inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages i49-i50

Dipotassium dialuminium cyclo­octa­phosphate

aUniversité Cadi Ayyad, Laboratoire de la Matière Condensée et de l'Environnement, Faculté des Sciences Semlalia, Département de Chimie, BP 2390, 40000, Marrakech, Morocco, and bUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: daniel.avignant@univ-bpclermont.fr

(Received 20 May 2010; accepted 31 May 2010; online 5 June 2010)

Single crystals of the title compound, K2Al2P8O24, were obtained by solid-state reaction. The monoclinic structure is isotypic with that of the GaIII analogue and is built of eight-membered phosphate ring anions P8O248− (2/m symmetry) isolated from each other and further linked by isolated AlO6 octa­hedra ([\overline{1}] symmetry) by sharing corners. Each AlO6 octa­hedron is linked to four P8O248− rings in such a way that two rings are linked through bidentate diphosphate groups attached in the cis positions on two opposite parallel edges of the octa­hedron. The two other rings are linked via corner-sharing to the two remaining corners in the trans positions of the AlO6 octa­hedron. Each P8O248− ring anion is linked to eight AlO6 octa­hedra. More accurately, each ring anion is linked to four AlO6 octa­hedra through bidentate diphosphate groups attached in the cis positions to the AlO6 octa­hedron and to the four remaining octa­hedra by sharing corners. This three-dimensional linkage delimits channels running parallel to [001] in which the ten-coordinated K+ cations (2 symmetry) are distributed over two columns. These columns alternate with empty octa­gonally-shaped channels expanding through the P8O248− ring anions.

Related literature

The synthesis and an approximate unit cell with a slightly smaller β angle were reported for the title compound more than a quarter of a century ago (Grunze et al., 1983[Grunze, I., Chudinova, N. N. & Palkina, K. K. (1983). Izv. Akad. Nauk SSSR Neorg. Mater. 19, 1943-1945.]). The crystal structures of isotypic compounds determined from single-crystal data have been reported for K2Ga2P8O24 (Palkina et al., 1979[Palkina, K. K., Maksimova, S. I., Kusznetsov, V. G. & Chudinova, N. N. (1979). Dokl. Akad. Nauk SSSR, 245, 1386-1389.]) and K2Mn2P8O24 (Murashova & Chudinova, 1999[Murashova, E. V. & Chudinova, N. N. (1999). Russ. J. Inorg. Chem. 44, 1810-1813.]). The isostructural potassium-containing cyclo­octa­phosphates K2V2P8O24 (Lavrov et al., 1981[Lavrov, A. V., Voitenko, M. Y. & Tselebrovskaya, E. G. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 99-103.]), K2Fe2P8O24 (Grunze et al., 1983[Grunze, I., Chudinova, N. N. & Palkina, K. K. (1983). Izv. Akad. Nauk SSSR Neorg. Mater. 19, 1943-1945.]) and K2Cr2P8O24 (Grunze & Chudinova, 1988[Grunze, I. & Chudinova, N. N. (1988). Izv. Akad. Nauk SSSR Neorg. Mater. 24, 988-993.]) were reported without detailed structure analyses. For a review of the crystal chemistry of cyclo­octa­phosphates, see: Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.], 2005[Durif, A. (2005). Solid State Sci. 7, 760-766.]). For potential applications of aluminophosphates, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Hartmann & Kevan (1999[Hartmann, M. & Kevan, L. (1999). Chem. Rev. 99, 635-663.]). For background to distortion indices, see: Momma & Izumi (2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]).

Experimental

Crystal data
  • K2Al2P8O24

  • Mr = 763.92

  • Monoclinic, C 2/m

  • a = 16.598 (2) Å

  • b = 12.2150 (17) Å

  • c = 5.0705 (7) Å

  • β = 100.315 (4)°

  • V = 1011.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.748

  • 9643 measured reflections

  • 2844 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.07

  • 2844 reflections

  • 87 parameters

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected bond lengths (Å)

P1—O1i 1.4861 (12)
P1—O3 1.4956 (12)
P1—O4 1.5701 (13)
P1—O7 1.5794 (8)
P2—O5 1.4622 (14)
P2—O2 1.4983 (12)
P2—O6 1.5957 (10)
P2—O4 1.6070 (13)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CaRine (Boudias & Monceau, 1998[Boudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, K2Al2P8O24, belongs to porous crystalline open-framework materials that gain growing interest for their potential applications as molecular sieves or catalysts (Cheetham et al. 1999; Hartmann & Kevan, 1999). The title cyclooctaphosphate is isotypic with K2Ga2P8O24 (Palkina et al., 1979) and K2Mn2P8O24 (Murashova & Chudinova, 1999). This structural family also includes K2V2P8O24 (Lavrov et al., 1981), K2Fe2P8O24 (Grunze et al., 1983) and K2Cr2P8O24 (Grunze & Chudinova, 1988), the structures of which have not yet been refined from X-ray diffraction data.

The crystal structure of K2M2P8O24 is built up of 8-membered phosphate ring anions P8O248- (symmetry 2/m) (Fig. 1), further linked by isolated MIIIO6 octahedra to form the three-dimensional skeleton. Each MO6 octahedron is linked to four ring anions P8O248-. Two ring anions are linked by corner-sharing in trans positions whereas the two others are connected in a bidentate fashion in cis positions on two opposite edges of the equatorial plane of the octahedron. This three-dimensional framework of K2Al2P8O24 delimits two kinds of channels expanding along the [001] direction (Fig. 2). The first channel is octagonally shaped since passing through the ring anions and is empty despite a size of 5.2 Å in diameter. The second channel, cross shaped, accommodates the K+ ions in a [6 + 4] coordination. The K+ ions are located over two columns shifted of about c/2 with respect to each other along the c axis. Thus they form two distinct K—K pairs with common square faces involving only O(5) oxygen atoms. In the first pair, corresponding to the shortest K—K distance (3.634 (9) Å) (Fig. 3), the four O(5) atoms delimit a pseudo-square face with O—O separations of 2.995 (2) and 3.064 (6) Å and O(5)—O(5)—O(5) angles of 90°. This pair corresponds to the two shortest K—O distances, viz. 2.7559 (15) and 2.8612 (15) Å. In the second pair with a K—K distance of 4.365 (7) Å, the four O(5) atoms at the vertices of the pseudo-square face (O—O separation 2.995 (2) and 3.139 (7) Å with O(5)—O(5)—O(5) angles of 90°), the respective K—O bonds lengths are 2.8612 (15) and 3.2790 (17) Å. The polyhedra surrounding three potassium cations engaged in two successive pairs (one long and one short) form a cluster within they share a common O(5)—O(5) edge with a contact distance of 2.995 (2) Å. This potassium-oxygen polyhedra packing also prevails in the Ga and Mn cyclooctaphosphate analogues but the K—O distances spread over larger ranges, viz. from 2.754 (28) Å to 3.359 (28) Å and from 2.738 (2) to 3.506 (2) Å, respectively. Thus the respective coordinations of the potassium cations can be regarded as being [6 + 4] and [8 + 2] for Ga and Mn cyclooctaphosphate.

A careful examination of the geometry of the MIIIO6 octahedra in this structural type shows that the distortion index (bond length) (Momma & Izumi, 2008) increases from Al to Mn (0.0117 for Al, 0.0202 for Ga and 0.0574 for Mn). The AlO6 octahedron is only very slightly distorted with two shorter Al—O distances of 1.8523 (12) Å and four others very close to 1.90 Å (1.9013 (12) (× 2) and 1.9021 (11) (× 2) Å). The significant larger distortion of the MnO6 octahedron is probably due to the Jahn-Teller effect associated with the d4 electronic configuration of MnIII (Murashova & Chudinova, 1999).

Besides the structural family to which the title compound belongs, only another sodium and silver- containing cyclooctaphosphate, Ag9NaP8O24(NO3)2.4H2O, exhibits a ring anion with internal 2/m symmetry among the presently known cyclooctaphosphates (Durif, 1995, 2005). However, despite the common internal symmetry, the shape of the 8-membered ring anion present in this structure is very different from that of the title compound as shown in Fig. 4.

Related literature top

The synthesis and an approximate unit cell with a slightly smaller β angle were reported for the title compound more than a quarter of a century ago (Grunze et al., 1983). The crystal structures of isotypic compounds determined from single-crystal data have been reported for K2Ga2P8O24 (Palkina et al., 1979) and K2Mn2P8O24 (Murashova & Chudinova, 1999). The isostructural potassium-containing cyclooctaphosphates K2V2P8O24 (Lavrov et al., 1981), K2Fe2P8O24 (Grunze et al., 1983) and K2Cr2P8O24 (Grunze & Chudinova, 1988) were reported without detailed structure alalyses. For a review of the crystal chemistry of cyclooctaphosphates, see: Durif (1995, 2005). For potential applications of aluminophosphates, see: Cheetham et al. (1999); Hartmann & Kevan (1999). For background to distortion indices, see: Momma & Izumi (2008).

Experimental top

Single-crystals of the title compound were obtained by solid state reaction, from the reagents K2CO3, Al2O3 and (NH4)H2PO4 in the molar ratio K / P / Al = 57 / 34 / 9. The mixture has progressively been heated up to 873 K over a period of 12 h. Then the temperature was slowly decreased down to 723 K at the rate of 5 K h-1 and maintained at this value for 12 h. Then a new cooling step down to 573 K at the rate of 5 K h-1 was carried out before the furnace was switched off. Single-crystals of K2Al2P8O24 were extracted from the batch by washing with hot water in order to remove the excess of P2O5. A translucent colorless needle of the title compound was used for the structure refinement.

Refinement top

The highest residual peak in the final difference Fourier map was located 0.74 Å from atom P2 and the deepest hole was located 0.69 Å from atom P1.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999), CaRine (Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view (Farrugia, 1997) of the centrosymmetric (P8O24)8- ring anion. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y + 1, -z + 1; (iv) -x, y, -z; (v) -x, -y + 1, -z; (vi) x - 1/2, -y + 1/2, z; (ix) -x + 1/2, -y + 1/2, -z + 1; (xi) x, -y, z.
[Figure 2] Fig. 2. Projections of the 8-membered ring anions P8O248- along [010] (left) and [001] (right).
[Figure 3] Fig. 3. Partial view showing the packing of the K—O polyhedra along the c axis in the ball and stick (left) and polyhedral (right) representation.
[Figure 4] Fig. 4. Comparison of the 8-membered ring anions P8O248- (both with internal 2/m symmetry) in K2Al2P8O24 (top) and Ag9NaP8O24(NO3)2.4H2O (bottom).
Dipotassium dialuminium cyclooctaphosphate top
Crystal data top
K2Al2P8O24F(000) = 752
Mr = 763.92Dx = 2.508 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3017 reflections
a = 16.598 (2) Åθ = 3.3–37.7°
b = 12.2150 (17) ŵ = 1.31 mm1
c = 5.0705 (7) ÅT = 296 K
β = 100.315 (4)°Needle, colourless
V = 1011.4 (2) Å30.30 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2844 independent reflections
Radiation source: fine-focus sealed tube2252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.3333 pixels mm-1θmax = 38.7°, θmin = 4.1°
ω and ϕ scansh = 2928
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1820
Tmin = 0.562, Tmax = 0.748l = 88
9643 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.042Secondary atom site location: difference Fourier map
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.0398P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2844 reflectionsΔρmax = 1.40 e Å3
87 parametersΔρmin = 1.04 e Å3
Crystal data top
K2Al2P8O24V = 1011.4 (2) Å3
Mr = 763.92Z = 2
Monoclinic, C2/mMo Kα radiation
a = 16.598 (2) ŵ = 1.31 mm1
b = 12.2150 (17) ÅT = 296 K
c = 5.0705 (7) Å0.30 × 0.10 × 0.08 mm
β = 100.315 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2844 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2252 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.748Rint = 0.047
9643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04287 parameters
wR(F2) = 0.1240 restraints
S = 1.07Δρmax = 1.40 e Å3
2844 reflectionsΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.09371 (4)0.50000.25194 (13)0.02290 (13)
Al0.25000.25000.00000.00771 (13)
P10.19023 (2)0.12098 (3)0.46962 (8)0.00720 (9)
P20.07782 (2)0.27631 (3)0.16477 (8)0.00835 (9)
O10.28060 (8)0.36965 (10)0.2366 (2)0.0118 (2)
O20.14059 (7)0.28394 (11)0.0132 (2)0.0132 (2)
O30.24968 (7)0.15349 (10)0.2942 (2)0.0105 (2)
O40.10711 (7)0.18408 (11)0.3873 (2)0.0122 (2)
O50.05469 (9)0.37739 (12)0.2866 (3)0.0184 (3)
O60.00000.21471 (15)0.00000.0140 (3)
O70.16028 (11)0.00000.3993 (3)0.0125 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0299 (3)0.0147 (3)0.0240 (3)0.0000.0046 (2)0.000
Al0.0085 (3)0.0083 (3)0.0064 (3)0.0001 (2)0.0016 (2)0.0006 (2)
P10.00956 (16)0.00518 (17)0.00672 (15)0.00032 (12)0.00110 (11)0.00033 (11)
P20.00850 (17)0.00632 (18)0.01023 (16)0.00094 (12)0.00164 (12)0.00031 (12)
O10.0186 (5)0.0084 (5)0.0078 (4)0.0009 (4)0.0006 (4)0.0006 (3)
O20.0095 (5)0.0177 (6)0.0130 (5)0.0020 (4)0.0033 (4)0.0049 (4)
O30.0104 (5)0.0111 (5)0.0105 (5)0.0011 (4)0.0037 (3)0.0033 (4)
O40.0108 (5)0.0125 (6)0.0138 (5)0.0033 (4)0.0034 (4)0.0051 (4)
O50.0247 (6)0.0105 (6)0.0198 (6)0.0053 (5)0.0030 (5)0.0045 (5)
O60.0096 (7)0.0092 (8)0.0217 (8)0.0000.0011 (6)0.000
O70.0177 (7)0.0051 (7)0.0129 (7)0.0000.0021 (5)0.000
Geometric parameters (Å, º) top
K—O5i2.7559 (15)Al—O31.9021 (11)
K—O5ii2.7559 (15)P1—O1ix1.4861 (12)
K—O52.8612 (15)P1—O31.4956 (12)
K—O5iii2.8612 (15)P1—O41.5701 (13)
K—O2iv2.9493 (14)P1—O71.5794 (8)
K—O2v2.9493 (13)P2—O51.4622 (14)
K—O3vi3.2431 (13)P2—O21.4983 (12)
K—O3vii3.2431 (13)P2—O61.5957 (10)
K—O5iv3.2790 (17)P2—O41.6070 (13)
K—O5v3.2790 (17)P2—Kv3.4928 (7)
K—P2iv3.4927 (7)O1—P1ix1.4861 (12)
K—P2v3.4927 (7)O2—Kv2.9494 (13)
Al—O2viii1.8523 (12)O3—Kx3.2431 (13)
Al—O21.8523 (12)O5—Ki2.7559 (15)
Al—O1viii1.9013 (12)O5—Kv3.2790 (17)
Al—O11.9013 (12)O6—P2iv1.5957 (10)
Al—O3viii1.9021 (11)O7—P1xi1.5793 (8)
O5i—K—O5ii65.84 (6)O5—K—P2v106.81 (4)
O5i—K—O599.41 (4)O5iii—K—P2v58.01 (3)
O5ii—K—O566.08 (6)O2iv—K—P2v119.65 (3)
O5i—K—O5iii66.08 (6)O2v—K—P2v25.13 (2)
O5ii—K—O5iii99.41 (4)O3vi—K—P2v129.83 (3)
O5—K—O5iii63.13 (6)O3vii—K—P2v74.69 (2)
O5i—K—O2iv147.08 (5)O5iv—K—P2v78.81 (3)
O5ii—K—O2iv82.35 (4)O5v—K—P2v24.68 (2)
O5—K—O2iv73.61 (4)P2iv—K—P2v102.94 (2)
O5iii—K—O2iv130.89 (4)O2viii—Al—O2180.0
O5i—K—O2v82.35 (4)O2viii—Al—O1viii90.00 (6)
O5ii—K—O2v147.08 (5)O2—Al—O1viii89.99 (6)
O5—K—O2v130.89 (4)O2viii—Al—O189.99 (6)
O5iii—K—O2v73.61 (4)O2—Al—O190.01 (6)
O2iv—K—O2v126.97 (6)O1viii—Al—O1180.00 (5)
O5i—K—O3vi109.11 (4)O2viii—Al—O3viii91.53 (5)
O5ii—K—O3vi72.48 (4)O2—Al—O3viii88.47 (5)
O5—K—O3vi112.63 (4)O1viii—Al—O3viii91.12 (5)
O5iii—K—O3vi171.88 (4)O1—Al—O3viii88.88 (5)
O2iv—K—O3vi49.77 (3)O2viii—Al—O388.47 (5)
O2v—K—O3vi112.88 (4)O2—Al—O391.52 (5)
O5i—K—O3vii72.48 (4)O1viii—Al—O388.88 (5)
O5ii—K—O3vii109.11 (4)O1—Al—O391.12 (5)
O5—K—O3vii171.88 (4)O3viii—Al—O3180.0
O5iii—K—O3vii112.63 (4)O1ix—P1—O3116.38 (7)
O2iv—K—O3vii112.88 (4)O1ix—P1—O4109.98 (7)
O2v—K—O3vii49.77 (3)O3—P1—O4110.70 (7)
O3vi—K—O3vii70.64 (5)O1ix—P1—O7109.34 (8)
O5i—K—O5iv154.67 (6)O3—P1—O7109.20 (8)
O5ii—K—O5iv114.04 (5)O4—P1—O799.98 (8)
O5—K—O5iv61.04 (5)O5—P2—O2117.73 (9)
O5iii—K—O5iv89.66 (4)O5—P2—O6111.73 (8)
O2iv—K—O5iv47.65 (3)O2—P2—O6107.39 (6)
O2v—K—O5iv98.27 (4)O5—P2—O4111.39 (8)
O3vi—K—O5iv94.08 (3)O2—P2—O4108.11 (7)
O3vii—K—O5iv126.82 (4)O6—P2—O498.73 (7)
O5i—K—O5v114.04 (5)O5—P2—Kv69.45 (6)
O5ii—K—O5v154.67 (6)O2—P2—Kv56.71 (5)
O5—K—O5v89.66 (4)O6—P2—Kv101.18 (5)
O5iii—K—O5v61.04 (5)O4—P2—Kv157.99 (5)
O2iv—K—O5v98.27 (4)P1ix—O1—Al133.95 (8)
O2v—K—O5v47.65 (3)P2—O2—Al138.36 (8)
O3vi—K—O5v126.82 (4)P2—O2—Kv98.17 (6)
O3vii—K—O5v94.08 (3)Al—O2—Kv113.58 (5)
O5iv—K—O5v54.36 (5)P1—O3—Al136.54 (8)
O5i—K—P2iv155.10 (4)P1—O3—Kx120.51 (6)
O5ii—K—P2iv93.25 (3)Al—O3—Kx101.05 (4)
O5—K—P2iv58.01 (3)P1—O4—P2132.20 (8)
O5iii—K—P2iv106.81 (4)P2—O5—Ki141.08 (8)
O2iv—K—P2iv25.13 (2)P2—O5—K134.77 (8)
O2v—K—P2iv119.65 (3)Ki—O5—K80.59 (4)
O3vi—K—P2iv74.69 (2)P2—O5—Kv85.87 (6)
O3vii—K—P2iv129.83 (3)Ki—O5—Kv114.04 (5)
O5iv—K—P2iv24.68 (2)K—O5—Kv90.34 (4)
O5v—K—P2iv78.81 (3)P2—O6—P2iv123.73 (12)
O5i—K—P2v93.25 (3)P1xi—O7—P1138.66 (12)
O5ii—K—P2v155.10 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x, y, z; (v) x, y+1, z; (vi) x1/2, y+1/2, z; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z+1; (x) x+1/2, y1/2, z; (xi) x, y, z.

Experimental details

Crystal data
Chemical formulaK2Al2P8O24
Mr763.92
Crystal system, space groupMonoclinic, C2/m
Temperature (K)296
a, b, c (Å)16.598 (2), 12.2150 (17), 5.0705 (7)
β (°) 100.315 (4)
V3)1011.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.562, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
9643, 2844, 2252
Rint0.047
(sin θ/λ)max1)0.880
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.07
No. of reflections2844
No. of parameters87
Δρmax, Δρmin (e Å3)1.40, 1.04

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), CaRine (Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
P1—O1i1.4861 (12)P2—O51.4622 (14)
P1—O31.4956 (12)P2—O21.4983 (12)
P1—O41.5701 (13)P2—O61.5957 (10)
P1—O71.5794 (8)P2—O41.6070 (13)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

References

First citationBoudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.  Google Scholar
First citationDurif, A. (2005). Solid State Sci. 7, 760–766.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrunze, I. & Chudinova, N. N. (1988). Izv. Akad. Nauk SSSR Neorg. Mater. 24, 988–993.  CAS Google Scholar
First citationGrunze, I., Chudinova, N. N. & Palkina, K. K. (1983). Izv. Akad. Nauk SSSR Neorg. Mater. 19, 1943–1945.  Google Scholar
First citationHartmann, M. & Kevan, L. (1999). Chem. Rev. 99, 635–663.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLavrov, A. V., Voitenko, M. Y. & Tselebrovskaya, E. G. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 99–103.  CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurashova, E. V. & Chudinova, N. N. (1999). Russ. J. Inorg. Chem. 44, 1810–1813.  Google Scholar
First citationPalkina, K. K., Maksimova, S. I., Kusznetsov, V. G. & Chudinova, N. N. (1979). Dokl. Akad. Nauk SSSR, 245, 1386–1389.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages i49-i50
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds