organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-N-(2-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 14 June 2010; accepted 23 June 2010; online 26 June 2010)

The mol­ecular structure of the title compound, C15H15NO, involves an intra­molecular C—H⋯O hydrogen bond. The central amide group –NH—C(=O)– is twisted by 37.95 (12)° out of the meta-substituted benzoyl ring and by 37.88 (12)° out of the ortho-substituted aniline ring. The two benzene rings are inclined to one another at only 4.2 (1)° having an inter­planar spacing of ca 0.90 Å. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into chains running along the b axis. A weak inter­molecular C—H⋯π inter­action is also present.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o541.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o770.]); Rodrigues et al. (2010[Rodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /c

  • a = 11.1896 (3) Å

  • b = 4.95027 (14) Å

  • c = 24.1164 (5) Å

  • β = 116.512 (2)°

  • V = 1195.37 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.55 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.954, Tmax = 0.993

  • 13694 measured reflections

  • 2124 independent reflections

  • 1553 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.02

  • 2124 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.13 2.9417 (14) 157
C13—H13⋯O1 0.93 2.48 2.908 (2) 108
C14—H14c⋯Cg1i 0.96 2.70 3.627 (2) 161
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Bowes et al., 2003; Gowda et al., 2008a,b; Rodrigues et al., 2010), in the present work, the structure of N-(2-methylphenyl)-3-methylbenzamide (I) has been determined (Fig. 1). In the crystal, the ortho-methyl substituent on the anilino ring is positioned syn to the N–H bond, while the meta-methyl substituent on the benzoyl ring is positioned anti to the carbonyl C==O bond.

The structure of (I) involves an intramolecular C–H···O hydrogen bond (Table 1) with the ring atom C13 as a donor and the amido O atom as an acceptor. The two benzene rings are inclined to one another at only 4.2 (1)° with an interplanar spacing of ca0.90 Å. The central amide group –NH–C(=O)- is twisted by 37.95 (12)° out of the meta-substituted benzoyl ring and by 37.88 (12)° of the ortho-substituted anilino ring. The crystal packing (Fig. 2) is dominated by intermolecular N–H···O hydrogen bonds which link the molecules into the chains along [0 1 0]. A weak intermolecular C—H···π(arene) hydrogen bond is also present in the structure, and occurs between the C14 methyl group and the centroid Cg1(i) of the C1—C6 ring at the position (i): x, y - 1, z (Table 1).

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b); Rodrigues et al. (2010).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C—H = 0.93 or 0.96 Å, N—H = 0.86 Å and O—H = 0.90 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(C methyl, O). The U values of the bonded atoms C7 and O1 have been subject (using the DELU instruction) to a rigid bond restraint, thus enforcing their anisotropic displacement components in the direction of the bond to be equal within a standard deviation of 0.005.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme and intramolecular C—H···O hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of a chain along [0 1 0] generated by N–H···O hydrogen bond. Another interaction within a chain is a weak C—H···π (arene) hydrogen bond involving the C14 methyl group and the centroid Cg1(i) of the C1—C6 ring. Hydrogen bonds are indicated by dashed lines. Symmetry code (i): x, y - 1, z.
3-Methyl-N-(2-methylphenyl)benzamide top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.252 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6151 reflections
a = 11.1896 (3) Åθ = 3.4–29.4°
b = 4.95027 (14) ŵ = 0.08 mm1
c = 24.1164 (5) ÅT = 295 K
β = 116.512 (2)°Rod, colorless
V = 1195.37 (5) Å30.55 × 0.13 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2124 independent reflections
Graphite monochromator1553 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.036
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.954, Tmax = 0.993k = 55
13694 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H15NOV = 1195.37 (5) Å3
Mr = 225.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1896 (3) ŵ = 0.08 mm1
b = 4.95027 (14) ÅT = 295 K
c = 24.1164 (5) Å0.55 × 0.13 × 0.08 mm
β = 116.512 (2)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1553 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.993Rint = 0.036
13694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2124 reflectionsΔρmin = 0.16 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60977 (14)0.5878 (3)0.45102 (7)0.0380 (4)
C20.62846 (15)0.3929 (3)0.41406 (7)0.0400 (4)
H20.71270.31690.42690.048*
C30.52474 (15)0.3091 (3)0.35868 (7)0.0421 (4)
C40.40013 (16)0.4216 (3)0.34128 (8)0.0485 (4)
H40.32880.36590.30460.058*
C50.37946 (16)0.6155 (3)0.37739 (8)0.0496 (4)
H50.29470.68840.36490.06*
C60.48384 (15)0.7010 (3)0.43174 (7)0.0445 (4)
H60.47010.83420.45550.053*
C70.72176 (14)0.6863 (3)0.50986 (7)0.0386 (4)
C80.92671 (14)0.5441 (3)0.60094 (7)0.0366 (4)
C91.04382 (15)0.4018 (3)0.61249 (7)0.0398 (4)
C101.15481 (17)0.4475 (3)0.66806 (8)0.0529 (5)
H101.2330.3530.67670.064*
C111.15358 (18)0.6281 (4)0.71109 (8)0.0587 (5)
H111.23020.65580.7480.07*
C121.03848 (18)0.7672 (3)0.69924 (8)0.0543 (5)
H121.03720.890.72820.065*
C130.92508 (16)0.7255 (3)0.64467 (7)0.0453 (4)
H130.84710.81890.6370.054*
C140.54820 (18)0.1002 (3)0.31908 (8)0.0551 (5)
H14A0.63140.13680.3180.083*
H14B0.47670.1070.27780.083*
H14C0.55140.07610.33630.083*
C151.04971 (16)0.2057 (3)0.56617 (8)0.0499 (4)
H15A1.01460.28980.52610.075*
H15B0.99750.04870.56410.075*
H15C1.14070.15330.57870.075*
N10.81081 (12)0.4968 (2)0.54447 (6)0.0394 (3)
H1N0.7960.33320.53110.047*
O10.73096 (11)0.92511 (18)0.52470 (5)0.0555 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (9)0.0277 (7)0.0421 (9)0.0000 (6)0.0184 (7)0.0039 (6)
C20.0405 (9)0.0322 (8)0.0451 (9)0.0024 (6)0.0172 (8)0.0041 (6)
C30.0503 (10)0.0331 (8)0.0414 (9)0.0044 (7)0.0190 (8)0.0033 (7)
C40.0452 (10)0.0472 (9)0.0439 (10)0.0068 (7)0.0116 (8)0.0023 (7)
C50.0404 (9)0.0523 (10)0.0530 (10)0.0054 (7)0.0180 (8)0.0063 (8)
C60.0477 (10)0.0391 (8)0.0476 (9)0.0036 (7)0.0222 (8)0.0013 (7)
C70.0415 (9)0.0288 (8)0.0462 (9)0.0012 (6)0.0202 (7)0.0015 (6)
C80.0420 (9)0.0272 (7)0.0388 (8)0.0049 (6)0.0164 (7)0.0007 (6)
C90.0437 (9)0.0309 (8)0.0450 (9)0.0030 (6)0.0199 (8)0.0003 (6)
C100.0439 (9)0.0513 (10)0.0548 (11)0.0004 (7)0.0141 (8)0.0028 (8)
C110.0535 (11)0.0618 (11)0.0454 (10)0.0098 (9)0.0084 (9)0.0104 (9)
C120.0686 (12)0.0491 (10)0.0450 (10)0.0097 (8)0.0252 (9)0.0135 (8)
C130.0505 (10)0.0387 (8)0.0486 (10)0.0018 (7)0.0237 (8)0.0057 (7)
C140.0655 (12)0.0476 (10)0.0492 (10)0.0023 (8)0.0228 (9)0.0065 (8)
C150.0497 (10)0.0452 (9)0.0545 (10)0.0031 (7)0.0230 (8)0.0056 (8)
N10.0435 (8)0.0259 (6)0.0423 (7)0.0005 (5)0.0134 (6)0.0039 (5)
O10.0611 (8)0.0243 (6)0.0653 (8)0.0002 (5)0.0141 (6)0.0038 (5)
Geometric parameters (Å, º) top
C1—C61.390 (2)C9—C101.380 (2)
C1—C21.391 (2)C9—C151.504 (2)
C1—C71.495 (2)C10—C111.374 (2)
C2—C31.385 (2)C10—H100.93
C2—H20.93C11—C121.373 (2)
C3—C41.381 (2)C11—H110.93
C3—C141.508 (2)C12—C131.376 (2)
C4—C51.383 (2)C12—H120.93
C4—H40.93C13—H130.93
C5—C61.376 (2)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—H60.93C14—H14C0.96
C7—O11.2262 (16)C15—H15A0.96
C7—N11.3517 (18)C15—H15B0.96
C8—C131.391 (2)C15—H15C0.96
C8—C91.402 (2)N1—H1N0.86
C8—N11.4194 (19)
C6—C1—C2119.03 (14)C11—C10—C9122.13 (16)
C6—C1—C7118.77 (13)C11—C10—H10118.9
C2—C1—C7122.16 (13)C9—C10—H10118.9
C3—C2—C1121.63 (14)C12—C11—C10119.58 (16)
C3—C2—H2119.2C12—C11—H11120.2
C1—C2—H2119.2C10—C11—H11120.2
C4—C3—C2118.03 (14)C11—C12—C13120.16 (15)
C4—C3—C14121.44 (14)C11—C12—H12119.9
C2—C3—C14120.54 (14)C13—C12—H12119.9
C3—C4—C5121.22 (15)C12—C13—C8120.21 (15)
C3—C4—H4119.4C12—C13—H13119.9
C5—C4—H4119.4C8—C13—H13119.9
C6—C5—C4120.25 (15)C3—C14—H14A109.5
C6—C5—H5119.9C3—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
C5—C6—C1119.82 (15)C3—C14—H14C109.5
C5—C6—H6120.1H14A—C14—H14C109.5
C1—C6—H6120.1H14B—C14—H14C109.5
O1—C7—N1123.11 (14)C9—C15—H15A109.5
O1—C7—C1121.14 (13)C9—C15—H15B109.5
N1—C7—C1115.75 (12)H15A—C15—H15B109.5
C13—C8—C9120.07 (14)C9—C15—H15C109.5
C13—C8—N1121.22 (13)H15A—C15—H15C109.5
C9—C8—N1118.71 (13)H15B—C15—H15C109.5
C10—C9—C8117.84 (14)C7—N1—C8125.73 (12)
C10—C9—C15120.56 (14)C7—N1—H1N117.1
C8—C9—C15121.60 (14)C8—N1—H1N117.1
C6—C1—C2—C30.0 (2)N1—C8—C9—C10179.00 (13)
C7—C1—C2—C3178.03 (13)C13—C8—C9—C15179.54 (14)
C1—C2—C3—C41.1 (2)N1—C8—C9—C151.1 (2)
C1—C2—C3—C14179.15 (13)C8—C9—C10—C110.8 (2)
C2—C3—C4—C51.1 (2)C15—C9—C10—C11179.06 (15)
C14—C3—C4—C5179.21 (15)C9—C10—C11—C120.6 (3)
C3—C4—C5—C60.2 (2)C10—C11—C12—C130.1 (3)
C4—C5—C6—C11.4 (2)C11—C12—C13—C80.6 (2)
C2—C1—C6—C51.3 (2)C9—C8—C13—C120.4 (2)
C7—C1—C6—C5179.36 (14)N1—C8—C13—C12179.69 (14)
C6—C1—C7—O136.9 (2)O1—C7—N1—C81.3 (2)
C2—C1—C7—O1141.04 (15)C1—C7—N1—C8178.10 (13)
C6—C1—C7—N1143.59 (14)C13—C8—N1—C739.2 (2)
C2—C1—C7—N138.4 (2)C9—C8—N1—C7141.47 (15)
C13—C8—C9—C100.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.132.9417 (14)157
C13—H13···O10.932.482.908 (2)108
C14—H14c···Cg1i0.962.703.627 (2)161
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.1896 (3), 4.95027 (14), 24.1164 (5)
β (°) 116.512 (2)
V3)1195.37 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.954, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
13694, 2124, 1553
Rint0.036
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.02
No. of reflections2124
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.132.9417 (14)157
C13—H13···O10.932.482.908 (2)108
C14—H14c···Cg1i0.962.703.627 (2)161
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds