metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-3H-benzo­thia­zolium) bis­­(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carbox­yl­ato)manganate(II) hexa­hydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 13 May 2010; accepted 1 June 2010; online 9 June 2010)

In the crystal structure of the title salt, (C7H7N2S)2[Mn(C8H8O5)2]·6H2O, the heterocyclic N atom of the 2-amino­benzothia­zole mol­ecule is protonated. The MnII atom (site symmetry [\overline{1}]) has a slightly distorted octa­hedral MnO6 coordination defined by the bridging O atoms of the bicyclo­heptane unit and four carboxyl­ate O atoms of two symmetry-related and fully deprotonated ligands. The crystal packing is stabilized by N—H⋯O hydrogen bonds between the cations and anions and by O—H⋯O hydrogen bonds including the crystal water mol­ecules.

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi et al. (1982[Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.]). Manganese is a cofactor or required metal ion for many enzymes, see: Dukhande et al. (2006[Dukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349-1357.]). For the isotypic structure of the Co analogue, see: Wang et al. (2010[Wang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010). Acta Cryst. E66, m763-m764.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H7N2S)2[Mn(C8H8O5)2]·6H2O

  • Mr = 833.76

  • Triclinic, [P \overline 1]

  • a = 6.6937 (1) Å

  • b = 10.2209 (1) Å

  • c = 13.1163 (2) Å

  • α = 89.527 (1)°

  • β = 88.831 (1)°

  • γ = 81.514 (1)°

  • V = 887.34 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.944

  • 14148 measured reflections

  • 4089 independent reflections

  • 3426 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 0.97

  • 4089 reflections

  • 262 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O4 2.1083 (11)
Mn1—O2 2.1883 (11)
Mn1—O5 2.2598 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 1.84 (2) 2.6822 (18) 178 (2)
N2—H2B⋯O2i 0.86 2.00 2.8490 (19) 170
N2—H2C⋯O2Wii 0.86 2.00 2.824 (2) 160
O1W—H1WA⋯O1 0.81 (2) 2.03 (2) 2.8250 (19) 166 (3)
O1W—H1WB⋯O2W 0.85 (2) 1.95 (2) 2.792 (2) 170 (3)
O2W—H2WA⋯O3 0.83 (2) 1.87 (2) 2.6806 (19) 169 (3)
O2W—H2WB⋯O3Wiii 0.84 (2) 1.93 (2) 2.768 (2) 178 (3)
O3W—H3WA⋯O1Wii 0.80 (2) 2.21 (2) 3.004 (2) 169 (3)
O3W—H3WB⋯O1W 0.82 (2) 1.97 (2) 2.784 (2) 173 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-Oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982). Manganese is an important trace element needed for normal physiological functions and development. It is also a cofactor or required metal ion for many enzymes, such as superoxide dismutase, glutamine synthetase and arginase (Dukhande et al., 2006).

In the title complex, (C7H7N2S)+2[Mn(C8H8O5)2]2-(H2O)6, the MnII ion is located on a crystallographic centre of inversion. Two bridging oxygen atoms of the bicycloheptane units and four carboxylate oxygen atoms give rise to a slightly distorted octahedral coordination environment around the MnII atom. The bond angles O2—Mn1—O2i, O4—Mn1—O4i and O5—Mn1—O5i (i: -x+2, -y, -z) are 180°, while the bond angles O4—Mn1—O2 and O2—Mn1—O4i open up slightly from 86.35 (5)° to 93.65 (5)°, resulting in a slight distortion from the ideal octahedral geometry. The crystal packing is stabilized by N—H···O hydrogen bonds between the cations and anions and by O—H···O hydrogen bonds including the crystal water molecules.

The crystal structure of (C7H7N2S)+2[Mn(C8H8O5)2]2-(H2O)6 is isotypic with that of the Co analogue (Wang et al., 2010) where slightly shorter metal—oxygen bonds are observed.

Related literature top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). Manganese is a cofactor or required metal ion for many enzymes, see: Dukhande et al. (2006). For the isotypic structure of the Co analogue, see: Wang et al. (2010).

Experimental top

Norcantharidin, manganese acetate and 2-aminobenzothiazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Colourless crystals suitable for X-ray diffraction were obtained.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97–0.98 Å and N—H = 0.86 Å and Uiso(H)=1.2Ueq(parent atom)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular units of the title salt showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry code: A (-x+2, -y, -z).
Bis(2-amino-3H-benzothiazolium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)manganate(II) hexahydrate top
Crystal data top
(C7H7N2S)2[Mn(C8H8O5)2]·6H2OZ = 1
Mr = 833.76F(000) = 435
Triclinic, P1Dx = 1.560 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6937 (1) ÅCell parameters from 5204 reflections
b = 10.2209 (1) Åθ = 1.6–27.6°
c = 13.1163 (2) ŵ = 0.57 mm1
α = 89.527 (1)°T = 296 K
β = 88.831 (1)°Block, colourless
γ = 81.514 (1)°0.15 × 0.13 × 0.10 mm
V = 887.34 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4089 independent reflections
Radiation source: fine-focus sealed tube3426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.916, Tmax = 0.944k = 1213
14148 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2749P]
where P = (Fo2 + 2Fc2)/3
4089 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.31 e Å3
10 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C7H7N2S)2[Mn(C8H8O5)2]·6H2Oγ = 81.514 (1)°
Mr = 833.76V = 887.34 (2) Å3
Triclinic, P1Z = 1
a = 6.6937 (1) ÅMo Kα radiation
b = 10.2209 (1) ŵ = 0.57 mm1
c = 13.1163 (2) ÅT = 296 K
α = 89.527 (1)°0.15 × 0.13 × 0.10 mm
β = 88.831 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4089 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3426 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.944Rint = 0.026
14148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03210 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.31 e Å3
4089 reflectionsΔρmin = 0.35 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.00000.00000.02770 (11)
S10.17382 (7)0.26390 (4)0.52462 (3)0.03610 (12)
N10.2239 (2)0.03022 (14)0.60022 (10)0.0278 (3)
H1N0.236 (3)0.0300 (18)0.6447 (14)0.042*
N20.1568 (2)0.19534 (15)0.72262 (11)0.0369 (3)
H2B0.16490.13820.77140.044*
H2C0.13090.27840.73600.044*
O10.7284 (2)0.16252 (12)0.25851 (8)0.0361 (3)
O1W0.6844 (3)0.39782 (16)0.37356 (12)0.0552 (4)
H1WA0.679 (4)0.335 (2)0.336 (2)0.083*
H1WB0.777 (4)0.440 (2)0.352 (2)0.083*
O20.7957 (2)0.01642 (11)0.13318 (9)0.0357 (3)
O2W0.9775 (2)0.52942 (14)0.28069 (12)0.0493 (4)
H2WA1.013 (4)0.480 (2)0.2319 (15)0.074*
H2WB1.076 (3)0.534 (3)0.3180 (17)0.074*
O31.12534 (19)0.34977 (13)0.14033 (10)0.0392 (3)
O3W0.3055 (3)0.5480 (2)0.40200 (13)0.0654 (5)
H3WA0.292 (5)0.564 (3)0.4616 (14)0.098*
H3WB0.416 (3)0.505 (3)0.389 (2)0.098*
O41.12511 (18)0.15814 (12)0.06293 (10)0.0356 (3)
O50.77654 (18)0.16207 (11)0.06930 (8)0.0303 (3)
C10.7329 (2)0.13207 (16)0.16658 (12)0.0271 (3)
C20.6576 (2)0.24024 (15)0.09025 (11)0.0260 (3)
H2A0.54680.30130.12130.031*
C30.5877 (2)0.18764 (16)0.00995 (12)0.0298 (3)
H3A0.51980.10950.00110.036*
C40.4672 (3)0.29791 (17)0.07160 (14)0.0356 (4)
H4A0.36800.35230.02910.043*
H4B0.39940.26280.12770.043*
C50.6338 (3)0.37615 (17)0.11049 (13)0.0345 (4)
H5A0.64230.37730.18440.041*
H5B0.61160.46630.08560.041*
C60.8217 (3)0.29710 (15)0.06493 (11)0.0284 (3)
H6A0.94690.30940.10140.034*
C70.8286 (2)0.32037 (15)0.05059 (11)0.0254 (3)
H7A0.79000.41460.06540.030*
C81.0415 (2)0.27264 (16)0.08941 (12)0.0279 (3)
C90.2250 (3)0.12947 (18)0.44134 (12)0.0318 (4)
C100.2425 (3)0.1306 (2)0.33572 (13)0.0420 (4)
H10A0.22710.20980.29930.050*
C110.2835 (3)0.0109 (2)0.28654 (14)0.0460 (5)
H11A0.29550.00920.21580.055*
C120.3070 (3)0.1066 (2)0.34058 (14)0.0438 (5)
H12A0.33480.18600.30530.053*
C130.2903 (3)0.10923 (18)0.44609 (13)0.0346 (4)
H13A0.30660.18870.48220.042*
C140.2484 (2)0.01083 (17)0.49553 (12)0.0281 (3)
C150.1837 (2)0.15576 (16)0.62770 (12)0.0286 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0344 (2)0.01988 (18)0.02706 (18)0.00148 (14)0.00271 (14)0.00338 (13)
S10.0469 (3)0.0276 (2)0.0324 (2)0.00140 (19)0.00021 (18)0.00664 (17)
N10.0333 (7)0.0255 (7)0.0245 (6)0.0037 (6)0.0022 (5)0.0037 (5)
N20.0529 (9)0.0294 (8)0.0276 (7)0.0034 (7)0.0011 (6)0.0010 (6)
O10.0524 (8)0.0284 (6)0.0259 (6)0.0013 (5)0.0028 (5)0.0018 (5)
O1W0.0639 (10)0.0472 (9)0.0544 (9)0.0090 (8)0.0123 (7)0.0130 (7)
O20.0485 (7)0.0245 (6)0.0308 (6)0.0045 (5)0.0086 (5)0.0026 (5)
O2W0.0571 (9)0.0365 (8)0.0530 (9)0.0023 (7)0.0064 (7)0.0124 (6)
O30.0376 (7)0.0359 (7)0.0449 (7)0.0064 (5)0.0048 (5)0.0132 (6)
O3W0.0619 (11)0.0738 (12)0.0557 (10)0.0070 (9)0.0036 (8)0.0071 (9)
O40.0322 (6)0.0270 (6)0.0461 (7)0.0012 (5)0.0041 (5)0.0074 (5)
O50.0380 (6)0.0235 (6)0.0276 (5)0.0021 (5)0.0013 (5)0.0050 (4)
C10.0276 (8)0.0256 (8)0.0274 (7)0.0030 (6)0.0052 (6)0.0024 (6)
C20.0273 (8)0.0218 (7)0.0272 (7)0.0012 (6)0.0043 (6)0.0002 (6)
C30.0314 (8)0.0238 (8)0.0344 (8)0.0045 (6)0.0023 (6)0.0000 (6)
C40.0362 (9)0.0313 (9)0.0381 (9)0.0001 (7)0.0094 (7)0.0004 (7)
C50.0460 (10)0.0268 (8)0.0297 (8)0.0014 (7)0.0050 (7)0.0046 (6)
C60.0339 (8)0.0249 (8)0.0255 (7)0.0025 (6)0.0029 (6)0.0015 (6)
C70.0307 (8)0.0178 (7)0.0272 (7)0.0023 (6)0.0006 (6)0.0010 (6)
C80.0324 (8)0.0261 (8)0.0256 (7)0.0060 (7)0.0017 (6)0.0017 (6)
C90.0303 (8)0.0358 (9)0.0289 (8)0.0038 (7)0.0031 (6)0.0027 (7)
C100.0423 (10)0.0552 (12)0.0284 (8)0.0067 (9)0.0033 (7)0.0094 (8)
C110.0425 (11)0.0701 (14)0.0257 (8)0.0088 (10)0.0021 (7)0.0047 (9)
C120.0360 (10)0.0560 (12)0.0399 (10)0.0073 (9)0.0010 (8)0.0181 (9)
C130.0310 (9)0.0358 (9)0.0373 (9)0.0051 (7)0.0026 (7)0.0057 (7)
C140.0247 (8)0.0334 (9)0.0263 (7)0.0045 (6)0.0021 (6)0.0002 (6)
C150.0293 (8)0.0273 (8)0.0292 (8)0.0037 (6)0.0024 (6)0.0027 (6)
Geometric parameters (Å, º) top
Mn1—O42.1083 (11)C1—C21.522 (2)
Mn1—O4i2.1083 (11)C2—C31.532 (2)
Mn1—O22.1883 (11)C2—C71.581 (2)
Mn1—O2i2.1883 (11)C2—H2A0.9800
Mn1—O5i2.2598 (11)C3—C41.523 (2)
Mn1—O52.2598 (11)C3—H3A0.9800
S1—C151.7354 (16)C4—C51.542 (3)
S1—C91.7519 (18)C4—H4A0.9700
N1—C151.323 (2)C4—H4B0.9700
N1—C141.392 (2)C5—C61.521 (2)
N1—H1N0.841 (15)C5—H5A0.9700
N2—C151.313 (2)C5—H5B0.9700
N2—H2B0.8600C6—C71.538 (2)
N2—H2C0.8600C6—H6A0.9800
O1—C11.2465 (19)C7—C81.532 (2)
O1W—H1WA0.812 (16)C7—H7A0.9800
O1W—H1WB0.847 (16)C9—C101.388 (2)
O2—C11.2729 (19)C9—C141.391 (2)
O2W—H2WA0.826 (16)C10—C111.377 (3)
O2W—H2WB0.835 (16)C10—H10A0.9300
O3—C81.2397 (19)C11—C121.381 (3)
O3W—H3WA0.802 (17)C11—H11A0.9300
O3W—H3WB0.823 (17)C12—C131.387 (3)
O4—C81.268 (2)C12—H12A0.9300
O5—C61.4577 (19)C13—C141.382 (2)
O5—C31.462 (2)C13—H13A0.9300
O4—Mn1—O4i180.00 (7)C5—C4—H4A111.4
O4—Mn1—O286.35 (5)C3—C4—H4B111.4
O4i—Mn1—O293.65 (5)C5—C4—H4B111.4
O4—Mn1—O2i93.65 (5)H4A—C4—H4B109.3
O4i—Mn1—O2i86.35 (5)C6—C5—C4101.69 (13)
O2—Mn1—O2i180.00 (8)C6—C5—H5A111.4
O4—Mn1—O5i95.79 (4)C4—C5—H5A111.4
O4i—Mn1—O5i84.21 (4)C6—C5—H5B111.4
O2—Mn1—O5i94.16 (4)C4—C5—H5B111.4
O2i—Mn1—O5i85.84 (4)H5A—C5—H5B109.3
O4—Mn1—O584.21 (4)O5—C6—C5102.21 (13)
O4i—Mn1—O595.79 (4)O5—C6—C7102.25 (11)
O2—Mn1—O585.84 (4)C5—C6—C7111.05 (13)
O2i—Mn1—O594.16 (4)O5—C6—H6A113.4
O5i—Mn1—O5180.00 (9)C5—C6—H6A113.4
C15—S1—C990.04 (8)C7—C6—H6A113.4
C15—N1—C14114.40 (13)C8—C7—C6110.03 (13)
C15—N1—H1N120.2 (15)C8—C7—C2115.94 (12)
C14—N1—H1N125.4 (15)C6—C7—C2100.67 (12)
C15—N2—H2B120.0C8—C7—H7A109.9
C15—N2—H2C120.0C6—C7—H7A109.9
H2B—N2—H2C120.0C2—C7—H7A109.9
H1WA—O1W—H1WB109 (2)O3—C8—O4123.92 (16)
C1—O2—Mn1117.36 (10)O3—C8—C7118.49 (14)
H2WA—O2W—H2WB110 (2)O4—C8—C7117.49 (13)
H3WA—O3W—H3WB112 (2)C10—C9—C14120.86 (17)
C8—O4—Mn1130.31 (11)C10—C9—S1128.60 (15)
C6—O5—C395.66 (11)C14—C9—S1110.53 (12)
C6—O5—Mn1117.76 (9)C11—C10—C9117.93 (18)
C3—O5—Mn1112.38 (9)C11—C10—H10A121.0
O1—C1—O2123.97 (15)C9—C10—H10A121.0
O1—C1—C2117.61 (14)C10—C11—C12121.05 (17)
O2—C1—C2118.42 (13)C10—C11—H11A119.5
C1—C2—C3113.69 (13)C12—C11—H11A119.5
C1—C2—C7113.13 (13)C11—C12—C13121.61 (18)
C3—C2—C7101.24 (12)C11—C12—H12A119.2
C1—C2—H2A109.5C13—C12—H12A119.2
C3—C2—H2A109.5C14—C13—C12117.40 (17)
C7—C2—H2A109.5C14—C13—H13A121.3
O5—C3—C4101.85 (13)C12—C13—H13A121.3
O5—C3—C2102.11 (12)C13—C14—C9121.14 (15)
C4—C3—C2111.14 (13)C13—C14—N1126.60 (15)
O5—C3—H3A113.5C9—C14—N1112.26 (14)
C4—C3—H3A113.5N2—C15—N1124.04 (15)
C2—C3—H3A113.5N2—C15—S1123.19 (13)
C3—C4—C5101.90 (14)N1—C15—S1112.76 (12)
C3—C4—H4A111.4
O4—Mn1—O2—C136.93 (12)Mn1—O5—C6—C760.82 (13)
O4i—Mn1—O2—C1143.07 (12)C4—C5—C6—O534.93 (15)
O5i—Mn1—O2—C1132.48 (12)C4—C5—C6—C773.49 (16)
O5—Mn1—O2—C147.52 (12)O5—C6—C7—C887.29 (14)
O2—Mn1—O4—C855.66 (14)C5—C6—C7—C8164.32 (13)
O2i—Mn1—O4—C8124.34 (14)O5—C6—C7—C235.56 (14)
O5i—Mn1—O4—C8149.48 (14)C5—C6—C7—C272.82 (15)
O5—Mn1—O4—C830.52 (14)C1—C2—C7—C83.37 (18)
O4—Mn1—O5—C612.07 (10)C3—C2—C7—C8118.65 (14)
O4i—Mn1—O5—C6167.93 (10)C1—C2—C7—C6122.02 (14)
O2—Mn1—O5—C698.81 (10)C3—C2—C7—C60.01 (14)
O2i—Mn1—O5—C681.19 (10)Mn1—O4—C8—O3168.08 (12)
O4—Mn1—O5—C397.64 (10)Mn1—O4—C8—C715.5 (2)
O4i—Mn1—O5—C382.36 (10)C6—C7—C8—O3127.93 (15)
O2—Mn1—O5—C310.90 (9)C2—C7—C8—O3118.70 (16)
O2i—Mn1—O5—C3169.10 (9)C6—C7—C8—O448.67 (18)
Mn1—O2—C1—O1134.48 (14)C2—C7—C8—O464.70 (18)
Mn1—O2—C1—C245.82 (17)C15—S1—C9—C10179.41 (17)
O1—C1—C2—C3156.51 (14)C15—S1—C9—C140.48 (13)
O2—C1—C2—C323.2 (2)C14—C9—C10—C110.0 (3)
O1—C1—C2—C788.73 (17)S1—C9—C10—C11179.86 (14)
O2—C1—C2—C791.56 (17)C9—C10—C11—C120.2 (3)
C6—O5—C3—C456.86 (13)C10—C11—C12—C130.1 (3)
Mn1—O5—C3—C4179.98 (9)C11—C12—C13—C140.2 (3)
C6—O5—C3—C258.10 (13)C12—C13—C14—C90.3 (2)
Mn1—O5—C3—C265.06 (12)C12—C13—C14—N1179.42 (16)
C1—C2—C3—O586.20 (14)C10—C9—C14—C130.2 (3)
C7—C2—C3—O535.44 (14)S1—C9—C14—C13179.86 (13)
C1—C2—C3—C4165.85 (13)C10—C9—C14—N1179.55 (16)
C7—C2—C3—C472.52 (16)S1—C9—C14—N10.36 (17)
O5—C3—C4—C535.17 (15)C15—N1—C14—C13179.74 (16)
C2—C3—C4—C572.95 (17)C15—N1—C14—C90.0 (2)
C3—C4—C5—C60.24 (16)C14—N1—C15—N2179.49 (15)
C3—O5—C6—C556.87 (13)C14—N1—C15—S10.41 (18)
Mn1—O5—C6—C5175.85 (9)C9—S1—C15—N2179.61 (15)
C3—O5—C6—C758.16 (13)C9—S1—C15—N10.51 (13)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.84 (2)1.84 (2)2.6822 (18)178 (2)
N2—H2B···O2ii0.862.002.8490 (19)170
N2—H2C···O2Wiii0.862.002.824 (2)160
O1W—H1WA···O10.81 (2)2.03 (2)2.8250 (19)166 (3)
O1W—H1WB···O2W0.85 (2)1.95 (2)2.792 (2)170 (3)
O2W—H2WA···O30.83 (2)1.87 (2)2.6806 (19)169 (3)
O2W—H2WB···O3Wiv0.84 (2)1.93 (2)2.768 (2)178 (3)
O3W—H3WA···O1Wiii0.80 (2)2.21 (2)3.004 (2)169 (3)
O3W—H3WB···O1W0.82 (2)1.97 (2)2.784 (2)173 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C7H7N2S)2[Mn(C8H8O5)2]·6H2O
Mr833.76
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6937 (1), 10.2209 (1), 13.1163 (2)
α, β, γ (°)89.527 (1), 88.831 (1), 81.514 (1)
V3)887.34 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
14148, 4089, 3426
Rint0.026
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 0.97
No. of reflections4089
No. of parameters262
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.35

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O42.1083 (11)Mn1—O52.2598 (11)
Mn1—O22.1883 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.841 (15)1.842 (16)2.6822 (18)178 (2)
N2—H2B···O2i0.862.002.8490 (19)170.3
N2—H2C···O2Wii0.862.002.824 (2)159.5
O1W—H1WA···O10.812 (16)2.030 (18)2.8250 (19)166 (3)
O1W—H1WB···O2W0.847 (16)1.953 (18)2.792 (2)170 (3)
O2W—H2WA···O30.826 (16)1.866 (18)2.6806 (19)169 (3)
O2W—H2WB···O3Wiii0.835 (16)1.933 (16)2.768 (2)178 (3)
O3W—H3WA···O1Wii0.802 (17)2.212 (18)3.004 (2)169 (3)
O3W—H3WB···O1W0.823 (17)1.965 (18)2.784 (2)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDukhande, V. V., Malthankar-Phatak, G. H., Hugus, J. J., Daniels, C. K. & Lai, J. C. K. (2006). Neurochem. Res. 31, 1349–1357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, N., Lin, Q.-Y., Feng, J., Li, S.-K. & Zhao, J.-J. (2010). Acta Cryst. E66, m763–m764.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds