metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(2,3,7,8,12,13,17,18-octa­ethyl­porphyrinato)iron(III) di­chloro­methane sesquisolvate

aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: scheidt.1@nd.edu

(Received 13 May 2010; accepted 26 May 2010; online 5 June 2010)

The title mol­ecule, [Fe(C36H44N4)Cl]·1.5CH2Cl2, is a high-spin square-pyramidal iron(III) porphyrinate with an average value for the equatorial Fe—N bond lengths of 2.065 (3) Å and an axial Fe—Cl distance of 2.2430 (13) Å. The iron cation is displaced by 0.518 (1) Å from the 24-atom mean plane of the porphyrin ring. These values are typical for high-spin iron(III) porphyrinates.

Related literature

For a review of porphyrinates, see: Scheidt (2000[Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 6, edited by K. M. Kadish, R. Guilard & K. M. Smith, pp. 49-112. San Diego: Academic Press.]). Other crystalline phases containing the [Fe(OEP)Cl] moiety (OEP = octa­ethyl­porphyrin) have been reported by Ernst et al. (1977[Ernst, J., Subramanian, J. & Fuhrhop, J.-H. (1977). Z. Naturforsch. Teil A, 32, 1129-1136.]); Olmstead et al. (1999[Olmstead, M. M., Costa, D. A., Maitra, K., Noll, B. C., Phillips, S. L., Van Calcar, P. M. & Balch, A. L. (1999). J. Am. Chem. Soc. 121, 7090-7097.]); Senge (2005[Senge, M. O. (2005). Acta Cryst. E61, m399-m400.]). For synthetic details, see: Adler et al. (1970[Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2444.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C36H44N4)Cl]·1.5CH2Cl2

  • Mr = 751.44

  • Triclinic, [P \overline 1]

  • a = 10.062 (6) Å

  • b = 13.767 (5) Å

  • c = 14.754 (5) Å

  • α = 66.46 (2)°

  • β = 80.55 (2)°

  • γ = 76.10 (2)°

  • V = 1813.5 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.20 × 0.11 × 0.08 mm

Data collection
  • Enraf–Nonius FAST area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.866, Tmax = 0.943

  • 9130 measured reflections

  • 9130 independent reflections

  • 7073 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.148

  • S = 1.05

  • 9130 reflections

  • 441 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe—N2 2.060 (3)
Fe—N4 2.066 (3)
Fe—N1 2.066 (2)
Fe—N3 2.067 (2)
Fe—Cl1 2.2430 (13)
N2—Fe—N4 154.50 (10)
N1—Fe—N3 153.12 (10)
N2—Fe—Cl1 102.63 (8)
N4—Fe—Cl1 102.87 (8)
N1—Fe—Cl1 103.92 (7)
N3—Fe—Cl1 102.96 (7)

Data collection: MADNES (Messerschmidt & Pflugrath, 1987[Messerschmidt, A. & Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306-315.]); cell refinement: MADNES; data reduction: MADNES; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title compound (in the reported crystalline form) has been used for many years in the principal author's laboratory as a convenient starting material for many studies of porphyrin derivatives. The square-pyramidal coordination of the central irn(III) atom, with an average equatorial Fe—N distance of 2.065 (3) Å and 2.2430 (13) Å for the axial Fe—Cl distance, is typical for high-spin chloride derivatives (Scheidt, 2000). The iron atom is displaced by 0.518 (1) Å from the 24 atom mean plane and 0.468 (1) Å from the plane of the four nitrogen atoms. The core has a modest saddled conformation. The conformation of the the molecule with its eight peripheral ethyl groups is unusual with all eight groups pointing away from the axial chloride ligand (see Fig. 1), resulting in a molecule with a spider-like shape. This geometry leads to well-separated iron atoms with the closest Fe···Fe separation of 9.711 (3) Å that is larger than typical for OEP (OEP = octaethylporphyrin) derivatives.

Three different crystalline species containing the [Fe(OEP)Cl] moiety have been previously reported by Ernst et al. (1977), Olmstead et al. (1999) and Senge (2005). In comparison with the current derivative they have a different conformation of the peripheral ethyl groups.

Related literature top

For a review of porphyrinates, see: Scheidt (2000). Other crystalline phases containing the [Fe(OEP)Cl] moiety (OEP = octaethylporphyrin) have been reported by Ernst et al. (1977); Olmstead et al. (1999); Senge (2005). For synthetic details, see: Adler et al. (1970).

Experimental top

Iron(II) chloride was purchased from Fisher and H2OEP from Midcentury Chemicals. [Fe(OEP)Cl] was prepared by reaction of iron(II) chloride in dimethyl formamide as described by Adler et al. (1970)). Single crystals were obtained by slow evaporation of methylene chloride solutions.

Refinement top

The H atoms attached to C atoms of the porphyrin ring were positioned geometrically and allowed to ride on their parent atoms, with a C—H distance of 0.93 Å and Uiso(H) = 1.2Ueq(C). Methylene and methyl H atoms were likewise positioned geometrically and refined as riding atoms, with C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C).

One of the methylene chloride molecules of crystallization is disordered across the inversion center at [0.5, 0, 1] and has been modelled with half occupancy atoms. The other methylene chloride occupies a general position in the lattice and was modelled at full occupancy.

Computing details top

Data collection: MADNES (Messerschmidt & Pflugrath, 1987); cell refinement: MADNES (Messerschmidt & Pflugrath, 1987); data reduction: MADNES (Messerschmidt & Pflugrath, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : ORTEP diagram for [Fe(OEP)Cl] with atom labels and displacement ellipsoids at the 50% probability level. Methylene chloride solvent molecules and hydrogen atoms have been removed for clarity.
Chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III) dichloromethane sesquisolvate top
Crystal data top
[Fe(C36H44N4)Cl]·1.5CH2Cl2Z = 2
Mr = 751.44F(000) = 788
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.062 (6) ÅCell parameters from 250 reflections
b = 13.767 (5) Åθ = 2.5–26.0°
c = 14.754 (5) ŵ = 0.74 mm1
α = 66.46 (2)°T = 293 K
β = 80.55 (2)°Needle, dark purple
γ = 76.10 (2)°0.20 × 0.11 × 0.08 mm
V = 1813.5 (14) Å3
Data collection top
Enraf–Nonius FAST area-detector
diffractometer
9130 independent reflections
Radiation source: rotating anode X-ray tube7073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.23 pixels mm-1θmax = 29.8°, θmin = 2.4°
Ellipsoid–mask fitting scansh = 1314
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
k = 1619
Tmin = 0.866, Tmax = 0.943l = 020
9130 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0448P)2 + 5.0201P]
where P = (Fo2 + 2Fc2)/3
9130 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Fe(C36H44N4)Cl]·1.5CH2Cl2γ = 76.10 (2)°
Mr = 751.44V = 1813.5 (14) Å3
Triclinic, P1Z = 2
a = 10.062 (6) ÅMo Kα radiation
b = 13.767 (5) ŵ = 0.74 mm1
c = 14.754 (5) ÅT = 293 K
α = 66.46 (2)°0.20 × 0.11 × 0.08 mm
β = 80.55 (2)°
Data collection top
Enraf–Nonius FAST area-detector
diffractometer
9130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
7073 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.943Rint = 0.060
9130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 1.02 e Å3
9130 reflectionsΔρmin = 0.69 e Å3
441 parameters
Special details top

Experimental. Diffraction data were measured with an Enraf Nonius FAST area detector to 59.54 deg in 2 theta. With the hardware and software supplied for the diffractometer, the data collection process provides substantial redundancy but not necessarily completion up to the limiting resolution. At a resolution of 0.83 Å (52 deg in 2 theta) essentially full coverage of data were met. Successful and suitable refinement of the structure supports this.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.25435 (4)0.37510 (3)0.32355 (3)0.01287 (10)
Cl10.08498 (7)0.28040 (6)0.37840 (6)0.02095 (15)
N10.3046 (2)0.38438 (18)0.44976 (17)0.0134 (4)
N20.1490 (2)0.53203 (19)0.28837 (18)0.0153 (5)
N30.2765 (2)0.40653 (19)0.17326 (17)0.0155 (5)
N40.4286 (2)0.25643 (19)0.33618 (18)0.0157 (5)
CA10.3884 (3)0.3059 (2)0.5196 (2)0.0148 (5)
CA20.2377 (3)0.4580 (2)0.4922 (2)0.0138 (5)
CA30.1014 (3)0.5843 (2)0.3531 (2)0.0145 (5)
CA40.0834 (3)0.5949 (2)0.2033 (2)0.0157 (5)
CA50.1976 (3)0.4875 (2)0.1020 (2)0.0166 (5)
CA60.3542 (3)0.3396 (2)0.1268 (2)0.0173 (5)
CA70.4799 (3)0.2059 (2)0.2702 (2)0.0168 (5)
CA80.4961 (3)0.1942 (2)0.4208 (2)0.0158 (5)
CB10.3752 (3)0.3307 (2)0.6076 (2)0.0158 (5)
CB20.2824 (3)0.4256 (2)0.5899 (2)0.0147 (5)
CB30.0033 (3)0.6824 (2)0.3080 (2)0.0148 (5)
CB40.0072 (3)0.6885 (2)0.2142 (2)0.0179 (6)
CB50.2272 (3)0.4728 (2)0.0086 (2)0.0191 (6)
CB60.3255 (3)0.3818 (2)0.0240 (2)0.0200 (6)
CB70.5800 (3)0.1091 (2)0.3153 (2)0.0170 (5)
CB80.5911 (3)0.1035 (2)0.4079 (2)0.0174 (5)
C110.4545 (3)0.2652 (3)0.6968 (2)0.0203 (6)
H11A0.46250.18910.71050.024*
H11B0.40490.27950.75370.024*
C210.2368 (3)0.4896 (2)0.6554 (2)0.0181 (6)
H21A0.25170.44200.72370.022*
H21B0.13920.51900.65140.022*
C310.0673 (3)0.7605 (2)0.3557 (2)0.0184 (6)
H31A0.09600.72040.42400.022*
H31B0.14920.80320.32190.022*
C410.0905 (3)0.7768 (2)0.1356 (2)0.0215 (6)
H41A0.16840.81230.16670.026*
H41B0.12560.74570.09810.026*
C510.1646 (4)0.5492 (3)0.0860 (2)0.0246 (6)
H51A0.06830.57530.07140.030*
H51B0.17030.51090.12960.030*
C610.4006 (4)0.3357 (3)0.0506 (2)0.0261 (7)
H61A0.34540.36070.10660.031*
H61B0.41260.25760.02090.031*
C710.6548 (3)0.0321 (2)0.2667 (2)0.0215 (6)
H71A0.59180.02420.22800.026*
H71B0.68320.03800.31790.026*
C810.6882 (3)0.0236 (2)0.4824 (2)0.0218 (6)
H81A0.71530.04260.46980.026*
H81B0.64170.00680.54830.026*
C120.5981 (3)0.2906 (3)0.6824 (3)0.0300 (7)
H12A0.64590.24660.74090.045*
H12B0.59060.36540.67070.045*
H12C0.64800.27570.62660.045*
C220.3140 (4)0.5818 (3)0.6261 (3)0.0337 (8)
H22A0.27970.62220.66790.051*
H22B0.30090.62840.55820.051*
H22C0.41020.55280.63360.051*
C320.0221 (3)0.8363 (3)0.3540 (3)0.0260 (7)
H32A0.03040.88660.38260.039*
H32B0.05300.87510.28670.039*
H32C0.10010.79510.39150.039*
C420.0075 (4)0.8600 (3)0.0652 (3)0.0347 (8)
H42A0.06400.91390.01480.052*
H42B0.07040.82510.03480.052*
H42C0.02360.89370.10150.052*
C520.2359 (5)0.6451 (3)0.1389 (3)0.0359 (8)
H52A0.19080.69310.19770.054*
H52B0.33010.62000.15670.054*
H52C0.23160.68280.09580.054*
C620.5393 (4)0.3664 (4)0.0875 (3)0.0462 (11)
H62A0.58470.33170.13230.069*
H62B0.59370.34370.03230.069*
H62C0.52770.44330.12140.069*
C720.7802 (4)0.0664 (3)0.1995 (3)0.0315 (8)
H72A0.82640.01090.17530.047*
H72B0.84140.07800.23620.047*
H72C0.75230.13210.14460.047*
C820.8159 (3)0.0668 (3)0.4785 (3)0.0318 (8)
H82A0.87860.01170.52370.048*
H82B0.79020.12860.49700.048*
H82C0.85940.08730.41250.048*
CM10.4754 (3)0.2172 (2)0.5060 (2)0.0155 (5)
HM10.52490.16820.55930.019*
CM20.1418 (3)0.5494 (2)0.4479 (2)0.0155 (5)
HM20.10090.59110.48520.019*
CM30.1055 (3)0.5733 (2)0.1173 (2)0.0180 (5)
HM30.05340.62090.06490.022*
CM40.4449 (3)0.2450 (2)0.1729 (2)0.0189 (6)
HM40.48630.20380.13530.023*
CS10.1683 (4)0.1052 (3)0.2470 (3)0.0346 (8)
HS1A0.09140.07800.29100.042*
HS1B0.20040.14960.27260.042*
Cl20.30036 (11)0.00366 (8)0.24654 (9)0.0445 (2)
Cl30.11326 (13)0.18428 (11)0.12904 (9)0.0579 (3)
CS20.5781 (11)0.0403 (7)1.0177 (9)0.052 (3)0.50
HS2A0.57100.07521.08950.063*0.50
HS2B0.64170.08950.99130.063*0.50
Cl40.6407 (3)0.0771 (2)0.9837 (2)0.0636 (7)0.50
Cl50.4123 (3)0.0124 (4)0.9724 (3)0.0754 (9)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01256 (18)0.01266 (19)0.01360 (19)0.00042 (14)0.00143 (14)0.00611 (14)
Cl10.0188 (3)0.0219 (3)0.0255 (4)0.0070 (3)0.0022 (3)0.0121 (3)
N10.0138 (10)0.0130 (10)0.0146 (11)0.0001 (8)0.0010 (9)0.0079 (9)
N20.0156 (11)0.0150 (11)0.0158 (11)0.0025 (9)0.0014 (9)0.0065 (9)
N30.0176 (11)0.0171 (11)0.0129 (11)0.0015 (9)0.0006 (9)0.0080 (9)
N40.0143 (11)0.0163 (11)0.0170 (12)0.0008 (9)0.0013 (9)0.0080 (9)
CA10.0139 (12)0.0146 (12)0.0145 (13)0.0016 (10)0.0016 (10)0.0046 (10)
CA20.0104 (11)0.0151 (12)0.0178 (13)0.0021 (10)0.0004 (10)0.0090 (10)
CA30.0123 (12)0.0140 (12)0.0176 (13)0.0024 (10)0.0016 (10)0.0075 (10)
CA40.0138 (12)0.0131 (12)0.0181 (13)0.0009 (10)0.0015 (10)0.0044 (10)
CA50.0181 (13)0.0180 (13)0.0136 (13)0.0041 (11)0.0017 (10)0.0052 (11)
CA60.0187 (13)0.0179 (13)0.0166 (13)0.0037 (11)0.0000 (11)0.0083 (11)
CA70.0151 (12)0.0169 (13)0.0199 (14)0.0025 (10)0.0025 (10)0.0103 (11)
CA80.0141 (12)0.0124 (12)0.0197 (14)0.0016 (10)0.0008 (10)0.0054 (10)
CB10.0158 (13)0.0178 (13)0.0149 (13)0.0055 (10)0.0002 (10)0.0065 (11)
CB20.0146 (12)0.0170 (13)0.0136 (13)0.0042 (10)0.0012 (10)0.0071 (10)
CB30.0110 (11)0.0118 (12)0.0198 (14)0.0005 (10)0.0004 (10)0.0059 (10)
CB40.0150 (13)0.0140 (13)0.0210 (14)0.0009 (10)0.0025 (11)0.0036 (11)
CB50.0239 (14)0.0194 (14)0.0154 (13)0.0055 (11)0.0024 (11)0.0069 (11)
CB60.0259 (15)0.0214 (14)0.0161 (14)0.0052 (12)0.0004 (11)0.0106 (11)
CB70.0142 (12)0.0131 (12)0.0229 (14)0.0022 (10)0.0007 (11)0.0064 (11)
CB80.0140 (12)0.0149 (13)0.0213 (14)0.0011 (10)0.0016 (11)0.0057 (11)
C110.0222 (14)0.0226 (14)0.0147 (13)0.0006 (12)0.0038 (11)0.0069 (11)
C210.0237 (14)0.0184 (13)0.0148 (13)0.0036 (11)0.0011 (11)0.0093 (11)
C310.0159 (13)0.0154 (13)0.0238 (15)0.0010 (10)0.0004 (11)0.0101 (11)
C410.0233 (15)0.0140 (13)0.0212 (15)0.0066 (11)0.0043 (12)0.0052 (11)
C510.0324 (17)0.0251 (15)0.0182 (15)0.0052 (13)0.0075 (13)0.0081 (12)
C610.0331 (17)0.0305 (17)0.0199 (15)0.0029 (14)0.0015 (13)0.0168 (13)
C710.0218 (14)0.0166 (14)0.0268 (16)0.0012 (11)0.0011 (12)0.0129 (12)
C810.0173 (13)0.0182 (14)0.0267 (16)0.0049 (11)0.0041 (12)0.0091 (12)
C120.0213 (15)0.040 (2)0.0289 (18)0.0022 (14)0.0101 (13)0.0128 (15)
C220.044 (2)0.0336 (19)0.036 (2)0.0178 (16)0.0046 (16)0.0229 (16)
C320.0262 (16)0.0179 (14)0.0363 (18)0.0034 (12)0.0001 (14)0.0143 (13)
C420.049 (2)0.0223 (16)0.0245 (17)0.0078 (15)0.0041 (16)0.0009 (13)
C520.056 (2)0.0276 (18)0.0210 (17)0.0121 (17)0.0078 (16)0.0014 (14)
C620.042 (2)0.065 (3)0.041 (2)0.016 (2)0.0152 (19)0.034 (2)
C720.0282 (17)0.0280 (17)0.0352 (19)0.0034 (14)0.0086 (14)0.0181 (15)
C820.0174 (15)0.043 (2)0.0323 (19)0.0021 (14)0.0074 (13)0.0120 (16)
CM10.0132 (12)0.0149 (12)0.0172 (13)0.0005 (10)0.0034 (10)0.0058 (10)
CM20.0142 (12)0.0156 (13)0.0179 (13)0.0009 (10)0.0001 (10)0.0092 (11)
CM30.0186 (13)0.0173 (13)0.0173 (14)0.0016 (11)0.0042 (11)0.0057 (11)
CM40.0171 (13)0.0188 (14)0.0220 (14)0.0019 (11)0.0008 (11)0.0109 (12)
CS10.0310 (18)0.039 (2)0.036 (2)0.0044 (16)0.0009 (15)0.0191 (17)
Cl20.0368 (5)0.0345 (5)0.0597 (7)0.0025 (4)0.0048 (5)0.0173 (5)
Cl30.0496 (6)0.0580 (7)0.0504 (7)0.0108 (5)0.0205 (5)0.0024 (5)
CS20.066 (7)0.023 (4)0.066 (7)0.003 (4)0.004 (5)0.022 (4)
Cl40.0684 (17)0.0590 (16)0.0764 (19)0.0064 (14)0.0037 (15)0.0429 (15)
Cl50.0595 (18)0.110 (3)0.073 (2)0.010 (2)0.0058 (15)0.055 (2)
Geometric parameters (Å, º) top
Fe—N22.060 (3)C41—H41A0.9700
Fe—N42.066 (3)C41—H41B0.9700
Fe—N12.066 (2)C51—C521.521 (5)
Fe—N32.067 (2)C51—H51A0.9700
Fe—Cl12.2430 (13)C51—H51B0.9700
N1—CA11.378 (4)C61—C621.507 (5)
N1—CA21.383 (3)C61—H61A0.9700
N2—CA41.375 (4)C61—H61B0.9700
N2—CA31.376 (4)C71—C721.516 (5)
N3—CA51.375 (4)C71—H71A0.9700
N3—CA61.383 (4)C71—H71B0.9700
N4—CA71.378 (4)C81—C821.524 (5)
N4—CA81.378 (4)C81—H81A0.9700
CA1—CM11.388 (4)C81—H81B0.9700
CA1—CB11.447 (4)C12—H12A0.9600
CA2—CM21.381 (4)C12—H12B0.9600
CA2—CB21.443 (4)C12—H12C0.9600
CA3—CM21.382 (4)C22—H22A0.9600
CA3—CB31.448 (4)C22—H22B0.9600
CA4—CM31.386 (4)C22—H22C0.9600
CA4—CB41.440 (4)C32—H32A0.9600
CA5—CM31.388 (4)C32—H32B0.9600
CA5—CB51.444 (4)C32—H32C0.9600
CA6—CM41.385 (4)C42—H42A0.9600
CA6—CB61.443 (4)C42—H42B0.9600
CA7—CM41.390 (4)C42—H42C0.9600
CA7—CB71.449 (4)C52—H52A0.9600
CA8—CM11.387 (4)C52—H52B0.9600
CA8—CB81.437 (4)C52—H52C0.9600
CB1—CB21.366 (4)C62—H62A0.9600
CB1—C111.495 (4)C62—H62B0.9600
CB2—C211.504 (4)C62—H62C0.9600
CB3—CB41.371 (4)C72—H72A0.9600
CB3—C311.494 (4)C72—H72B0.9600
CB4—C411.493 (4)C72—H72C0.9600
CB5—CB61.360 (4)C82—H82A0.9600
CB5—C511.500 (4)C82—H82B0.9600
CB6—C611.497 (4)C82—H82C0.9600
CB7—CB81.359 (4)CM1—HM10.9300
CB7—C711.501 (4)CM2—HM20.9300
CB8—C811.498 (4)CM3—HM30.9300
C11—C121.529 (5)CM4—HM40.9300
C11—H11A0.9700CS1—Cl31.742 (4)
C11—H11B0.9700CS1—Cl21.749 (4)
C21—C221.525 (4)CS1—HS1A0.9700
C21—H21A0.9700CS1—HS1B0.9700
C21—H21B0.9700CS2—Cl41.732 (10)
C31—C321.524 (4)CS2—Cl51.798 (12)
C31—H31A0.9700CS2—HS2A0.9700
C31—H31B0.9700CS2—HS2B0.9700
C41—C421.521 (5)
N2—Fe—N4154.50 (10)CB5—C51—H51A109.2
N2—Fe—N187.08 (10)C52—C51—H51A109.2
N4—Fe—N186.96 (10)CB5—C51—H51B109.2
N2—Fe—N387.05 (10)C52—C51—H51B109.2
N4—Fe—N387.14 (10)H51A—C51—H51B107.9
N1—Fe—N3153.12 (10)CB6—C61—C62113.0 (3)
N2—Fe—Cl1102.63 (8)CB6—C61—H61A109.0
N4—Fe—Cl1102.87 (8)C62—C61—H61A109.0
N1—Fe—Cl1103.92 (7)CB6—C61—H61B109.0
N3—Fe—Cl1102.96 (7)C62—C61—H61B109.0
CA1—N1—CA2105.7 (2)H61A—C61—H61B107.8
CA1—N1—Fe126.55 (18)CB7—C71—C72114.3 (3)
CA2—N1—Fe126.22 (18)CB7—C71—H71A108.7
CA4—N2—CA3105.6 (2)C72—C71—H71A108.7
CA4—N2—Fe126.10 (19)CB7—C71—H71B108.7
CA3—N2—Fe126.47 (19)C72—C71—H71B108.7
CA5—N3—CA6105.4 (2)H71A—C71—H71B107.6
CA5—N3—Fe126.67 (19)CB8—C81—C82111.8 (3)
CA6—N3—Fe126.9 (2)CB8—C81—H81A109.3
CA7—N4—CA8105.4 (2)C82—C81—H81A109.3
CA7—N4—Fe126.25 (19)CB8—C81—H81B109.3
CA8—N4—Fe126.63 (19)C82—C81—H81B109.3
N1—CA1—CM1124.4 (3)H81A—C81—H81B107.9
N1—CA1—CB1110.5 (2)C11—C12—H12A109.5
CM1—CA1—CB1125.1 (3)C11—C12—H12B109.5
CM2—CA2—N1125.2 (3)H12A—C12—H12B109.5
CM2—CA2—CB2124.7 (3)C11—C12—H12C109.5
N1—CA2—CB2110.1 (2)H12A—C12—H12C109.5
N2—CA3—CM2125.1 (3)H12B—C12—H12C109.5
N2—CA3—CB3110.7 (2)C21—C22—H22A109.5
CM2—CA3—CB3124.2 (3)C21—C22—H22B109.5
N2—CA4—CM3124.7 (3)H22A—C22—H22B109.5
N2—CA4—CB4110.7 (3)C21—C22—H22C109.5
CM3—CA4—CB4124.6 (3)H22A—C22—H22C109.5
N3—CA5—CM3124.3 (3)H22B—C22—H22C109.5
N3—CA5—CB5110.8 (3)C31—C32—H32A109.5
CM3—CA5—CB5124.9 (3)C31—C32—H32B109.5
N3—CA6—CM4124.7 (3)H32A—C32—H32B109.5
N3—CA6—CB6110.2 (3)C31—C32—H32C109.5
CM4—CA6—CB6125.1 (3)H32A—C32—H32C109.5
N4—CA7—CM4124.7 (3)H32B—C32—H32C109.5
N4—CA7—CB7110.4 (3)C41—C42—H42A109.5
CM4—CA7—CB7124.9 (3)C41—C42—H42B109.5
N4—CA8—CM1124.2 (3)H42A—C42—H42B109.5
N4—CA8—CB8110.7 (3)C41—C42—H42C109.5
CM1—CA8—CB8125.1 (3)H42A—C42—H42C109.5
CB2—CB1—CA1106.5 (2)H42B—C42—H42C109.5
CB2—CB1—C11128.5 (3)C51—C52—H52A109.5
CA1—CB1—C11125.0 (3)C51—C52—H52B109.5
CB1—CB2—CA2107.1 (2)H52A—C52—H52B109.5
CB1—CB2—C21128.1 (3)C51—C52—H52C109.5
CA2—CB2—C21124.7 (3)H52A—C52—H52C109.5
CB4—CB3—CA3106.1 (2)H52B—C52—H52C109.5
CB4—CB3—C31128.4 (3)C61—C62—H62A109.5
CA3—CB3—C31125.5 (3)C61—C62—H62B109.5
CB3—CB4—CA4106.9 (2)H62A—C62—H62B109.5
CB3—CB4—C41127.5 (3)C61—C62—H62C109.5
CA4—CB4—C41125.6 (3)H62A—C62—H62C109.5
CB6—CB5—CA5106.5 (3)H62B—C62—H62C109.5
CB6—CB5—C51128.7 (3)C71—C72—H72A109.5
CA5—CB5—C51124.8 (3)C71—C72—H72B109.5
CB5—CB6—CA6107.1 (3)H72A—C72—H72B109.5
CB5—CB6—C61128.2 (3)C71—C72—H72C109.5
CA6—CB6—C61124.5 (3)H72A—C72—H72C109.5
CB8—CB7—CA7106.5 (3)H72B—C72—H72C109.5
CB8—CB7—C71128.0 (3)C81—C82—H82A109.5
CA7—CB7—C71125.5 (3)C81—C82—H82B109.5
CB7—CB8—CA8107.0 (3)H82A—C82—H82B109.5
CB7—CB8—C81128.1 (3)C81—C82—H82C109.5
CA8—CB8—C81124.8 (3)H82A—C82—H82C109.5
CB1—C11—C12112.0 (3)H82B—C82—H82C109.5
CB1—C11—H11A109.2CA8—CM1—CA1126.6 (3)
C12—C11—H11A109.2CA8—CM1—HM1116.7
CB1—C11—H11B109.2CA1—CM1—HM1116.7
C12—C11—H11B109.2CA2—CM2—CA3125.6 (3)
H11A—C11—H11B107.9CA2—CM2—HM2117.2
CB2—C21—C22112.0 (3)CA3—CM2—HM2117.2
CB2—C21—H21A109.2CA4—CM3—CA5126.3 (3)
C22—C21—H21A109.2CA4—CM3—HM3116.8
CB2—C21—H21B109.2CA5—CM3—HM3116.8
C22—C21—H21B109.2CA6—CM4—CA7126.0 (3)
H21A—C21—H21B107.9CA6—CM4—HM4117.0
CB3—C31—C32113.6 (2)CA7—CM4—HM4117.0
CB3—C31—H31A108.9Cl3—CS1—Cl2112.1 (2)
C32—C31—H31A108.9Cl3—CS1—HS1A109.2
CB3—C31—H31B108.9Cl2—CS1—HS1A109.2
C32—C31—H31B108.9Cl3—CS1—HS1B109.2
H31A—C31—H31B107.7Cl2—CS1—HS1B109.2
CB4—C41—C42112.3 (3)HS1A—CS1—HS1B107.9
CB4—C41—H41A109.2Cl4—CS2—Cl5111.1 (6)
C42—C41—H41A109.2Cl4—CS2—HS2A109.4
CB4—C41—H41B109.2Cl5—CS2—HS2A109.4
C42—C41—H41B109.2Cl4—CS2—HS2B109.4
H41A—C41—H41B107.9Cl5—CS2—HS2B109.4
CB5—C51—C52112.2 (3)HS2A—CS2—HS2B108.0

Experimental details

Crystal data
Chemical formula[Fe(C36H44N4)Cl]·1.5CH2Cl2
Mr751.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.062 (6), 13.767 (5), 14.754 (5)
α, β, γ (°)66.46 (2), 80.55 (2), 76.10 (2)
V3)1813.5 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.20 × 0.11 × 0.08
Data collection
DiffractometerEnraf–Nonius FAST area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.866, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
9130, 9130, 7073
Rint0.060
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.148, 1.05
No. of reflections9130
No. of parameters441
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.69

Computer programs: MADNES (Messerschmidt & Pflugrath, 1987), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Fe—N22.060 (3)Fe—N32.067 (2)
Fe—N42.066 (3)Fe—Cl12.2430 (13)
Fe—N12.066 (2)
N2—Fe—N4154.50 (10)N4—Fe—Cl1102.87 (8)
N1—Fe—N3153.12 (10)N1—Fe—Cl1103.92 (7)
N2—Fe—Cl1102.63 (8)N3—Fe—Cl1102.96 (7)
 

Acknowledgements

We thank the National Institutes of Health (grant GM-38401) for support.

References

First citationAdler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2444.  CrossRef CAS Web of Science Google Scholar
First citationErnst, J., Subramanian, J. & Fuhrhop, J.-H. (1977). Z. Naturforsch. Teil A, 32, 1129–1136.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMesserschmidt, A. & Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306–315.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOlmstead, M. M., Costa, D. A., Maitra, K., Noll, B. C., Phillips, S. L., Van Calcar, P. M. & Balch, A. L. (1999). J. Am. Chem. Soc. 121, 7090–7097.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheidt, W. R. (2000). The Porphyrin Handbook, Vol. 6, edited by K. M. Kadish, R. Guilard & K. M. Smith, pp. 49–112. San Diego: Academic Press.  Google Scholar
First citationSenge, M. O. (2005). Acta Cryst. E61, m399–m400.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds