metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m763-m764

Bis(2-amino-3H-benzo­thia­zolium) bis­­(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato)cobaltate(II) hexa­hydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 13 May 2010; accepted 1 June 2010; online 9 June 2010)

In the crystal structure of the title salt, (C7H7N2S)2[Co(C8H8O5)2]·6H2O, the heterocyclic N atom of the 2-amino­benzothia­zole mol­ecule is protonated. The CoII atom is situated on an inversion centre and exhibits a slightly distorted octa­hedral CoO6 coordination defined by the bridging O atoms of the bicyclo­heptane unit and four carboxyl­ate O atoms of two symmetry-related and fully deprotonated ligands. The crystal packing is stabilized by N—H⋯O hydrogen bonds between the cations and anions and by O—H⋯O hydrogen bonds including the crystal water mol­ecules.

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi et al. (1982[Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.]). For the importance of cobalt in biological systems, see: Jiao et al. (2005[Jiao, K., Wang, Q. X., Sun, W. & Jian, F. F. (2005). J. Inorg. Biochem. 99, 1369-1375.]). For the isotypic structure of the Mn analogue, see: Wang et al. (2010[Wang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010). Acta Cryst. E66, m762.]). For related cobalt complexes, see: Wang et al. (1988[Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20-27.], 2009[Wang, Y.-J., Hu, R.-D., Lin, Q.-Y. & Cheng, J.-P. (2009). Acta Cryst. E65, m854.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H7N2S)2[Co(C8H8O5)2]·6H2O

  • Mr = 837.73

  • Triclinic, [P \overline 1]

  • a = 6.6924 (4) Å

  • b = 10.1294 (5) Å

  • c = 13.1860 (7) Å

  • α = 90.094 (4)°

  • β = 91.112 (4)°

  • γ = 99.314 (4)°

  • V = 881.92 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 296 K

  • 0.19 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 0.953

  • 13051 measured reflections

  • 3999 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.03

  • 3999 reflections

  • 262 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O4 2.033 (2)
Co1—O2 2.110 (2)
Co1—O5 2.160 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 1.85 (2) 2.675 (3) 169 (3)
N2—H2C⋯O2i 0.86 2.00 2.851 (3) 173
N2—H2D⋯O2Wii 0.86 2.01 2.828 (4) 160
O1W—H1WA⋯O3Wii 0.82 (2) 2.21 (2) 3.030 (4) 176 (4)
O1W—H1WB⋯O3Wiii 0.84 (4) 1.94 (2) 2.769 (4) 171 (5)
O2W—H2WA⋯O3 0.85 (2) 1.85 (2) 2.686 (3) 167 (4)
O2W—H2WB⋯O1W 0.83 (2) 1.95 (2) 2.772 (4) 171 (4)
O3W—H3WA⋯O1 0.84 (2) 2.01 (2) 2.815 (3) 160 (4)
O3W—H3WB⋯O2W 0.83 (4) 1.96 (4) 2.790 (4) 178 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982). Cobalt was recognized as an essential metal element widely distributed in biological systems such as cells and body (Jiao et al., 2005). Several related cobalt complexes with the same ligand (Wang et al., 1988) and with the ligand and with imidazole (Wang et al., 2009) have been reported.

In the title complex, (C7H7N2S)+2[Co(C8H8O5)2]2-(H2O)6, the CoII ion is located on a crystallographic centre of inversion. Two bridging oxygen atoms of the bicycloheptane units and four carboxylate oxygen atoms give rise to a slightly distorted octahedral coordination environment around the CoII atom. The bond angles O2—Co1—O2i, O4—Co1—O4i and O5—Co1—O5i (i: -x+1, -y, -z.) are 180°, while the bond angles O4—Co1—O2 and O2—Co1—O4i open up slightly from 87.71 (9)° to 92.29 (9)°, resulting in a slight distortion from the ideal octahedral geometry. The crystal packing is stabilized by N—H···O hydrogen bonds between the cations and anions and by O—H···O hydrogen bonds including the crystal water molecules.

The crystal structure of (C7H7N2S)+2[Co(C8H8O5)2]2-(H2O)6 is isotypic with that of the Mn analogue (Wang et al., 2010) where slightly longer metal—oxygen bonds are observed.

Related literature top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). For the importance of cobalt in biological systems, see: Jiao et al. (2005). For the isotypic structure of the Mn analogue, see: Wang et al. (2010). For related cobalt complexes, see: Wang et al. (1988, 2009).

Experimental top

Norcantharidin, cobalt acetate and 2-aminobenzothiazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Pink crystals suitable for X-ray diffraction were obtained.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97–0.98 Å and N—H = 0.86 Å and Uiso(H)=1.2Ueq(parent atom)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular units of the title salt showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry code: A (-x+2, -y, -z).
Bis(2-amino-3H-benzothiazolium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cobaltate(II) hexahydrate top
Crystal data top
(C7H7N2S)2[Co(C8H8O5)2]·6H2OZ = 1
Mr = 837.73F(000) = 437
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6924 (4) ÅCell parameters from 2197 reflections
b = 10.1294 (5) Åθ = 1.5–27.6°
c = 13.1860 (7) ŵ = 0.69 mm1
α = 90.094 (4)°T = 296 K
β = 91.112 (4)°Block, pink
γ = 99.314 (4)°0.19 × 0.16 × 0.07 mm
V = 881.92 (8) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3999 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 88
Tmin = 0.876, Tmax = 0.953k = 1113
13051 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
3999 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.47 e Å3
10 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C7H7N2S)2[Co(C8H8O5)2]·6H2Oγ = 99.314 (4)°
Mr = 837.73V = 881.92 (8) Å3
Triclinic, P1Z = 1
a = 6.6924 (4) ÅMo Kα radiation
b = 10.1294 (5) ŵ = 0.69 mm1
c = 13.1860 (7) ÅT = 296 K
α = 90.094 (4)°0.19 × 0.16 × 0.07 mm
β = 91.112 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
3999 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2460 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.953Rint = 0.051
13051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05210 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
3999 reflectionsΔρmin = 0.44 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.0303 (2)
S10.32716 (14)0.26697 (8)0.52780 (6)0.0399 (2)
N10.2766 (4)0.0309 (2)0.60086 (19)0.0302 (6)
H1N0.277 (5)0.031 (3)0.644 (2)0.045*
N20.3473 (4)0.1974 (3)0.7234 (2)0.0406 (7)
H2C0.33940.13940.77130.049*
H2D0.37420.28140.73750.049*
O10.7726 (3)0.1597 (2)0.25745 (15)0.0384 (6)
O1W0.1942 (5)0.5445 (3)0.4012 (2)0.0706 (8)
H1WA0.199 (7)0.563 (5)0.4621 (17)0.106*
H1WB0.085 (5)0.492 (4)0.393 (3)0.106*
O20.6869 (3)0.0130 (2)0.13153 (15)0.0376 (6)
O2W0.5190 (4)0.5231 (2)0.2784 (2)0.0546 (7)
H2WA0.478 (6)0.473 (4)0.228 (2)0.082*
H2WB0.416 (4)0.522 (4)0.313 (3)0.082*
O30.3619 (3)0.3400 (2)0.13885 (17)0.0429 (6)
O3W0.8114 (5)0.3962 (3)0.3736 (2)0.0608 (7)
H3WA0.828 (6)0.334 (3)0.334 (3)0.091*
H3WB0.723 (6)0.432 (4)0.345 (3)0.091*
O40.3648 (3)0.14697 (19)0.06047 (16)0.0369 (5)
O50.7143 (3)0.15513 (19)0.06851 (15)0.0327 (5)
C10.9035 (5)0.1842 (3)0.0093 (2)0.0334 (8)
H1A0.97180.10640.00020.040*
C21.0232 (5)0.2949 (3)0.0715 (2)0.0396 (8)
H2A1.08980.25870.12740.047*
H2B1.12370.35140.02990.047*
C30.8570 (5)0.3722 (3)0.1100 (2)0.0397 (8)
H3A0.87970.46370.08510.048*
H3B0.84830.37240.18350.048*
C40.6689 (5)0.2912 (3)0.0646 (2)0.0321 (7)
H4A0.54350.30160.10110.039*
C50.6600 (5)0.3150 (3)0.0495 (2)0.0298 (7)
H5A0.69670.41070.06450.036*
C60.8339 (5)0.2379 (3)0.0895 (2)0.0301 (7)
H6A0.94430.30180.12010.036*
C70.7589 (5)0.1300 (3)0.1659 (2)0.0307 (7)
C80.4489 (5)0.2639 (3)0.0876 (2)0.0314 (7)
C90.2570 (5)0.1328 (4)0.3395 (2)0.0444 (9)
H9A0.27290.21300.30410.053*
C100.2146 (5)0.0118 (4)0.2888 (3)0.0497 (10)
H10A0.20110.01020.21850.060*
C110.1922 (5)0.1068 (4)0.3421 (3)0.0466 (9)
H11A0.16450.18740.30670.056*
C120.2099 (5)0.1089 (3)0.4467 (2)0.0373 (8)
H12A0.19360.18920.48200.045*
C130.2522 (4)0.0113 (3)0.4966 (2)0.0291 (7)
C140.2750 (5)0.1318 (3)0.4437 (2)0.0325 (7)
C150.3185 (5)0.1578 (3)0.6290 (2)0.0297 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0393 (4)0.0196 (3)0.0308 (4)0.0010 (3)0.0019 (3)0.0021 (2)
S10.0525 (6)0.0285 (5)0.0373 (5)0.0028 (4)0.0009 (4)0.0063 (4)
N10.0372 (16)0.0244 (15)0.0291 (16)0.0053 (12)0.0018 (12)0.0021 (11)
N20.058 (2)0.0267 (15)0.0354 (16)0.0027 (13)0.0010 (13)0.0014 (12)
O10.0575 (16)0.0301 (12)0.0265 (13)0.0042 (11)0.0040 (10)0.0005 (10)
O1W0.068 (2)0.074 (2)0.0641 (19)0.0052 (16)0.0018 (16)0.0069 (17)
O20.0504 (15)0.0225 (12)0.0367 (13)0.0029 (10)0.0079 (10)0.0022 (9)
O2W0.0644 (19)0.0363 (15)0.0614 (18)0.0040 (13)0.0083 (14)0.0138 (13)
O30.0439 (15)0.0339 (13)0.0519 (15)0.0093 (11)0.0025 (11)0.0134 (11)
O3W0.067 (2)0.0509 (18)0.0643 (19)0.0122 (14)0.0146 (15)0.0112 (14)
O40.0377 (14)0.0221 (12)0.0493 (14)0.0002 (10)0.0026 (10)0.0065 (10)
O50.0406 (13)0.0233 (11)0.0322 (12)0.0005 (10)0.0010 (10)0.0025 (9)
C10.0352 (19)0.0254 (17)0.041 (2)0.0085 (14)0.0014 (15)0.0004 (14)
C20.042 (2)0.0328 (18)0.042 (2)0.0004 (16)0.0076 (16)0.0011 (15)
C30.059 (2)0.0243 (17)0.0333 (19)0.0023 (16)0.0036 (16)0.0004 (14)
C40.042 (2)0.0235 (16)0.0312 (18)0.0070 (14)0.0053 (14)0.0016 (13)
C50.040 (2)0.0162 (15)0.0319 (18)0.0022 (13)0.0031 (14)0.0021 (13)
C60.0338 (19)0.0221 (16)0.0325 (18)0.0005 (14)0.0042 (14)0.0009 (13)
C70.0327 (19)0.0261 (17)0.0334 (19)0.0062 (14)0.0048 (14)0.0034 (14)
C80.042 (2)0.0246 (17)0.0281 (17)0.0072 (15)0.0037 (14)0.0006 (14)
C90.048 (2)0.053 (2)0.032 (2)0.0084 (18)0.0041 (16)0.0076 (17)
C100.047 (2)0.075 (3)0.0282 (19)0.014 (2)0.0015 (16)0.006 (2)
C110.039 (2)0.053 (2)0.047 (2)0.0080 (18)0.0002 (17)0.0193 (19)
C120.037 (2)0.0364 (19)0.040 (2)0.0114 (15)0.0021 (15)0.0044 (16)
C130.0247 (18)0.0316 (18)0.0316 (18)0.0061 (14)0.0033 (13)0.0007 (14)
C140.0300 (18)0.0328 (18)0.0342 (19)0.0038 (14)0.0025 (14)0.0029 (14)
C150.0334 (19)0.0268 (17)0.0283 (18)0.0032 (14)0.0024 (14)0.0019 (13)
Geometric parameters (Å, º) top
Co1—O42.033 (2)C1—C21.520 (4)
Co1—O4i2.033 (2)C1—C61.521 (4)
Co1—O22.110 (2)C1—H1A0.9800
Co1—O2i2.110 (2)C2—C31.539 (5)
Co1—O5i2.160 (2)C2—H2A0.9700
Co1—O52.160 (2)C2—H2B0.9700
S1—C151.730 (3)C3—C41.521 (4)
S1—C141.747 (3)C3—H3A0.9700
N1—C151.322 (4)C3—H3B0.9700
N1—C131.392 (4)C4—C51.527 (4)
N1—H1N0.840 (17)C4—H4A0.9800
N2—C151.308 (4)C5—C81.519 (4)
N2—H2C0.8600C5—C61.585 (4)
N2—H2D0.8600C5—H5A0.9800
O1—C71.242 (3)C6—C71.519 (4)
O1W—H1WA0.823 (18)C6—H6A0.9800
O1W—H1WB0.839 (19)C9—C141.377 (4)
O2—C71.283 (3)C9—C101.380 (5)
O2W—H2WA0.852 (18)C9—H9A0.9300
O2W—H2WB0.828 (18)C10—C111.381 (5)
O3—C81.245 (4)C10—H10A0.9300
O3W—H3WA0.842 (18)C11—C121.383 (4)
O3W—H3WB0.831 (18)C11—H11A0.9300
O4—C81.274 (3)C12—C131.369 (4)
O5—C41.460 (3)C12—H12A0.9300
O5—C11.463 (4)C13—C141.395 (4)
O4—Co1—O4i180.00 (14)H3A—C3—H3B109.3
O4—Co1—O287.71 (9)O5—C4—C3102.3 (2)
O4i—Co1—O292.29 (9)O5—C4—C5101.9 (2)
O4—Co1—O2i92.29 (9)C3—C4—C5111.7 (3)
O4i—Co1—O2i87.71 (9)O5—C4—H4A113.3
O2—Co1—O2i180.00 (6)C3—C4—H4A113.3
O4—Co1—O5i92.19 (8)C5—C4—H4A113.3
O4i—Co1—O5i87.81 (8)C8—C5—C4110.4 (2)
O2—Co1—O5i90.69 (8)C8—C5—C6115.9 (2)
O2i—Co1—O5i89.31 (8)C4—C5—C6100.7 (2)
O4—Co1—O587.81 (8)C8—C5—H5A109.8
O4i—Co1—O592.19 (8)C4—C5—H5A109.8
O2—Co1—O589.31 (8)C6—C5—H5A109.8
O2i—Co1—O590.69 (8)C7—C6—C1113.9 (2)
O5i—Co1—O5180.00 (12)C7—C6—C5112.7 (2)
C15—S1—C1490.24 (14)C1—C6—C5101.1 (2)
C15—N1—C13114.3 (2)C7—C6—H6A109.6
C15—N1—H1N121 (2)C1—C6—H6A109.6
C13—N1—H1N125 (2)C5—C6—H6A109.6
C15—N2—H2C120.0O1—C7—O2124.1 (3)
C15—N2—H2D120.0O1—C7—C6118.3 (3)
H2C—N2—H2D120.0O2—C7—C6117.7 (3)
H1WA—O1W—H1WB104 (3)O3—C8—O4123.0 (3)
C7—O2—Co1117.83 (18)O3—C8—C5118.9 (3)
H2WA—O2W—H2WB104 (3)O4—C8—C5118.0 (3)
H3WA—O3W—H3WB104 (3)C14—C9—C10118.4 (3)
C8—O4—Co1127.4 (2)C14—C9—H9A120.8
C4—O5—C195.5 (2)C10—C9—H9A120.8
C4—O5—Co1117.10 (17)C9—C10—C11120.3 (3)
C1—O5—Co1111.96 (16)C9—C10—H10A119.8
O5—C1—C2101.5 (2)C11—C10—H10A119.8
O5—C1—C6102.2 (2)C10—C11—C12121.7 (3)
C2—C1—C6111.5 (3)C10—C11—H11A119.1
O5—C1—H1A113.5C12—C11—H11A119.1
C2—C1—H1A113.5C13—C12—C11117.7 (3)
C6—C1—H1A113.5C13—C12—H12A121.1
C1—C2—C3102.2 (3)C11—C12—H12A121.1
C1—C2—H2A111.3C12—C13—N1126.7 (3)
C3—C2—H2A111.3C12—C13—C14121.1 (3)
C1—C2—H2B111.3N1—C13—C14112.2 (3)
C3—C2—H2B111.3C9—C14—C13120.7 (3)
H2A—C2—H2B109.2C9—C14—S1128.9 (3)
C4—C3—C2101.5 (2)C13—C14—S1110.4 (2)
C4—C3—H3A111.5N2—C15—N1123.8 (3)
C2—C3—H3A111.5N2—C15—S1123.3 (2)
C4—C3—H3B111.5N1—C15—S1112.9 (2)
C2—C3—H3B111.5
O4—Co1—O2—C742.6 (2)C2—C1—C6—C572.9 (3)
O4i—Co1—O2—C7137.4 (2)C8—C5—C6—C73.8 (3)
O5i—Co1—O2—C7134.8 (2)C4—C5—C6—C7122.9 (3)
O5—Co1—O2—C745.2 (2)C8—C5—C6—C1118.2 (3)
O2—Co1—O4—C858.0 (2)C4—C5—C6—C10.9 (3)
O2i—Co1—O4—C8122.0 (2)Co1—O2—C7—O1139.8 (2)
O5i—Co1—O4—C8148.6 (2)Co1—O2—C7—C640.9 (3)
O5—Co1—O4—C831.4 (2)C1—C6—C7—O1152.8 (3)
O4—Co1—O5—C410.50 (18)C5—C6—C7—O192.7 (3)
O4i—Co1—O5—C4169.50 (18)C1—C6—C7—O226.5 (4)
O2—Co1—O5—C498.23 (18)C5—C6—C7—O287.9 (3)
O2i—Co1—O5—C481.77 (18)Co1—O4—C8—O3167.9 (2)
O4—Co1—O5—C198.29 (18)Co1—O4—C8—C516.1 (4)
O4i—Co1—O5—C181.71 (18)C4—C5—C8—O3128.2 (3)
O2—Co1—O5—C110.55 (18)C6—C5—C8—O3118.2 (3)
O2i—Co1—O5—C1169.45 (18)C4—C5—C8—O448.0 (3)
C4—O5—C1—C257.1 (3)C6—C5—C8—O465.7 (3)
Co1—O5—C1—C2179.28 (17)C14—C9—C10—C110.3 (5)
C4—O5—C1—C658.2 (2)C9—C10—C11—C120.4 (5)
Co1—O5—C1—C664.0 (2)C10—C11—C12—C130.5 (5)
O5—C1—C2—C335.8 (3)C11—C12—C13—N1179.8 (3)
C6—C1—C2—C372.4 (3)C11—C12—C13—C140.5 (5)
C1—C2—C3—C40.9 (3)C15—N1—C13—C12179.5 (3)
C1—O5—C4—C356.9 (3)C15—N1—C13—C140.8 (4)
Co1—O5—C4—C3175.04 (17)C10—C9—C14—C130.4 (5)
C1—O5—C4—C558.7 (3)C10—C9—C14—S1180.0 (3)
Co1—O5—C4—C559.4 (2)C12—C13—C14—C90.5 (5)
C2—C3—C4—O534.6 (3)N1—C13—C14—C9179.7 (3)
C2—C3—C4—C573.7 (3)C12—C13—C14—S1179.8 (2)
O5—C4—C5—C886.5 (3)N1—C13—C14—S10.1 (3)
C3—C4—C5—C8165.0 (3)C15—S1—C14—C9179.2 (3)
O5—C4—C5—C636.5 (3)C15—S1—C14—C130.5 (2)
C3—C4—C5—C672.0 (3)C13—N1—C15—N2179.9 (3)
O5—C1—C6—C786.2 (3)C13—N1—C15—S11.2 (3)
C2—C1—C6—C7166.0 (3)C14—S1—C15—N2179.9 (3)
O5—C1—C6—C534.9 (3)C14—S1—C15—N10.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.84 (2)1.85 (2)2.675 (3)169 (3)
N2—H2C···O2ii0.862.002.851 (3)173
N2—H2D···O2Wiii0.862.012.828 (4)160
O1W—H1WA···O3Wiii0.82 (2)2.21 (2)3.030 (4)176 (4)
O1W—H1WB···O3Wiv0.84 (4)1.94 (2)2.769 (4)171 (5)
O2W—H2WA···O30.85 (2)1.85 (2)2.686 (3)167 (4)
O2W—H2WB···O1W0.83 (2)1.95 (2)2.772 (4)171 (4)
O3W—H3WA···O10.84 (2)2.01 (2)2.815 (3)160 (4)
O3W—H3WB···O2W0.83 (4)1.96 (4)2.790 (4)178 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula(C7H7N2S)2[Co(C8H8O5)2]·6H2O
Mr837.73
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6924 (4), 10.1294 (5), 13.1860 (7)
α, β, γ (°)90.094 (4), 91.112 (4), 99.314 (4)
V3)881.92 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.19 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.876, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
13051, 3999, 2460
Rint0.051
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.03
No. of reflections3999
No. of parameters262
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O42.033 (2)Co1—O52.160 (2)
Co1—O22.110 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)1.85 (2)2.675 (3)169 (3)
N2—H2C···O2i0.862.002.851 (3)172.6
N2—H2D···O2Wii0.862.012.828 (4)159.5
O1W—H1WA···O3Wii0.82 (2)2.21 (2)3.030 (4)176 (4)
O1W—H1WB···O3Wiii0.84 (4)1.94 (2)2.769 (4)171 (5)
O2W—H2WA···O30.85 (2)1.85 (2)2.686 (3)167 (4)
O2W—H2WB···O1W0.83 (2)1.95 (2)2.772 (4)171 (4)
O3W—H3WA···O10.84 (2)2.01 (2)2.815 (3)160 (4)
O3W—H3WB···O2W0.83 (4)1.96 (4)2.790 (4)178 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiao, K., Wang, Q. X., Sun, W. & Jian, F. F. (2005). J. Inorg. Biochem. 99, 1369–1375.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, Y.-J., Hu, R.-D., Lin, Q.-Y. & Cheng, J.-P. (2009). Acta Cryst. E65, m854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010). Acta Cryst. E66, m762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m763-m764
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds