metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m772-m773

Bis[N,N-di­methyl-1-(10H-pyrido[3,2-b][1,4]benzo­thia­zin-10-yl)propan-2-aminium] tetra­kis­­(thio­cyanato-κN)cobaltate(II)

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bGITAM Institute of Pharmacy, GITAM University, Visakhapatnam 530 045, Andhrapradesh, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 22 May 2010; accepted 4 June 2010; online 16 June 2010)

The asymmetric unit of the title salt, (C16H20N3S)2[Co(NCS)4], comprises one monovalent isothio­pendylium cation and one-half of a divalent thio­cyanatocobaltate(II) anion (2 symmetry). The central thia­zine ring of the cation is slightly twisted in a boat-like fashion, with r.m.s. deviations from the mean plane of 0.272 (1) and 0.2852 (8) Å for the N and S atoms. The mol­ecular structure of the cation is stabilized by an intra­molecular N—H⋯N hydrogen bond. Within the complex anion, the CoII atom is tetra­hedrally surrounded by four N atoms of the thio­cyanate ligands. ππ stacking, with a distance of 3.7615 (10) Å between the centroids of benzene and pyridine rings, helps to consolidate the packing.

Related literature

For general background to isothipendyl, cobalt(II) and thio­cyanate compounds, see: Kinnamon et al. (1994[Kinnamon, K. E., Klayman, D. L., Poon, B. T., McCall, J. W., Dzimianski, M. T. & Rowan, S. J. (1994). Am. J. Trop. Med. Hyg. 51, 791-796.]); Moreau et al. (1995[Moreau, A., Dompmartin, A., Dubreuil, A. & Leroy, D. (1995). Photodermatol. Photoimmunol. Photomed. 11, 50-54.]); Scott et al. (1990[Scott, J., Quirke, J. M., Vreman, H. J., Stevenson, D. K. & Downum, K. R. (1990). J. Photochem. Photobiol. B, 7, 149-157.]); Hudson et al. (2005[Hudson, R., Carcenac, M., Smith, K., Madden, L., Clarke, O. J., Pèlegrin, A., Greenman, J. & Boyle, R. W. (2005). Br. J. Cancer, 92, 1442-1449.]). For a related structure, see: Shi et al. (2005[Shi, J. M., Zhang, F. X., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1181-m1182.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H20N3S)2[Co(NCS)4]

  • Mr = 864.07

  • Monoclinic, C 2/c

  • a = 25.2420 (4) Å

  • b = 11.4357 (2) Å

  • c = 14.5939 (2) Å

  • β = 98.557 (1)°

  • V = 4165.78 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 295 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.852, Tmax = 0.915

  • 48347 measured reflections

  • 6498 independent reflections

  • 4566 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.01

  • 6498 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N4 1.9411 (19)
Co1—N5 1.9626 (16)
N4i—Co1—N4 113.17 (13)
N4—Co1—N5 108.95 (7)
N4—Co1—N5i 110.33 (8)
N5—Co1—N5i 104.78 (9)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.91 1.91 2.7494 (18) 152

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of isothipendyl, C16H19N3S, is close to that of phenothiazines. Isothipendyl is an antihistamine used in the treatment of allergies. It was also found to be active against parasites causing filariasis (Kinnamon et al., 1994). Photobiological properties of isothipendyl were also investigated and found to have ultraviolet B (UVB) protective activity (Moreau et al., 1995). Studies also suggest that cobalt and thiocyanates play some role in phototoxicity and in the development of conjugates for photoimmunotherapy (Scott et al., 1990; Hudson et al., 2005). These outcomes arouse our interest and we prepared the title salt [(C16H20N3S)2{Co(NCS)4}], (I), for structural characterisation.

In the structure of (I), the Co atom of the anion is situated on a twofold rotation axis and is coordinated by four N atoms from four thiocyanate groups in a slightly distorted tetrahedral geometry (Fig. 1, Table 1). The bond lengths and bond angles of the cobaltate(II) anion are in good agreement with related structures (Shi et al., 2005).

Within the cation the dihedral angles between the benzene and the thiazine rings and between the pyridine and the thiazine rings are 15.73 (8)° and 14.77 (8)°, respectively. The central thiazine ring is slightly twisted as boat like. The deviation of the N and S atoms from the mean plane of the thiazine ring was found to be 0.272 (1) and 0.2852 (8) Å, respectively. The structure displays an intramolecular hydrogen bonding interaction between N3–H3A···N1 (Fig. 2 & Table 2).

There are significant ππ stacking interactions between the pyridine and benzene rings; the relevant distances are Cg2—Cg3i = 3.7615 (10) Å and Cg2—3iperp = 3.6975 (7) Å, and Cg3—Cg2ii = 3.7614 (10) Å and Cg3—2iiperp = 3.6820 (7) Å [symmetry codes: (i) 1/2 - x,1/2 + y,3/2 - z;(ii) 1/2 - x, -1/2 + y,3/2 - z; Cg2 and Cg3 are the centroids of the N1/C2–C6 and C7–C12 rings, respectively; CgIJperp is the perpendicular distance from CgI to ring J]. In addition, there are weak intermolecular C2—H2···S2 and C16—H16A···S2 interactions with H···S distances of 2.886 (10) and 2.919 (10) Å and D—H···A angles of 154.54 (12)° and 138.40 (14)°, respectively.

In the crystal structure, molecules stack along [010] (Fig. 3).

Related literature top

For general background to isothipendyl, cobalt(II) and thiocyanate compounds, see: Kinnamon et al. (1994); Moreau et al. (1995); Scott et al. (1990); Hudson et al. (2005). For a related structure, see: Shi et al. (2005).

Experimental top

The cobalt(II) salt was prepared by a single step method. Isothipendyl in ethanol (5 mmol) was slowly mixed with an ethanolic solution (5 mmol) of Co(SCN)2.2H2O. The mixture was kept at room temperature for 30 min and warmed on a water bath (343–353 K) for 1 h. Green crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent (M.P. 453 K; Yield 79%).

Refinement top

All H atoms were positioned at calculated positions with N—H = 0.91Å, C—H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96Å for methyl H atoms. H atoms were refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(X) for other atoms (X = N, C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code a) -x, y, -z+1/2.
[Figure 2] Fig. 2. Packing of the molecules as viewed down [010].
Bis[N,N-dimethyl-1-(10H-pyrido[3,2- b][1,4]benzothiazin-10-yl)propan-2-aminium] tetrakis(thiocyanato-κN)cobaltate(II) top
Crystal data top
(C16H20N3S)2[Co(NCS)4]F(000) = 1796
Mr = 864.07Dx = 1.378 Mg m3
Monoclinic, C2/cMelting point: 453 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.2420 (4) ÅCell parameters from 6498 reflections
b = 11.4357 (2) Åθ = 1.6–30.8°
c = 14.5939 (2) ŵ = 0.75 mm1
β = 98.557 (1)°T = 295 K
V = 4165.78 (11) Å3Plate, green
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6498 independent reflections
Radiation source: fine-focus sealed tube4566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 30.8°, θmin = 1.6°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
h = 3636
Tmin = 0.852, Tmax = 0.915k = 1616
48347 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0516P)2 + 2.3179P]
where P = (Fo2 + 2Fc2)/3
6498 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C16H20N3S)2[Co(NCS)4]V = 4165.78 (11) Å3
Mr = 864.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.2420 (4) ŵ = 0.75 mm1
b = 11.4357 (2) ÅT = 295 K
c = 14.5939 (2) Å0.22 × 0.15 × 0.12 mm
β = 98.557 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6498 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
4566 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.915Rint = 0.032
48347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
6498 reflectionsΔρmin = 0.37 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.18800 (3)0.25000.05395 (11)
S10.169598 (17)0.36282 (5)0.31347 (4)0.06906 (15)
S20.09133 (3)0.39599 (6)0.04513 (5)0.0913 (2)
S30.09097 (2)0.11877 (5)0.08464 (4)0.06810 (15)
N10.30192 (5)0.17216 (12)0.37667 (10)0.0479 (3)
N20.29026 (5)0.36667 (11)0.33141 (9)0.0428 (3)
N30.40850 (5)0.23282 (13)0.40260 (9)0.0503 (3)
H3A0.37810.18880.39530.060*
N40.04020 (8)0.28147 (18)0.17318 (14)0.0771 (5)
N50.04823 (6)0.08326 (15)0.17017 (11)0.0595 (4)
C20.28169 (8)0.06803 (16)0.39813 (13)0.0589 (4)
H20.30490.00490.41010.071*
C30.22864 (9)0.05145 (18)0.40307 (14)0.0663 (5)
H30.21610.02050.42040.080*
C40.19412 (7)0.14419 (19)0.38174 (14)0.0621 (5)
H40.15780.13520.38480.074*
C50.21316 (6)0.24990 (16)0.35591 (11)0.0487 (4)
C60.26864 (5)0.26126 (14)0.35550 (10)0.0413 (3)
C70.21115 (6)0.48282 (17)0.34832 (11)0.0506 (4)
C80.18804 (8)0.5880 (2)0.36902 (13)0.0653 (5)
H80.15130.59170.37000.078*
C90.21887 (10)0.6863 (2)0.38804 (14)0.0729 (6)
H90.20300.75670.40070.087*
C100.27306 (10)0.68031 (18)0.38826 (14)0.0693 (5)
H100.29390.74720.40000.083*
C110.29708 (8)0.57504 (16)0.37113 (12)0.0562 (4)
H110.33410.57150.37360.067*
C120.26658 (6)0.47499 (14)0.35030 (10)0.0443 (3)
C130.34445 (6)0.36661 (15)0.30759 (10)0.0440 (3)
H13A0.34910.43750.27320.053*
H13B0.34760.30110.26660.053*
C140.39047 (6)0.35898 (15)0.38957 (11)0.0459 (3)
H140.37630.38310.44560.055*
C150.43718 (7)0.4390 (2)0.37864 (16)0.0689 (5)
H15A0.46590.42540.42850.103*
H15B0.42580.51900.37990.103*
H15C0.44940.42300.32060.103*
C160.43609 (9)0.2099 (2)0.49819 (14)0.0752 (6)
H16A0.44900.13080.50240.113*
H16B0.41140.22110.54140.113*
H16C0.46570.26280.51250.113*
C170.44122 (9)0.1896 (2)0.33280 (17)0.0764 (6)
H17A0.47710.21910.34740.115*
H17B0.42580.21620.27230.115*
H17C0.44190.10570.33370.115*
C180.06195 (8)0.32922 (17)0.12044 (15)0.0622 (5)
C190.06629 (6)0.00127 (16)0.13474 (12)0.0492 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04465 (17)0.0540 (2)0.0604 (2)0.0000.00135 (13)0.000
S10.03187 (19)0.0899 (4)0.0813 (3)0.0035 (2)0.00519 (19)0.0002 (3)
S20.0961 (5)0.0837 (4)0.0981 (5)0.0315 (4)0.0272 (4)0.0016 (3)
S30.0596 (3)0.0733 (3)0.0717 (3)0.0168 (2)0.0107 (2)0.0148 (2)
N10.0407 (6)0.0498 (7)0.0536 (7)0.0035 (5)0.0078 (5)0.0019 (6)
N20.0304 (5)0.0487 (7)0.0503 (7)0.0008 (5)0.0087 (5)0.0030 (6)
N30.0354 (6)0.0617 (8)0.0528 (7)0.0017 (6)0.0038 (5)0.0058 (6)
N40.0690 (11)0.0815 (12)0.0766 (11)0.0245 (9)0.0027 (9)0.0100 (10)
N50.0439 (7)0.0615 (9)0.0701 (9)0.0001 (7)0.0014 (6)0.0029 (8)
C20.0628 (10)0.0498 (9)0.0644 (10)0.0054 (8)0.0108 (8)0.0037 (8)
C30.0728 (12)0.0586 (11)0.0709 (12)0.0233 (10)0.0218 (10)0.0009 (9)
C40.0458 (8)0.0757 (12)0.0674 (11)0.0228 (9)0.0172 (8)0.0099 (10)
C50.0332 (6)0.0644 (10)0.0484 (8)0.0073 (7)0.0055 (6)0.0045 (7)
C60.0326 (6)0.0525 (8)0.0389 (7)0.0047 (6)0.0054 (5)0.0021 (6)
C70.0433 (7)0.0657 (10)0.0418 (7)0.0115 (7)0.0031 (6)0.0061 (7)
C80.0597 (10)0.0838 (14)0.0521 (9)0.0296 (10)0.0071 (8)0.0072 (9)
C90.0941 (16)0.0655 (13)0.0572 (11)0.0290 (12)0.0056 (10)0.0009 (9)
C100.0937 (16)0.0514 (10)0.0614 (11)0.0053 (10)0.0066 (10)0.0023 (9)
C110.0585 (10)0.0530 (10)0.0565 (9)0.0007 (8)0.0066 (8)0.0047 (8)
C120.0431 (7)0.0520 (9)0.0375 (7)0.0056 (6)0.0046 (5)0.0057 (6)
C130.0340 (6)0.0550 (9)0.0448 (7)0.0025 (6)0.0115 (5)0.0029 (6)
C140.0322 (6)0.0567 (9)0.0495 (8)0.0044 (6)0.0085 (6)0.0045 (7)
C150.0421 (8)0.0783 (13)0.0871 (14)0.0189 (9)0.0116 (9)0.0023 (11)
C160.0714 (13)0.0858 (15)0.0613 (11)0.0179 (11)0.0133 (10)0.0035 (10)
C170.0584 (11)0.0925 (16)0.0811 (14)0.0187 (11)0.0194 (10)0.0162 (12)
C180.0510 (9)0.0556 (10)0.0757 (12)0.0121 (8)0.0049 (9)0.0033 (9)
C190.0310 (6)0.0614 (10)0.0546 (9)0.0033 (6)0.0048 (6)0.0030 (8)
Geometric parameters (Å, º) top
Co1—N4i1.9411 (19)C5—C61.4073 (19)
Co1—N41.9411 (19)C7—C81.389 (3)
Co1—N51.9626 (16)C7—C121.398 (2)
Co1—N5i1.9626 (16)C8—C91.372 (3)
S1—C51.7485 (18)C8—H80.9300
S1—C71.756 (2)C9—C101.369 (3)
S2—C181.607 (2)C9—H90.9300
S3—C191.6102 (19)C10—C111.387 (3)
N1—C61.328 (2)C10—H100.9300
N1—C21.351 (2)C11—C121.387 (2)
N2—C61.390 (2)C11—H110.9300
N2—C121.420 (2)C13—C141.541 (2)
N2—C131.4608 (18)C13—H13A0.9700
N3—C161.487 (2)C13—H13B0.9700
N3—C171.488 (2)C14—C151.519 (2)
N3—C141.516 (2)C14—H140.9800
N3—H3A0.9100C15—H15A0.9600
N4—C181.148 (3)C15—H15B0.9600
N5—C191.157 (2)C15—H15C0.9600
C2—C31.365 (3)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.378 (3)C16—H16C0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.374 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
N4i—Co1—N4113.17 (13)C8—C9—H9120.1
N4i—Co1—N5110.33 (8)C9—C10—C11120.4 (2)
N4—Co1—N5108.95 (7)C9—C10—H10119.8
N4i—Co1—N5i108.95 (7)C11—C10—H10119.8
N4—Co1—N5i110.33 (8)C10—C11—C12120.80 (19)
N5—Co1—N5i104.78 (9)C10—C11—H11119.6
C5—S1—C799.06 (7)C12—C11—H11119.6
C6—N1—C2118.85 (14)C11—C12—C7118.22 (16)
C6—N2—C12121.00 (12)C11—C12—N2121.74 (14)
C6—N2—C13118.47 (12)C7—C12—N2120.05 (15)
C12—N2—C13118.87 (13)N2—C13—C14116.08 (12)
C16—N3—C17110.70 (16)N2—C13—H13A108.3
C16—N3—C14112.07 (14)C14—C13—H13A108.3
C17—N3—C14114.63 (15)N2—C13—H13B108.3
C16—N3—H3A106.3C14—C13—H13B108.3
C17—N3—H3A106.3H13A—C13—H13B107.4
C14—N3—H3A106.3N3—C14—C15111.28 (14)
C18—N4—Co1172.97 (18)N3—C14—C13109.19 (13)
C19—N5—Co1160.60 (14)C15—C14—C13113.05 (14)
N1—C2—C3122.85 (19)N3—C14—H14107.7
N1—C2—H2118.6C15—C14—H14107.7
C3—C2—H2118.6C13—C14—H14107.7
C2—C3—C4118.25 (18)C14—C15—H15A109.5
C2—C3—H3120.9C14—C15—H15B109.5
C4—C3—H3120.9H15A—C15—H15B109.5
C5—C4—C3120.25 (16)C14—C15—H15C109.5
C5—C4—H4119.9H15A—C15—H15C109.5
C3—C4—H4119.9H15B—C15—H15C109.5
C4—C5—C6118.11 (17)N3—C16—H16A109.5
C4—C5—S1121.32 (13)N3—C16—H16B109.5
C6—C5—S1120.26 (13)H16A—C16—H16B109.5
N1—C6—N2117.76 (12)N3—C16—H16C109.5
N1—C6—C5121.59 (15)H16A—C16—H16C109.5
N2—C6—C5120.64 (14)H16B—C16—H16C109.5
C8—C7—C12120.16 (18)N3—C17—H17A109.5
C8—C7—S1119.17 (14)N3—C17—H17B109.5
C12—C7—S1120.58 (13)H17A—C17—H17B109.5
C9—C8—C7120.63 (19)N3—C17—H17C109.5
C9—C8—H8119.7H17A—C17—H17C109.5
C7—C8—H8119.7H17B—C17—H17C109.5
C10—C9—C8119.72 (19)N4—C18—S2178.86 (19)
C10—C9—H9120.1N5—C19—S3179.38 (17)
N4i—Co1—N5—C19126.5 (5)S1—C7—C8—C9173.88 (15)
N4—Co1—N5—C19108.7 (5)C7—C8—C9—C101.2 (3)
N5i—Co1—N5—C199.4 (4)C8—C9—C10—C111.2 (3)
C6—N1—C2—C33.0 (3)C9—C10—C11—C122.3 (3)
N1—C2—C3—C42.5 (3)C10—C11—C12—C70.9 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—N2179.22 (16)
C3—C4—C5—C62.4 (3)C8—C7—C12—C111.5 (2)
C3—C4—C5—S1171.23 (15)S1—C7—C12—C11174.88 (12)
C7—S1—C5—C4151.93 (15)C8—C7—C12—N2178.41 (14)
C7—S1—C5—C634.59 (15)S1—C7—C12—N25.2 (2)
C2—N1—C6—N2178.41 (15)C6—N2—C12—C11147.52 (15)
C2—N1—C6—C50.7 (2)C13—N2—C12—C1117.5 (2)
C12—N2—C6—N1149.64 (14)C6—N2—C12—C732.4 (2)
C13—N2—C6—N115.5 (2)C13—N2—C12—C7162.56 (14)
C12—N2—C6—C531.2 (2)C6—N2—C13—C1477.11 (18)
C13—N2—C6—C5163.65 (14)C12—N2—C13—C1488.31 (17)
C4—C5—C6—N11.9 (2)C16—N3—C14—C1577.02 (19)
S1—C5—C6—N1171.75 (12)C17—N3—C14—C1550.2 (2)
C4—C5—C6—N2178.98 (15)C16—N3—C14—C13157.49 (15)
S1—C5—C6—N27.3 (2)C17—N3—C14—C1375.24 (17)
C5—S1—C7—C8150.12 (14)N2—C13—C14—N396.79 (16)
C5—S1—C7—C1233.45 (14)N2—C13—C14—C15138.75 (16)
C12—C7—C8—C92.6 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.911.912.7494 (18)152

Experimental details

Crystal data
Chemical formula(C16H20N3S)2[Co(NCS)4]
Mr864.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)25.2420 (4), 11.4357 (2), 14.5939 (2)
β (°) 98.557 (1)
V3)4165.78 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.852, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
48347, 6498, 4566
Rint0.032
(sin θ/λ)max1)0.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.01
No. of reflections6498
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Co1—N41.9411 (19)Co1—N51.9626 (16)
N4i—Co1—N4113.17 (13)N4—Co1—N5i110.33 (8)
N4—Co1—N5108.95 (7)N5—Co1—N5i104.78 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.911.91002.7494 (18)152.00
 

Acknowledgements

The authors thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. They also thank Professor P. Thomas Muthiah for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHudson, R., Carcenac, M., Smith, K., Madden, L., Clarke, O. J., Pèlegrin, A., Greenman, J. & Boyle, R. W. (2005). Br. J. Cancer, 92, 1442–1449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShi, J. M., Zhang, F. X., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1181–m1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKinnamon, K. E., Klayman, D. L., Poon, B. T., McCall, J. W., Dzimianski, M. T. & Rowan, S. J. (1994). Am. J. Trop. Med. Hyg. 51, 791–796.  CAS PubMed Web of Science Google Scholar
First citationMoreau, A., Dompmartin, A., Dubreuil, A. & Leroy, D. (1995). Photodermatol. Photoimmunol. Photomed. 11, 50–54.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScott, J., Quirke, J. M., Vreman, H. J., Stevenson, D. K. & Downum, K. R. (1990). J. Photochem. Photobiol. B, 7, 149–157.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m772-m773
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds