5785 | 0.099* | |
C134 | 0.1179 (3) | 0.3955 (4) | 0.5561 (2) | 0.0754 (14) | |
H13C | 0.1028 | 0.3568 | 0.5909 | 0.090* | |
C135 | 0.1439 (2) | 0.3217 (4) | 0.5118 (2) | 0.0647 (11) | |
H13D | 0.1453 | 0.2322 | 0.5159 | 0.078* | |
C136 | 0.1682 (2) | 0.3799 (3) | 0.46079 (17) | 0.0485 (9) | |
H13E | 0.1861 | 0.3286 | 0.4311 | 0.058* | |
P2 | 0.26561 (4) | 0.57378 (7) | 0.23985 (4) | 0.02910 (17) | |
C211 | 0.17237 (18) | 0.5472 (3) | 0.18165 (14) | 0.0337 (7) | |
C212 | 0.1466 (2) | 0.6279 (4) | 0.12963 (17) | 0.0577 (10) | |
H21A | 0.1754 | 0.7014 | 0.1246 | 0.069* | |
C213 | 0.0781 (3) | 0.6003 (5) | 0.08490 (18) | 0.0713 (13) | |
H21B | 0.0607 | 0.6563 | 0.0507 | 0.086* | |
C214 | 0.0359 (2) | 0.4905 (4) | 0.09095 (17) | 0.0631 (11) | |
H21C | −0.0092 | 0.4708 | 0.0603 | 0.076* | |
C215 | 0.0604 (2) | 0.4106 (4) | 0.14206 (17) | 0.0536 (10) | |
H21D | 0.0321 | 0.3360 | 0.1463 | 0.064* | |
C216 | 0.1271 (2) | 0.4399 (3) | 0.18753 (16) | 0.0449 (8) | |
H21E | 0.1419 | 0.3862 | 0.2230 | 0.054* | |
C221 | 0.28413 (18) | 0.7468 (3) | 0.22798 (15) | 0.0344 (7) | |
C222 | 0.26872 (18) | 0.8358 (3) | 0.27232 (16) | 0.0405 (8) | |
H22A | 0.2537 | 0.8066 | 0.3092 | 0.049* | |
C223 | 0.2753 (2) | 0.9669 (3) | 0.2627 (2) | 0.0540 (10) | |
H22B | 0.2638 | 1.0251 | 0.2927 | 0.065* | |
C224 | 0.2986 (3) | 1.0114 (4) | 0.2091 (2) | 0.0687 (12) | |
H22C | 0.3029 | 1.0997 | 0.2025 | 0.082* | |
C225 | 0.3156 (3) | 0.9248 (4) | 0.1651 (2) | 0.0714 (13) | |
H22D | 0.3320 | 0.9549 | 0.1290 | 0.086* | |
C226 | 0.3088 (2) | 0.7939 (3) | 0.17389 (18) | 0.0527 (9) | |
H22E | 0.3206 | 0.7364 | 0.1437 | 0.063* | |
C231 | 0.33381 (18) | 0.4979 (3) | 0.19493 (14) | 0.0372 (7) | |
C232 | 0.4127 (2) | 0.5332 (4) | 0.20829 (18) | 0.0529 (10) | |
H23A | 0.4294 | 0.6053 | 0.2336 | 0.063* | |
C233 | 0.4668 (2) | 0.4602 (5) | 0.1836 (2) | 0.0725 (14) | |
H23B | 0.5197 | 0.4830 | 0.1930 | 0.087* | |
C234 | 0.4424 (3) | 0.3548 (5) | 0.1456 (2) | 0.0802 (15) | |
H23C | 0.4788 | 0.3063 | 0.1293 | 0.096* | |
C235 | 0.3650 (3) | 0.3213 (4) | 0.1316 (2) | 0.0735 (13) | |
H23D | 0.3486 | 0.2506 | 0.1052 | 0.088* | |
C236 | 0.3109 (2) | 0.3911 (3) | 0.15613 (16) | 0.0495 (9) | |
H23E | 0.2583 | 0.3665 | 0.1466 | 0.059* | |
N1 | 0.38992 (15) | 0.3781 (3) | 0.32350 (12) | 0.0411 (7) | |
H1N1 | 0.3780 | 0.3623 | 0.2810 | 0.049* | |
H2N1 | 0.4325 | 0.4298 | 0.3306 | 0.049* | |
N2 | 0.34248 (15) | 0.4290 (3) | 0.44251 (12) | 0.0383 (6) | |
H1N2 | 0.3807 | 0.4856 | 0.4590 | 0.046* | |
H2N2 | 0.3043 | 0.4393 | 0.4647 | 0.046* | |
C1 | 0.4154 (2) | 0.2550 (3) | 0.35469 (16) | 0.0489 (9) | |
H1B | 0.4582 | 0.2214 | 0.3369 | 0.059* | |
H1C | 0.3722 | 0.1941 | 0.3445 | 0.059* | |
C2 | 0.3752 (2) | 0.3010 (4) | 0.45837 (17) | 0.0549 (10) | |
H2B | 0.3332 | 0.2382 | 0.4463 | 0.066* | |
H2C | 0.3934 | 0.2959 | 0.5046 | 0.066* | |
C3 | 0.4423 (2) | 0.2623 (3) | 0.42720 (15) | 0.0434 (8) | |
C4 | 0.5121 (2) | 0.3503 (4) | 0.44572 (19) | 0.0664 (12) | |
H4A | 0.4975 | 0.4364 | 0.4311 | 0.100* | |
H4B | 0.5539 | 0.3203 | 0.4263 | 0.100* | |
H4C | 0.5296 | 0.3505 | 0.4916 | 0.100* | |
C5 | 0.4653 (3) | 0.1253 (4) | 0.4505 (2) | 0.0764 (14) | |
H5A | 0.4828 | 0.1255 | 0.4963 | 0.115* | |
H5B | 0.5070 | 0.0950 | 0.4311 | 0.115* | |
H5C | 0.4206 | 0.0693 | 0.4386 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.02516 (11) | 0.02601 (12) | 0.02646 (11) | 0.00136 (11) | 0.00557 (8) | 0.00011 (11) |
Cl1 | 0.0348 (4) | 0.0439 (5) | 0.0458 (5) | −0.0102 (4) | 0.0044 (3) | 0.0005 (4) |
Cl2 | 0.0489 (5) | 0.0297 (4) | 0.0447 (5) | −0.0058 (4) | 0.0014 (4) | −0.0002 (3) |
P1 | 0.0275 (4) | 0.0273 (4) | 0.0300 (4) | 0.0013 (3) | 0.0073 (3) | −0.0002 (3) |
C111 | 0.0276 (15) | 0.0320 (16) | 0.0358 (16) | 0.0038 (13) | 0.0082 (13) | −0.0051 (13) |
C112 | 0.0390 (18) | 0.0373 (18) | 0.0391 (18) | 0.0005 (15) | 0.0074 (14) | −0.0027 (15) |
C113 | 0.051 (2) | 0.045 (2) | 0.046 (2) | 0.0098 (18) | −0.0050 (17) | 0.0030 (17) |
C114 | 0.0343 (18) | 0.058 (2) | 0.058 (2) | 0.0082 (18) | −0.0039 (17) | −0.014 (2) |
C115 | 0.0355 (17) | 0.058 (2) | 0.058 (2) | −0.0098 (17) | 0.0094 (16) | −0.007 (2) |
C116 | 0.0353 (16) | 0.046 (2) | 0.0440 (18) | −0.0061 (16) | 0.0079 (14) | −0.0025 (16) |
C121 | 0.0353 (16) | 0.0287 (15) | 0.0336 (17) | 0.0016 (13) | 0.0144 (13) | −0.0014 (13) |
C122 | 0.0430 (19) | 0.0414 (19) | 0.049 (2) | 0.0038 (16) | 0.0040 (16) | −0.0042 (16) |
C123 | 0.050 (2) | 0.055 (2) | 0.059 (2) | −0.0112 (19) | 0.0025 (18) | −0.018 (2) |
C124 | 0.065 (2) | 0.0357 (19) | 0.071 (3) | −0.011 (2) | 0.021 (2) | −0.022 (2) |
C125 | 0.069 (2) | 0.0305 (19) | 0.066 (2) | 0.0093 (18) | 0.017 (2) | −0.0052 (18) |
C126 | 0.0421 (19) | 0.0397 (19) | 0.046 (2) | 0.0055 (15) | 0.0079 (16) | −0.0052 (16) |
C131 | 0.0325 (15) | 0.0392 (18) | 0.0349 (15) | −0.0011 (15) | 0.0105 (12) | 0.0021 (15) |
C132 | 0.087 (3) | 0.041 (2) | 0.059 (2) | −0.005 (2) | 0.044 (2) | −0.0039 (18) |
C133 | 0.137 (4) | 0.057 (3) | 0.077 (3) | −0.013 (3) | 0.076 (3) | −0.008 (2) |
C134 | 0.108 (4) | 0.068 (3) | 0.064 (3) | −0.005 (3) | 0.051 (3) | 0.012 (2) |
C135 | 0.081 (3) | 0.047 (2) | 0.077 (3) | 0.006 (2) | 0.041 (2) | 0.017 (2) |
C136 | 0.060 (2) | 0.0385 (19) | 0.055 (2) | 0.0082 (17) | 0.0294 (19) | 0.0069 (17) |
P2 | 0.0320 (4) | 0.0273 (4) | 0.0286 (4) | 0.0006 (3) | 0.0079 (3) | 0.0012 (3) |
C211 | 0.0368 (17) | 0.0363 (16) | 0.0278 (15) | 0.0032 (14) | 0.0064 (13) | −0.0006 (13) |
C212 | 0.058 (2) | 0.060 (2) | 0.047 (2) | −0.013 (2) | −0.0066 (18) | 0.0191 (19) |
C213 | 0.076 (3) | 0.086 (3) | 0.041 (2) | −0.011 (3) | −0.013 (2) | 0.025 (2) |
C214 | 0.056 (2) | 0.087 (3) | 0.040 (2) | −0.015 (2) | −0.0045 (17) | 0.001 (2) |
C215 | 0.049 (2) | 0.059 (2) | 0.050 (2) | −0.0125 (19) | 0.0036 (18) | −0.0034 (19) |
C216 | 0.045 (2) | 0.048 (2) | 0.0402 (19) | −0.0032 (17) | 0.0053 (16) | 0.0029 (16) |
C221 | 0.0362 (17) | 0.0280 (16) | 0.0389 (18) | −0.0026 (13) | 0.0075 (14) | 0.0050 (14) |
C222 | 0.0386 (18) | 0.0346 (17) | 0.047 (2) | −0.0010 (15) | 0.0074 (15) | 0.0031 (15) |
C223 | 0.061 (2) | 0.0294 (19) | 0.071 (3) | −0.0024 (16) | 0.012 (2) | −0.0012 (17) |
C224 | 0.088 (3) | 0.031 (2) | 0.087 (3) | −0.007 (2) | 0.020 (3) | 0.017 (2) |
C225 | 0.099 (3) | 0.049 (2) | 0.074 (3) | −0.006 (2) | 0.035 (3) | 0.023 (2) |
C226 | 0.071 (3) | 0.041 (2) | 0.050 (2) | 0.0000 (19) | 0.0215 (19) | 0.0081 (17) |
C231 | 0.0444 (17) | 0.0372 (16) | 0.0345 (16) | 0.0093 (17) | 0.0184 (13) | 0.0109 (16) |
C232 | 0.052 (2) | 0.054 (2) | 0.058 (2) | 0.0082 (18) | 0.0243 (18) | 0.0162 (18) |
C233 | 0.051 (2) | 0.089 (4) | 0.089 (3) | 0.017 (2) | 0.040 (2) | 0.039 (3) |
C234 | 0.099 (4) | 0.068 (3) | 0.092 (4) | 0.039 (3) | 0.063 (3) | 0.022 (3) |
C235 | 0.108 (4) | 0.061 (3) | 0.064 (3) | 0.023 (3) | 0.047 (3) | −0.002 (2) |
C236 | 0.068 (2) | 0.044 (2) | 0.042 (2) | 0.0088 (19) | 0.0224 (18) | 0.0015 (16) |
N1 | 0.0444 (16) | 0.0454 (16) | 0.0353 (15) | 0.0172 (13) | 0.0121 (12) | 0.0037 (13) |
N2 | 0.0378 (15) | 0.0464 (16) | 0.0313 (14) | 0.0102 (13) | 0.0090 (11) | 0.0033 (12) |
C1 | 0.058 (2) | 0.043 (2) | 0.045 (2) | 0.0169 (18) | 0.0098 (17) | 0.0024 (17) |
C2 | 0.071 (3) | 0.056 (2) | 0.040 (2) | 0.023 (2) | 0.0158 (18) | 0.0165 (18) |
C3 | 0.0454 (19) | 0.046 (2) | 0.0381 (18) | 0.0177 (16) | 0.0075 (15) | 0.0056 (16) |
C4 | 0.046 (2) | 0.087 (3) | 0.061 (3) | 0.007 (2) | 0.0016 (19) | −0.003 (2) |
C5 | 0.102 (4) | 0.064 (3) | 0.066 (3) | 0.039 (3) | 0.022 (3) | 0.020 (2) |
Ru1—N1 | 2.184 (2) | C213—C214 | 1.374 (6) |
Ru1—N2 | 2.185 (2) | C213—H21B | 0.9300 |
Ru1—P1 | 2.3120 (8) | C214—C215 | 1.362 (5) |
Ru1—P2 | 2.3370 (8) | C214—H21C | 0.9300 |
Ru1—Cl2 | 2.4114 (8) | C215—C216 | 1.379 (5) |
Ru1—Cl1 | 2.4131 (8) | C215—H21D | 0.9300 |
P1—C111 | 1.845 (3) | C216—H21E | 0.9300 |
P1—C121 | 1.849 (3) | C221—C222 | 1.385 (4) |
P1—C131 | 1.863 (3) | C221—C226 | 1.400 (4) |
C111—C112 | 1.387 (4) | C222—C223 | 1.381 (4) |
C111—C116 | 1.390 (4) | C222—H22A | 0.9300 |
C112—C113 | 1.386 (4) | C223—C224 | 1.371 (5) |
C112—H11A | 0.9300 | C223—H22B | 0.9300 |
C113—C114 | 1.370 (5) | C224—C225 | 1.374 (6) |
C113—H11B | 0.9300 | C224—H22C | 0.9300 |
C114—C115 | 1.366 (5) | C225—C226 | 1.376 (5) |
C114—H11C | 0.9300 | C225—H22D | 0.9300 |
C115—C116 | 1.384 (4) | C226—H22E | 0.9300 |
C115—H11D | 0.9300 | C231—C236 | 1.387 (5) |
C116—H11E | 0.9300 | C231—C232 | 1.391 (5) |
C121—C126 | 1.377 (4) | C232—C233 | 1.393 (5) |
C121—C122 | 1.388 (4) | C232—H23A | 0.9300 |
C122—C123 | 1.382 (5) | C233—C234 | 1.371 (7) |
C122—H12A | 0.9300 | C233—H23B | 0.9300 |
C123—C124 | 1.356 (5) | C234—C235 | 1.361 (7) |
C123—H12B | 0.9300 | C234—H23C | 0.9300 |
C124—C125 | 1.368 (5) | C235—C236 | 1.375 (5) |
C124—H12C | 0.9300 | C235—H23D | 0.9300 |
C125—C126 | 1.391 (5) | C236—H23E | 0.9300 |
C125—H12D | 0.9300 | N1—C1 | 1.461 (4) |
C126—H12E | 0.9300 | N1—H1N1 | 0.9000 |
C131—C132 | 1.378 (4) | N1—H2N1 | 0.9000 |
C131—C136 | 1.387 (4) | N2—C2 | 1.453 (4) |
C132—C133 | 1.380 (5) | N2—H1N2 | 0.9000 |
C132—H13A | 0.9300 | N2—H2N2 | 0.9000 |
C133—C134 | 1.369 (6) | C1—C3 | 1.520 (4) |
C133—H13B | 0.9300 | C1—H1B | 0.9700 |
C134—C135 | 1.363 (5) | C1—H1C | 0.9700 |
C134—H13C | 0.9300 | C2—C3 | 1.514 (5) |
C135—C136 | 1.386 (5) | C2—H2B | 0.9700 |
C135—H13D | 0.9300 | C2—H2C | 0.9700 |
C136—H13E | 0.9300 | C3—C4 | 1.502 (5) |
P2—C211 | 1.843 (3) | C3—C5 | 1.527 (5) |
P2—C221 | 1.846 (3) | C4—H4A | 0.9600 |
P2—C231 | 1.849 (3) | C4—H4B | 0.9600 |
C211—C216 | 1.383 (4) | C4—H4C | 0.9600 |
C211—C212 | 1.385 (4) | C5—H5A | 0.9600 |
C212—C213 | 1.389 (5) | C5—H5B | 0.9600 |
C212—H21A | 0.9300 | C5—H5C | 0.9600 |
N1—Ru1—N2 | 82.35 (9) | C212—C213—H21B | 119.9 |
N1—Ru1—P1 | 170.31 (7) | C215—C214—C213 | 119.6 (3) |
N2—Ru1—P1 | 89.14 (7) | C215—C214—H21C | 120.2 |
N1—Ru1—P2 | 90.54 (7) | C213—C214—H21C | 120.2 |
N2—Ru1—P2 | 168.90 (7) | C214—C215—C216 | 120.3 (4) |
P1—Ru1—P2 | 98.55 (3) | C214—C215—H21D | 119.9 |
N1—Ru1—Cl2 | 83.77 (8) | C216—C215—H21D | 119.9 |
N2—Ru1—Cl2 | 90.48 (8) | C215—C216—C211 | 121.6 (3) |
P1—Ru1—Cl2 | 91.70 (3) | C215—C216—H21E | 119.2 |
P2—Ru1—Cl2 | 97.25 (3) | C211—C216—H21E | 119.2 |
N1—Ru1—Cl1 | 83.92 (8) | C222—C221—C226 | 117.9 (3) |
N2—Ru1—Cl1 | 81.99 (8) | C222—C221—P2 | 119.1 (2) |
P1—Ru1—Cl1 | 99.54 (3) | C226—C221—P2 | 122.9 (3) |
P2—Ru1—Cl1 | 88.81 (3) | C223—C222—C221 | 121.2 (3) |
Cl2—Ru1—Cl1 | 166.33 (3) | C223—C222—H22A | 119.4 |
C111—P1—C121 | 104.52 (14) | C221—C222—H22A | 119.4 |
C111—P1—C131 | 99.29 (13) | C224—C223—C222 | 120.2 (4) |
C121—P1—C131 | 97.63 (14) | C224—C223—H22B | 119.9 |
C111—P1—Ru1 | 119.59 (9) | C222—C223—H22B | 119.9 |
C121—P1—Ru1 | 117.61 (10) | C223—C224—C225 | 119.6 (4) |
C131—P1—Ru1 | 114.61 (10) | C223—C224—H22C | 120.2 |
C112—C111—C116 | 118.3 (3) | C225—C224—H22C | 120.2 |
C112—C111—P1 | 120.5 (2) | C224—C225—C226 | 120.8 (4) |
C116—C111—P1 | 121.1 (2) | C224—C225—H22D | 119.6 |
C113—C112—C111 | 120.5 (3) | C226—C225—H22D | 119.6 |
C113—C112—H11A | 119.8 | C225—C226—C221 | 120.3 (4) |
C111—C112—H11A | 119.8 | C225—C226—H22E | 119.8 |
C114—C113—C112 | 120.5 (3) | C221—C226—H22E | 119.8 |
C114—C113—H11B | 119.8 | C236—C231—C232 | 118.6 (3) |
C112—C113—H11B | 119.8 | C236—C231—P2 | 120.8 (3) |
C115—C114—C113 | 119.7 (3) | C232—C231—P2 | 119.7 (3) |
C115—C114—H11C | 120.1 | C231—C232—C233 | 119.7 (4) |
C113—C114—H11C | 120.1 | C231—C232—H23A | 120.1 |
C114—C115—C116 | 120.6 (3) | C233—C232—H23A | 120.1 |
C114—C115—H11D | 119.7 | C234—C233—C232 | 120.3 (4) |
C116—C115—H11D | 119.7 | C234—C233—H23B | 119.8 |
C115—C116—C111 | 120.5 (3) | C232—C233—H23B | 119.8 |
C115—C116—H11E | 119.8 | C235—C234—C233 | 120.1 (4) |
C111—C116—H11E | 119.8 | C235—C234—H23C | 120.0 |
C126—C121—C122 | 117.7 (3) | C233—C234—H23C | 120.0 |
C126—C121—P1 | 125.9 (2) | C234—C235—C236 | 120.5 (4) |
C122—C121—P1 | 116.5 (2) | C234—C235—H23D | 119.7 |
C123—C122—C121 | 120.9 (3) | C236—C235—H23D | 119.7 |
C123—C122—H12A | 119.6 | C235—C236—C231 | 120.8 (4) |
C121—C122—H12A | 119.6 | C235—C236—H23E | 119.6 |
C124—C123—C122 | 120.5 (3) | C231—C236—H23E | 119.6 |
C124—C123—H12B | 119.8 | C1—N1—Ru1 | 123.7 (2) |
C122—C123—H12B | 119.8 | C1—N1—H1N1 | 106.4 |
C123—C124—C125 | 120.0 (3) | Ru1—N1—H1N1 | 106.4 |
C123—C124—H12C | 120.0 | C1—N1—H2N1 | 106.4 |
C125—C124—H12C | 120.0 | Ru1—N1—H2N1 | 106.4 |
C124—C125—C126 | 119.8 (3) | H1N1—N1—H2N1 | 106.5 |
C124—C125—H12D | 120.1 | C2—N2—Ru1 | 123.7 (2) |
C126—C125—H12D | 120.1 | C2—N2—H1N2 | 106.4 |
C121—C126—C125 | 121.1 (3) | Ru1—N2—H1N2 | 106.4 |
C121—C126—H12E | 119.4 | C2—N2—H2N2 | 106.4 |
C125—C126—H12E | 119.4 | Ru1—N2—H2N2 | 106.4 |
C132—C131—C136 | 116.9 (3) | H1N2—N2—H2N2 | 106.5 |
C132—C131—P1 | 121.2 (3) | N1—C1—C3 | 114.7 (3) |
C136—C131—P1 | 121.7 (2) | N1—C1—H1B | 108.6 |
C131—C132—C133 | 121.8 (4) | C3—C1—H1B | 108.6 |
C131—C132—H13A | 119.1 | N1—C1—H1C | 108.6 |
C133—C132—H13A | 119.1 | C3—C1—H1C | 108.6 |
C134—C133—C132 | 120.0 (4) | H1B—C1—H1C | 107.6 |
C134—C133—H13B | 120.0 | N2—C2—C3 | 116.1 (3) |
C132—C133—H13B | 120.0 | N2—C2—H2B | 108.3 |
C135—C134—C133 | 119.7 (4) | C3—C2—H2B | 108.3 |
C135—C134—H13C | 120.1 | N2—C2—H2C | 108.3 |
C133—C134—H13C | 120.1 | C3—C2—H2C | 108.3 |
C134—C135—C136 | 120.0 (4) | H2B—C2—H2C | 107.4 |
C134—C135—H13D | 120.0 | C4—C3—C2 | 112.3 (3) |
C136—C135—H13D | 120.0 | C4—C3—C1 | 110.9 (3) |
C135—C136—C131 | 121.5 (3) | C2—C3—C1 | 111.0 (3) |
C135—C136—H13E | 119.2 | C4—C3—C5 | 109.6 (3) |
C131—C136—H13E | 119.2 | C2—C3—C5 | 106.1 (3) |
C211—P2—C221 | 101.92 (14) | C1—C3—C5 | 106.7 (3) |
C211—P2—C231 | 99.08 (14) | C3—C4—H4A | 109.5 |
C221—P2—C231 | 101.03 (14) | C3—C4—H4B | 109.5 |
C211—P2—Ru1 | 124.38 (10) | H4A—C4—H4B | 109.5 |
C221—P2—Ru1 | 118.04 (10) | C3—C4—H4C | 109.5 |
C231—P2—Ru1 | 108.57 (10) | H4A—C4—H4C | 109.5 |
C216—C211—C212 | 117.5 (3) | H4B—C4—H4C | 109.5 |
C216—C211—P2 | 119.7 (2) | C3—C5—H5A | 109.5 |
C212—C211—P2 | 122.7 (3) | C3—C5—H5B | 109.5 |
C211—C212—C213 | 120.8 (4) | H5A—C5—H5B | 109.5 |
C211—C212—H21A | 119.6 | C3—C5—H5C | 109.5 |
C213—C212—H21A | 119.6 | H5A—C5—H5C | 109.5 |
C214—C213—C212 | 120.3 (4) | H5B—C5—H5C | 109.5 |
C214—C213—H21B | 119.9 |
Experimental details
Crystal data | |
Chemical formula | [RuCl2(C5H14N2)(C18H15P)2] |
Mr | 798.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.393 (2), 10.3493 (16), 21.315 (2) |
β (°) | 102.181 (15) |
V (Å3) | 3750.4 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.60 × 0.60 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.687, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7922, 7319, 5387 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.078, 1.03 |
No. of reflections | 7319 |
No. of parameters | 436 |
H-atom treatment | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 0.39, −0.51 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), HELENA (Spek, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), XCIF in SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors gratefully acknowledge The Deanship of Scientific Research at The University of Jordan for financial support and Universität Tübingen for the use of the measurement facilities. They also thank Dr C. Maichle-Moessmer for assistance with the data collection.
References
Clarke, M. (2002). Coord. Chem. Rev. 232, 69–93. Web of Science CrossRef CAS Google Scholar
Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707. CrossRef CAS Google Scholar
Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Lindner, E., Lu, Z.-L., Mayer, A. H., Speiser, B., Tittel, C. & Warad, I. (2005). Electrochem. Commun. 7, 1013–1020. Web of Science CrossRef CAS Google Scholar
Lindner, E., Mayer, H. A., Warad, I. & Eichele, K. (2003a). J. Organomet. Chem. 665, 176–185. Web of Science CSD CrossRef CAS Google Scholar
Lindner, E., Warad, I., Eichele, K. & Mayer, H. A. (2003b). Inorg. Chim. Acta, 350, 49–56. Web of Science CSD CrossRef CAS Google Scholar
Nachtigall, C., Al-Gharabli, S., Eichele, K., Lindner, E. & Mayer, H. A. (2002). Organometallics, 21, 105–112. Web of Science CSD CrossRef Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: J. Wiley & Sons. Google Scholar
Noyori, R. (2003). Adv. Synth. Catal. 345, 15–32. Web of Science CrossRef CAS Google Scholar
Noyori, R. & Ohkuma, T. (2001). Angew. Chem. Int. Ed. 40, 40–73. Web of Science CrossRef CAS Google Scholar
Ohkuma, T., Koizumi, M., Muniz, K., Hilt, G., Kabuta, C. & Noyori, R. (2002). J. Am. Chem. Soc. 124, 6508–6509. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Warad, I., Al-Resayes, S. & Eichele, K. (2006). Z. Kristallogr. 221, 275–276. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
One of the important transformations in the organic synthesis is the reduction of ketones to secondary alcohol (Noyori, 1994). The enantioselective hydrogenation of prochiral carbonyl compounds to chiral alcohols is among the most valuable method in organic chemistry (Drozdzak et al., 2005; Lindner et al., 2005). Furthermore, stereo-, regio- and enantioselective ruthenium-catalysis lies at the heart of current developments in pharmaceutical, agrochemical and similar industries (Noyori, 2003; Clarke, 2002). Recently Noyori et al. (Ohkuma et al., 2002; Noyori & Ohkuma, 2001) discovered a ruthenium(II) complex system containing diphosphine and 1,2-diamine ligands which, in the presence of a base and 2-propanol, proved to be excellent catalysts (regarding efficiency, enantioselectivity, and flexibility) for the hydrogenation of ketones under mild conditions (Lindner et al., 2005; Noyori & Ohkuma, 2001). The title complex is crystallized as free solvated trans-dichloro-cis-bis(triphenylphosphane) isomer with approximate C2v symmetry. The ruthenium atom is coordinated with two chlorine species in trans form, one diamine co-ligand via the nitrogen atoms and two triphenylphosphane ligands via the phosphorus atoms in cis forms. The complex exhibits distorted octahedron geometry around the ruthenium center atom with two Ru–N distances of 2.183 (3)Å and 2.185 (3) Å, two Ru–Cl distances of 2.4114 (8)Å and 2.4130 (8)Å and two Ru–P distances equal 2.3120 (8)Å and 2.3370 (8) Å. The diamine and phosphine ligands are practically planar. The coordination angle of the diamine chelate ring results in distinctly N–Ru–N angle of 82.35 (11)° departs from ideal value by up to approximately 7.6°, due to the six-membered ring chelating nature of 1,3-propanediamine ligand, while the P–Ru–P angle is equal 98.55 (3)°. The dichloro ligands are bent away from their axial positions toward the diamine ligand forming Cl–Ru–Cl angle of 166.32 (3)°, resonating to the steric effect of the phenyls in the phosphine ligands. In the crystal structure there are a number of RuCl···HN contacts smaller than 3.0 Å, indicating the presence of unconventional intra-hydrogen bonds (Doucet et al., 1998; Warad et al., 2006).