organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-7,8-di­methyl­quinoline

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 May 2010; accepted 28 May 2010; online 5 June 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C11H9Cl2N, both of which are essentially planar [maximum deviations of 0.072 (5) and 0.072 (7) Å]. In the crystal structure, weak ππ stacking inter­actions [centroid-centroid distances = 3.791 (3) Å and 3.855 (3) Å] link pairs of mol­ecules.

Related literature

For the properties and applications of related compounds, see: Biavatti et al. (2002[Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66-70.]); Fournet et al. (1981[Fournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859-863.]); McCormick et al. (1996[McCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. 59, 469-471.]); Towers et al. (1981[Towers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136-142.]); Ziegler & Gelfert (1959[Ziegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822-826.]). For similar crystal structures, see: Subashini et al. (2009[Subashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o370.]); Somvanshi et al. (2008[Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381-386.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Cl2N

  • Mr = 226.09

  • Orthorhombic, P c a 21

  • a = 20.3054 (9) Å

  • b = 3.9992 (2) Å

  • c = 25.5743 (11) Å

  • V = 2076.77 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.845, Tmax = 0.918

  • 19807 measured reflections

  • 4009 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 0.94

  • 4009 reflections

  • 257 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1943 Friedel pairs

  • Flack parameter: 0.15 (10)

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A wide range of medicinal properties have already been identified for compounds containing the quinoline ring system including antiprotozoal (Fournet et al., 1981), antibacterial (Towers et al., 1981), antifungal (Biavatti et al., 2002) and antiviral activities (McCormick et al., 1996). Reaction of aniline with malonic acid in an excess of phosphorus oxychloride at reflux to give 2,4-dichloroquinoline was first reported by Ziegler & Gelfert (1959). A similar derivative of quinoline was synthesized from the mixture of p-toluidine and malonic acid in a one-pot reaction from an aryl amine, malonic acid and phosphorous oxychloride and its cytotoxicity has been reported (Somvanshi et al., 2008). Another derivative of quinoline prepared from p-anisidine and phosphorous oxychloride has been reported (Subashini et al., 2009). In continuous of our work, the crystal structure of another derivative is reported in this paper.

The molecules A (Cl1/Cl2/N1/C1–C11) and B (Cl3/Cl4/N2/C12–C22) in the asymmetric unit of the title compound (I) are shown in Fig. 1. In both molecules A and B, the bond lengths and angles are comparable with those of similar structures (Somvanshi et al., 2008; Subashini et al., 2009). The molecules A and B are essentially planar, except the H atoms of their methyl groups, with maximum deviations of 0.072 (5)Å for C10 and 0.072 (7)Å for C21, respectively. Fitting of the non-H atoms of molecules A and B results in an r.m.s. fit of 0.063 Å). The least-squares plane through molecule A makes a dihedral angle of 56.72 (14)° with that of molecule B.

Weak intramolecular C—H···Cl and C—H···N interactions contribute to the stabilization of the molecular conformation of (I) (Table 1). In the crystal structure, weak π-π stacking interactions [Cg1···Cg2(x, 1 + y, z) = 3.791 (3) Å and Cg4···Cg5 (x, 1 + y, z) = 3.855 (3) Å; where Cg1, Cg2, Cg4 and Cg5 are centroids of the N1/C1–C4/C9, C4–C9, N2/C12–C15/C20 and C15–C20 rings, respectively] link pairs of molecules. In the structure, no classical hydrogen bonds are observed. Fig. 2 shows the crystal packing down the b axis.

Related literature top

For the properties and applications of related compounds, see: Biavatti et al. (2002); Fournet et al. (1981); McCormick et al. (1996); Towers et al. (1981); Ziegler & Gelfert (1959). For similar crystal structures, see: Subashini et al. (2009); Somvanshi et al. (2008).

Experimental top

2,3-Dimethylaniline (10 mmol) and malonic acid (10 mmol) were heated under reflux in phosphorus oxychloride (30 ml), with stirring, for 5 h. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5 M sodium hydroxide. Filtration gave the crude product as a brown solid. Column chromatography (95:5 hexane–EtOAc) yielded the pure 2,4-dichloro-7,8-dimethylquinoline. White needles of the synthesized compound have been grown from DMSO.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H and refined as a riding method, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the two molecules in the same asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) showing π-π stacking interactions (dashed lines) between the adjacent molecules down b axis. H atoms are omitted for clarity.
2,4-Dichloro-7,8-dimethylquinoline top
Crystal data top
C11H9Cl2NF(000) = 928
Mr = 226.09Dx = 1.446 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 895 reflections
a = 20.3054 (9) Åθ = 1.8–24.7°
b = 3.9992 (2) ŵ = 0.58 mm1
c = 25.5743 (11) ÅT = 295 K
V = 2076.77 (17) Å3Needle, colourless
Z = 80.30 × 0.24 × 0.15 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4009 independent reflections
Radiation source: Enhance (Mo) X-ray Source2599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 2525
Tmin = 0.845, Tmax = 0.918k = 44
19807 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
4009 reflectionsΔρmax = 0.32 e Å3
257 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 1943 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (10)
Crystal data top
C11H9Cl2NV = 2076.77 (17) Å3
Mr = 226.09Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 20.3054 (9) ŵ = 0.58 mm1
b = 3.9992 (2) ÅT = 295 K
c = 25.5743 (11) Å0.30 × 0.24 × 0.15 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4009 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2599 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.918Rint = 0.048
19807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.32 e Å3
S = 0.94Δρmin = 0.19 e Å3
4009 reflectionsAbsolute structure: Flack (1983), 1943 Friedel pairs
257 parametersAbsolute structure parameter: 0.15 (10)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68230 (6)0.6442 (5)0.97181 (6)0.0916 (6)
Cl20.50757 (6)0.7463 (3)0.81738 (5)0.0709 (4)
N10.56446 (17)0.4177 (12)0.97981 (17)0.0530 (12)
C10.6040 (3)0.5681 (15)0.9491 (2)0.0630 (19)
C20.5891 (2)0.6763 (11)0.89752 (18)0.0550 (16)
C30.5272 (2)0.6141 (12)0.88079 (17)0.0490 (14)
C40.4813 (3)0.4506 (11)0.9111 (3)0.0510 (19)
C50.4158 (2)0.3859 (13)0.8958 (2)0.0593 (17)
C60.3744 (2)0.2192 (11)0.9295 (2)0.0647 (17)
C70.3943 (2)0.1131 (13)0.9795 (2)0.0623 (19)
C80.4577 (2)0.1780 (10)0.99705 (18)0.0553 (17)
C90.50171 (19)0.3483 (10)0.96177 (17)0.0477 (14)
C100.3437 (3)0.0425 (13)1.0129 (2)0.0640 (19)
C110.4804 (3)0.0815 (14)1.0504 (2)0.074 (2)
Cl30.56576 (6)1.1324 (5)0.69164 (6)0.0964 (6)
Cl40.73974 (6)1.2634 (3)0.84687 (5)0.0694 (4)
N20.6857 (2)0.9027 (12)0.68457 (18)0.0627 (17)
C120.6456 (3)1.0586 (13)0.7160 (2)0.0540 (17)
C130.6582 (2)1.1805 (11)0.76636 (19)0.0553 (16)
C140.7208 (2)1.1269 (12)0.78476 (17)0.0500 (16)
C150.7689 (2)0.9656 (10)0.7534 (3)0.0420 (18)
C160.8335 (3)0.8998 (14)0.7678 (2)0.0620 (17)
C170.8766 (2)0.7485 (11)0.73560 (19)0.0590 (17)
C180.8568 (2)0.6444 (12)0.6858 (2)0.0610 (19)
C190.7928 (2)0.6889 (10)0.66826 (18)0.0567 (17)
C200.74761 (19)0.8565 (11)0.70266 (17)0.0507 (16)
C210.9046 (4)0.4700 (17)0.6447 (4)0.112 (4)
C220.7674 (3)0.5740 (13)0.6163 (2)0.0650 (19)
H20.620100.783200.876600.0660*
H50.400700.455400.863200.0710*
H60.331500.174800.918700.0780*
H10A0.322500.126601.033600.0960*
H10B0.364000.203801.035500.0960*
H10C0.311500.151800.991300.0960*
H11A0.465300.244201.075300.1120*
H11B0.527600.072101.051000.1120*
H11C0.462800.133901.059300.1120*
H130.626301.290300.786000.0660*
H160.847600.962600.801000.0740*
H170.919700.713100.746500.0700*
H21A0.900200.577900.611300.1670*
H21B0.893100.238100.641400.1670*
H21C0.949300.488800.656500.1670*
H22A0.794600.663300.589000.0970*
H22B0.722900.650900.611800.0970*
H22C0.768200.334200.614900.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0611 (8)0.1339 (13)0.0798 (10)0.0212 (8)0.0161 (7)0.0013 (12)
Cl20.0827 (8)0.0806 (7)0.0495 (6)0.0103 (6)0.0061 (6)0.0020 (6)
N10.047 (2)0.068 (2)0.044 (2)0.004 (2)0.0064 (19)0.008 (2)
C10.048 (3)0.069 (3)0.072 (4)0.003 (3)0.001 (3)0.013 (3)
C20.062 (3)0.056 (3)0.047 (2)0.002 (2)0.005 (2)0.007 (2)
C30.060 (3)0.048 (2)0.039 (2)0.006 (2)0.000 (2)0.005 (2)
C40.052 (3)0.041 (3)0.060 (4)0.009 (2)0.008 (3)0.020 (2)
C50.045 (3)0.075 (3)0.058 (3)0.010 (3)0.003 (2)0.019 (3)
C60.046 (3)0.067 (3)0.081 (3)0.007 (2)0.004 (2)0.016 (3)
C70.054 (3)0.054 (3)0.079 (4)0.005 (3)0.012 (3)0.016 (3)
C80.066 (3)0.048 (3)0.052 (3)0.004 (2)0.008 (2)0.012 (2)
C90.055 (2)0.038 (2)0.050 (3)0.001 (2)0.011 (2)0.012 (2)
C100.062 (4)0.062 (3)0.068 (3)0.004 (2)0.018 (3)0.018 (3)
C110.088 (4)0.067 (3)0.068 (4)0.002 (3)0.001 (3)0.004 (3)
Cl30.0610 (8)0.1433 (13)0.0848 (10)0.0298 (9)0.0193 (7)0.0122 (13)
Cl40.0783 (7)0.0777 (7)0.0523 (6)0.0045 (6)0.0028 (6)0.0053 (6)
N20.067 (3)0.067 (3)0.054 (3)0.006 (2)0.002 (2)0.002 (3)
C120.046 (3)0.073 (3)0.043 (3)0.005 (2)0.002 (2)0.006 (3)
C130.042 (2)0.061 (3)0.063 (3)0.008 (2)0.005 (2)0.002 (2)
C140.058 (3)0.047 (3)0.045 (2)0.003 (2)0.006 (2)0.002 (2)
C150.034 (3)0.039 (2)0.053 (4)0.0013 (16)0.004 (3)0.0138 (19)
C160.070 (3)0.057 (3)0.059 (3)0.014 (3)0.009 (3)0.004 (3)
C170.050 (3)0.060 (3)0.067 (3)0.001 (2)0.004 (2)0.006 (3)
C180.060 (3)0.043 (3)0.080 (4)0.001 (2)0.016 (3)0.018 (3)
C190.063 (3)0.049 (3)0.058 (3)0.008 (2)0.007 (2)0.011 (2)
C200.047 (2)0.054 (3)0.051 (3)0.000 (2)0.009 (2)0.007 (2)
C210.084 (5)0.086 (5)0.166 (8)0.018 (3)0.056 (5)0.007 (4)
C220.084 (4)0.072 (3)0.039 (3)0.016 (3)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C11.720 (6)C10—H10C0.9600
Cl2—C31.752 (5)C11—H11B0.9600
Cl3—C121.762 (6)C11—H11C0.9600
Cl4—C141.723 (5)C11—H11A0.9600
N1—C91.383 (5)C12—C131.401 (7)
N1—C11.274 (7)C13—C141.372 (6)
N2—C201.352 (6)C14—C151.419 (7)
N2—C121.303 (7)C15—C161.388 (7)
C1—C21.421 (7)C15—C201.436 (8)
C2—C31.351 (6)C16—C171.345 (7)
C3—C41.377 (8)C17—C181.399 (7)
C4—C51.410 (7)C18—C191.386 (6)
C4—C91.421 (8)C18—C211.592 (10)
C5—C61.376 (7)C19—C201.437 (6)
C6—C71.407 (7)C19—C221.498 (7)
C7—C101.474 (7)C13—H130.9300
C7—C81.388 (6)C16—H160.9300
C8—C111.491 (7)C17—H170.9300
C8—C91.441 (6)C21—H21A0.9600
C2—H20.9300C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—H60.9300C22—H22A0.9600
C10—H10A0.9600C22—H22B0.9600
C10—H10B0.9600C22—H22C0.9600
Cl1···H22Ai3.0300H5···H16iii2.5500
Cl2···H52.7300H6···H10C2.3100
Cl2···H13ii3.1300H6···Cl4iii3.1500
Cl2···H17iii3.1400H10A···C22viii3.0400
Cl3···H21Civ2.9500H10A···H22Bviii2.3800
Cl4···H6v3.1500H10B···C112.6500
Cl4···H162.7600H10B···H11C2.1200
N1···H11B2.4100H10C···H62.3100
N2···H22B2.2500H11A···H11Cvi2.5200
C3···C4vi3.558 (7)H11B···N12.4100
C4···C3ii3.558 (7)H11C···H11Aii2.5200
C5···C6vi3.543 (7)H11C···C102.7200
C6···C5ii3.543 (7)H11C···H10B2.1200
C8···C9ii3.553 (6)H13···Cl2vi3.1300
C9···C8vi3.553 (6)H16···Cl42.7600
C14···C15vi3.584 (6)H16···H5v2.5500
C15···C14ii3.584 (6)H17···H21C2.5400
C18···C21vi3.598 (9)H17···Cl2v3.1400
C19···C20ii3.563 (6)H21A···C222.7000
C20···C19vi3.563 (6)H21A···H22A2.2400
C21···C18ii3.598 (9)H21B···C18ii2.7300
C10···H11C2.7200H21B···C19ii3.0700
C11···H10B2.6500H21B···C21ii3.0800
C18···H21Bvi2.7300H21B···C222.9500
C19···H21Bvi3.0700H21C···H172.5400
C19···H22Cvi2.9600H21C···Cl3ix2.9500
C20···H22Cvi2.9800H22A···C212.7600
C21···H21Bvi3.0800H22A···H21A2.2400
C21···H22C2.9200H22A···Cl1x3.0300
C21···H22A2.7600H22B···N22.2500
C22···H22Cvi3.0400H22B···H10Avii2.3800
C22···H10Avii3.0400H22C···C19ii2.9600
C22···H21B2.9500H22C···C20ii2.9800
C22···H21A2.7000H22C···C212.9200
H5···Cl22.7300H22C···C22ii3.0400
C1—N1—C9118.0 (4)H11A—C11—H11B110.00
C12—N2—C20115.8 (5)Cl3—C12—N2115.9 (4)
Cl1—C1—N1117.3 (4)Cl3—C12—C13115.8 (4)
N1—C1—C2125.6 (5)N2—C12—C13128.3 (5)
Cl1—C1—C2117.2 (4)C12—C13—C14115.5 (4)
C1—C2—C3115.9 (4)Cl4—C14—C13118.3 (3)
Cl2—C3—C2116.7 (3)Cl4—C14—C15120.8 (4)
C2—C3—C4122.6 (5)C13—C14—C15121.0 (4)
Cl2—C3—C4120.7 (4)C14—C15—C16125.9 (6)
C3—C4—C5124.7 (6)C14—C15—C20116.2 (4)
C5—C4—C9118.4 (5)C16—C15—C20117.8 (5)
C3—C4—C9116.9 (5)C15—C16—C17122.5 (5)
C4—C5—C6119.4 (5)C16—C17—C18120.3 (4)
C5—C6—C7122.7 (4)C17—C18—C19121.7 (4)
C6—C7—C8120.3 (4)C17—C18—C21123.8 (5)
C6—C7—C10117.0 (4)C19—C18—C21114.5 (5)
C8—C7—C10122.6 (5)C18—C19—C20117.4 (4)
C7—C8—C9117.5 (4)C18—C19—C22124.8 (4)
C7—C8—C11122.3 (4)C20—C19—C22117.8 (4)
C9—C8—C11120.2 (4)N2—C20—C15123.2 (4)
N1—C9—C8117.2 (4)N2—C20—C19116.6 (4)
C4—C9—C8121.8 (4)C15—C20—C19120.2 (4)
N1—C9—C4121.0 (4)C12—C13—H13122.00
C3—C2—H2122.00C14—C13—H13122.00
C1—C2—H2122.00C15—C16—H16119.00
C4—C5—H5120.00C17—C16—H16119.00
C6—C5—H5120.00C16—C17—H17120.00
C7—C6—H6119.00C18—C17—H17120.00
C5—C6—H6119.00C18—C21—H21A109.00
C7—C10—H10A110.00C18—C21—H21B109.00
C7—C10—H10B109.00C18—C21—H21C110.00
H10A—C10—H10B110.00H21A—C21—H21B109.00
H10A—C10—H10C109.00H21A—C21—H21C109.00
C7—C10—H10C109.00H21B—C21—H21C109.00
H10B—C10—H10C109.00C19—C22—H22A109.00
C8—C11—H11B109.00C19—C22—H22B109.00
C8—C11—H11C110.00C19—C22—H22C110.00
C8—C11—H11A109.00H22A—C22—H22B110.00
H11A—C11—H11C109.00H22A—C22—H22C110.00
H11B—C11—H11C109.00H22B—C22—H22C109.00
C9—N1—C1—Cl1178.7 (4)C7—C8—C9—C40.7 (6)
C9—N1—C1—C20.8 (8)C11—C8—C9—N10.4 (6)
C1—N1—C9—C41.9 (7)C11—C8—C9—C4178.6 (4)
C1—N1—C9—C8180.0 (5)C7—C8—C9—N1178.9 (4)
C20—N2—C12—Cl3177.8 (4)Cl3—C12—C13—C14179.0 (4)
C20—N2—C12—C130.9 (8)N2—C12—C13—C140.3 (8)
C12—N2—C20—C150.8 (7)C12—C13—C14—Cl4178.9 (4)
C12—N2—C20—C19179.2 (4)C12—C13—C14—C151.5 (7)
N1—C1—C2—C30.7 (8)Cl4—C14—C15—C160.2 (7)
Cl1—C1—C2—C3179.8 (4)Cl4—C14—C15—C20178.9 (3)
C1—C2—C3—Cl2179.8 (4)C13—C14—C15—C16179.7 (5)
C1—C2—C3—C41.2 (7)C13—C14—C15—C201.6 (7)
Cl2—C3—C4—C52.4 (7)C14—C15—C16—C17179.3 (5)
Cl2—C3—C4—C9179.2 (3)C20—C15—C16—C172.0 (8)
C2—C3—C4—C90.2 (7)C14—C15—C20—N20.3 (7)
C2—C3—C4—C5178.7 (5)C14—C15—C20—C19179.6 (4)
C3—C4—C5—C6179.9 (5)C16—C15—C20—N2179.2 (5)
C9—C4—C5—C61.7 (7)C16—C15—C20—C190.8 (7)
C5—C4—C9—C80.9 (7)C15—C16—C17—C181.3 (8)
C3—C4—C9—N11.4 (7)C16—C17—C18—C190.8 (7)
C3—C4—C9—C8179.4 (4)C16—C17—C18—C21178.8 (5)
C5—C4—C9—N1177.2 (4)C17—C18—C19—C201.9 (7)
C4—C5—C6—C71.0 (7)C17—C18—C19—C22177.8 (4)
C5—C6—C7—C10176.0 (5)C21—C18—C19—C20177.7 (4)
C5—C6—C7—C80.7 (7)C21—C18—C19—C222.6 (7)
C6—C7—C8—C91.5 (7)C18—C19—C20—N2178.9 (4)
C6—C7—C8—C11177.8 (4)C18—C19—C20—C151.1 (6)
C10—C7—C8—C9176.5 (4)C22—C19—C20—N21.3 (6)
C10—C7—C8—C112.8 (7)C22—C19—C20—C15178.7 (4)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x, y1, z; (iii) x1/2, y+1, z; (iv) x1/2, y+2, z; (v) x+1/2, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z1/2; (viii) x+1, y+1, z+1/2; (ix) x+1/2, y+2, z; (x) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl20.932.733.094 (5)104
C11—H11B···N10.962.412.825 (7)106
C16—H16···Cl40.932.763.135 (6)105
C22—H22B···N20.962.252.744 (7)111

Experimental details

Crystal data
Chemical formulaC11H9Cl2N
Mr226.09
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)20.3054 (9), 3.9992 (2), 25.5743 (11)
V3)2076.77 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.30 × 0.24 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.845, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
19807, 4009, 2599
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 0.94
No. of reflections4009
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19
Absolute structureFlack (1983), 1943 Friedel pairs
Absolute structure parameter0.15 (10)

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBiavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859–863.  CrossRef Google Scholar
First citationMcCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. 59, 469–471.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationSubashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTowers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZiegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822–826.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds